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Steady flows, simple situations: flow over an inclined
planes, rotating drum (invariant by translation) for free
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Volume fraction domain of validity: ¢,, < ¢ < o,



Momentum equations

In this simple configuration, we have two coupled
equations for the two natural variables ¢(z) and V(z),
volume fraction and velocity profiles.



Momentum equations

In this simple configuration, we have two coupled
equations for the two natural variables ¢(z) and V(z),
volume fraction and velocity profiles.

No further assumptions are made here, such as constant
density (no dilatance) or Saint-Venant approach.









0Ty

5, +opgsin(0) =0

0T,
0z

ppgeos(d) =0



Stress description

Normal stress: compaction term + rate-dependent
impact stress (Bagnold):
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Normal stress: compaction term + rate-dependent
impact stress (Bagnold):

aVv

Trz = _IODQILLN(¢) (E) _ pgDF(¢)COS(6)) (1)

Shear stress: Coulomb like contribution + shear term:

aVv
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Boundary conditions

A priori four independant functions uy (@), F(®), ur(¢)
and ().

At the free surface z = h, the matter is decompactified:
¢(h) = ¢mm. On the other bound z = 0 we consider a
sticky condition V' (0) = 0.

For confined flows, the density at the boundaries is
determined by the knowledge of the applied normal
stress.
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Stress coefficients

Expectations values at the two compaction limit:

F', ur and pupy diverge as ¢ — oy

F and py have to be zero for ¢,, (zero normal stress
tensor at the free surface)

1 1s the only parameter which neither diverges nor
annihilates and is believed to have a smooth behaviour.
The value of ur(¢,,) is not prescribed a priori.
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Free-surface flows

Zero stress tensor at the free surface implies everywhere:

Ter + tan(0)7,, = 0

It leads to the following coupled equations:

do
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where
F

1 — 22 (tan(0) — )

KT

F*(¢,0) =

Comments:

for a given ¢ stationnary flow is allowed only for u <
tan(0) < p+ L.

Need to know only four coefficient functions F', u, uy
and pp (from experiments)!
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Simple cases

We consider 1 and pp/py constant.

A general change of variable can be taken to obtain a
dimensionless system of equation:

T ¢_¢m 7
¢_¢M_¢m OSQﬁ :
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L d ~ ~

F = FyF(¢) pr = poitr()
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They determine the length and velocity rescaling

F=(1- %(tan(@) - u))FjD

1 3
2\ (= (tant —1))2\ v (z)
FS’/Q (sinf — ,ucos@)% VgD

From experiments (Pouliquen), we have deduced:
=~ 0.3and puy/pr >~ 0.15.
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Generic cases
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Generic cases
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Generic cases
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Or a limit logarithmic dependance:

F = —Log((1— ¢) ﬁT:ligE

The volume fraction profile is unique when plotted as
functionof y=h — 2 (e =2, 8 =0.5.a = 2)
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We have in fact an exact solution for the Log:
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We have in fact an exact solution for the Log:
11 ( | |
(0)  dv dm  Du

while the algebrical dependance gives:
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Velocity profiles

For the algebrical model, we have taken v =0 and 0 = 1.
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Velocity profiles

For the algebrical model, we have taken v =0 and 0 = 1.

The two models show different regimes: one reaches an
asymptotic velocity profile while the other one show no
saturation of the velocity.
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The 6 dependance is easily obtained through the change
of variables. We retrieve for instance the (6 — 6,,i,)"/?
law for small h.
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The 6 dependance is easily obtained through the change
of variables. We retrieve for instance the (6 — 6,,i,)"/?
law for small h.

For the logarithmic model:
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Consistent density and velocity profiles are obtained for
different choice of the functions.
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Consistent density and velocity profiles are obtained for
different choice of the functions.

The approach adapts easily to confined shear flows: the
boundary conditions account for given external normal
and shear stresses. The localization of a sheared layer is
obtained.
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Perspectives

Determination of F and pugy/pny functions (from
experiments).

3D model: cylindrical Couette flows.

Comparison with Saint-Venant simplification. Effective
friction coefficient.

Time dependant equations.
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