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• Dense, sheared granular matter: avalanches, couette

flows...

• Contact frictions and inelastic impacts are the main

interactions between grains

• Pertinence of continuum models?

• Steady flows, simple situations: flow over an inclined

planes, rotating drum (invariant by translation) for free

surface or Couette flow for confined situations.

• Volume fraction domain of validity: φm < φ < φM
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Momentum equations

In this simple configuration, we have two coupled

equations for the two natural variables φ(z) and V (z),
volume fraction and velocity profiles.
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Momentum equations

In this simple configuration, we have two coupled

equations for the two natural variables φ(z) and V (z),
volume fraction and velocity profiles.

No further assumptions are made here, such as constant

density (no dilatance) or Saint-Venant approach.
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∂τxz

∂z
+ φρgsin(θ) = 0
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∂τxz

∂z
+ φρgsin(θ) = 0

∂τzz

∂z
− φρgcos(θ) = 0
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Stress description

Normal stress: compaction term + rate-dependent

impact stress (Bagnold):

τzz = −ρD2µN(φ)
(

dV

dz

)2

− ρgDF (φ)cos(θ) (1)
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Stress description

Normal stress: compaction term + rate-dependent

impact stress (Bagnold):

τzz = −ρD2µN(φ)
(

dV

dz

)2

− ρgDF (φ)cos(θ) (1)

Shear stress: Coulomb like contribution + shear term:

τxz = ρD2µT(φ)
(

dV

dz

)2

− µ(φ)τzz (2)
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Boundary conditions

A priori four independant functions µN(φ), F (φ), µT(φ)
and µ(φ).

At the free surface z = h, the matter is decompactified:

φ(h) = φm. On the other bound z = 0 we consider a

sticky condition V (0) = 0.

For confined flows, the density at the boundaries is

determined by the knowledge of the applied normal

stress.
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Stress coefficients

Expectations values at the two compaction limit:
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Stress coefficients

Expectations values at the two compaction limit:

• F , µT and µN diverge as φ → φM

• F and µN have to be zero for φm (zero normal stress

tensor at the free surface)

• µ is the only parameter which neither diverges nor

annihilates and is believed to have a smooth behaviour.

The value of µT(φm) is not prescribed a priori.
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Free-surface flows

Zero stress tensor at the free surface implies everywhere:

τxz + tan(θ)τzz = 0

It leads to the following coupled equations:

D
dφ

dz
= − φ

∂F∗
∂φ

(3)

D

g

(
dV

dz

)2

=
F ∗

µT
(sin(θ)− µcos(θ)) (4)
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where

F ∗(φ, θ) =
F

1− µN
µT

(tan(θ)− µ)
Comments:

• for a given φ stationnary flow is allowed only for µ <

tan(θ) < µ + µT
µN

.

• Need to know only four coefficient functions F , µ, µN

and µT (from experiments)!
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Simple cases

We consider µ and µT/µN constant.

A general change of variable can be taken to obtain a

dimensionless system of equation:

φ̃ =
φ− φm

φM − φm
0 ≤ φ̃ ≤ 1

F = F0F̃ (φ̃) µT = µ0µ̃T(φ̃)
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They determine the length and velocity rescaling

z̃ = (1− µN

µT
(tan(θ)− µ))

z

F0D

Ṽ (z̃) =

 µ
1
2
0

F
3/2
0

 (1− µN
µT

(tanθ − µ))
3
2

(sinθ − µcosθ)
1
2

 V (z)√
gD
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They determine the length and velocity rescaling

z̃ = (1− µN

µT
(tan(θ)− µ))

z

F0D

Ṽ (z̃) =

 µ
1
2
0

F
3/2
0

 (1− µN
µT

(tanθ − µ))
3
2

(sinθ − µcosθ)
1
2

 V (z)√
gD

From experiments (Pouliquen), we have deduced:

µ ' 0.3 and µN/µT ' 0.15.



12

Generic cases

F̃ =
φ̃α

(1− φ̃)β
µ̃T =

φ̃γ

(1− φ̃)δ



12

Generic cases

F̃ =
φ̃α

(1− φ̃)β
µ̃T =

φ̃γ

(1− φ̃)δ

Or a limit logarithmic dependance:

F̃ = −Log((1− φ̃) µ̃T =
1

1− φ̃



12

Generic cases

F̃ =
φ̃α

(1− φ̃)β
µ̃T =

φ̃γ

(1− φ̃)δ

Or a limit logarithmic dependance:

F̃ = −Log((1− φ̃) µ̃T =
1

1− φ̃
The volume fraction profile is unique when plotted as

function of ỹ = h̃− z̃ (α = 2, β = 0.5.α = 2)
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We have in fact an exact solution for the Log:

1
φ2(ỹ)

=
1

φM
+ (

1
φm
− 1

φM
)eφMy
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We have in fact an exact solution for the Log:

1
φ2(ỹ)

=
1

φM
+ (

1
φm
− 1

φM
)eφMy

while the algebrical dependance gives:

φ̃ ∝ ỹ
1
α ỹ → 0 φ̃ ∼ 1− ỹ−

1
β ỹ →∞
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Velocity profiles

For the algebrical model, we have taken γ = 0 and δ = 1.
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Velocity profiles

For the algebrical model, we have taken γ = 0 and δ = 1.

The two models show different regimes: one reaches an

asymptotic velocity profile while the other one show no

saturation of the velocity.
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The θ dependance is easily obtained through the change

of variables. We retrieve for instance the (θ − θmin)1/2

law for small h.
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The θ dependance is easily obtained through the change

of variables. We retrieve for instance the (θ − θmin)1/2

law for small h.

For the logarithmic model:
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• Consistent density and velocity profiles are obtained for

different choice of the functions.
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• Consistent density and velocity profiles are obtained for

different choice of the functions.

• The approach adapts easily to confined shear flows: the

boundary conditions account for given external normal

and shear stresses. The localization of a sheared layer is

obtained.
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Perspectives

• Determination of F and µT/µN functions (from

experiments).

• 3D model: cylindrical Couette flows.

• Comparison with Saint-Venant simplification. Effective

friction coefficient.

• Time dependant equations.


