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Abstract

Dense granular media have a high solid fraction and each grain has

contacts with its neighbors. Despite their compactness, dense granular

media have the possibility of flowing like liquids. However, the constitutive

relations describing their rheology is not easy to deduce from laboratory

experiments because the ratio between the size of the apparatus and the

size of a grain cannot be made as large as desired. It is thus important

to understand the role of the boundaries and to study the possibility of

inferring from experimental results the behavior of an infinite granular

medium. We focus here on avalanches over heaps which are perhaps the

most famous examples of dense flows.

1 Introduction

Granular materials are ubiquitous in nature and industry. Sand and coffee-beans
are two amongst numerous examples of such materials. The typical granular
size is the millimeter so that the grains are non-Brownian. The typical volume
fraction is about sixty per cent so that the grains are in permanent contact with
each other. Despite their high concentration, granular materials are able to flow
provided their volume fraction φ lies between the random loose packing φm and
the random close packing φM (respectively of order .55 and .65 for spheres).
For these concentrations the grains can be considered as rigid particles and
all their elastic properties can be neglected. Despite the very narrow range of
relevant concentrations, a description of these liquid-like granular media is very
important because it concerns free-surface flows (like avalanches over dunes or
heaps) as well as weakly confined flows (like those met in many chemical or
food-industry processes). In recent years we have developed with C. Josserand
a simple rheological model for granular materials which is briefly presented
hereafter and applied to the description of avalanches .

2 A simple rheological model

To avoid the complexities inherent to a full three-dimensional description, we
focus on steady shear flows in which the granular medium flows along direction x
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while its velocity varies along an orthogonal direction z. For those special types
of flow, the only relevant components of the stress tensor are the shear stress
σxz and the normal stress σzz . We must give constitutive relations to these two
components and we assume that besides the velocity gradient γ̇ = ∂Vx/∂z, a
second quantity which matters is the volume fraction φ of granular medium.
The reason for considering φ is the mobility of the medium which is drastically
different depending whether it is close to the random loose or to the random
close packing. We do not consider any other variables (like the granular velocity
fluctuations for example) because we limit our description to steady flows for
which all dynamical quantities can be expressed in terms of the solid fraction
and the velocity gradient only. The constitutive relations that were proposed
in [1] give the following expressions for the shear component σxz and normal
component σzz

σzz = P ∗F (φ) + ρD2µN (φ)γ̇2 , (1)

σxz = µσzz + ρD2µT (φ)γ̇2 . (2)

In these constitutive relations ρ is the mass per unit volume of the granular
material and D is the grain size. In expression (1) for the normal stress the rate-
independent part P ∗F (φ) represents the compressibility of the flowing granular
material. This compressibility is not a consequence of the elasticity of the grains
but stems from the many configurations with contacts (but zero contact forces)
the grains can explore when flowing. This compressibility is thus of entropic
origin and is specific of steadily flowing granular materials with a solid fraction
in the range φm < φ < φM [2]. The main issue is the order of magnitude of
P ∗ which is still waiting for an exact calculation with the methods of statistical
physics. At present, the best estimates for P ∗ are between 102 and 103 Pa. The
second term in (1) represents the dilatancy phenomenon, i.e. the experimental
finding that increasing the shear rate at a constant volume fraction will increase
the pressure, or increasing the shear rate at constant pressure will decrease the
volume fraction. The shear stress (2) is dissipative and contains two contribu-
tions, the first one associated with the Coulombic friction between grains and
the second one representing an extra dissipation due to impacts between grains.
The transport coefficients F (φ), µN (φ) and µT (φ) vary strongly with the solid
fraction in the small range φm < φ < φM . Introducing the reduced solid fraction

ϕ =
φ − φm

φM − φm
, (3)

the transport coefficients we will adopt henceforth and which were suggested by
the interpretation of previous experiments are

F (φ) = ln
1

1 − ϕ

µN (φ) =
µN0

(1 − ϕ)2

µT (φ) =
µT0

(1 − ϕ)2
.
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Figure 1: Reduced velocity profile V/V (0) versus the adimensional distance
z/H(θ) to the free surface. The reduced compaction profile (φ−φm)/(φM −φm)
is plotted as well.

3 Description of two-dimensional avalanches

As a prototype of shear flow with free surface, we consider the gravity-induced
chute over a heap (see Fig. (1)) with an angle θ relative to the horizontal plane.
We focus on two-dimensional (2D) avalanches for which the mean grain velocity
is parallel to the x-axis, V = V ex, while V and the solid fraction φ depend only
on z, the distance to the free surface. The granular stress tensor is noted σ and
the equations of motion are:

0 = −
∂σxz

∂z
+ φ0ρgsin(θ) , 0 = −

∂σzz

∂z
+ φ0ρgcos(θ) (4)

where g is the acceleration of gravity and φ0 ≈ 0.6 is some mean value of the
volume fraction. Since we neglect the role of the embedding fluid, the granular
stress must vanish at the free surface and the equations of motion give

σzz = φ0ρgcos(θ)z , and σxz − µσzz = φ0ρg(sin(θ) − µcos(θ))z. (5)

Combining these expressions with the constitutive laws (1) and (2), one
arrives at the following volume fraction and velocity gradient profiles

φ(z) = φM − (φM − φm) exp(−
z

H
) or ϕ(z) = 1 − exp(−

z

H
) (6)

and
D

g

(

dV

dz

)2

=
φ0

µT0
(sinθ − µcosθ)

z

D
exp(−

2z

H
) . (7)

It is thus clear that at the free surface z = 0 of the avalanche the velocity
gradient vanishes and the volume fraction is the random loose packing while
deep below the free surface the velocity vanishes exponentially and the volume
fraction is close to the random close packing. Note that ”deep below the free
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surface” means in fact z >> H where H, the thickness of the avalanche, is
defined as

H(θ) =
P ∗

φ0ρg

1

cosθ − µN0

µT0

(sinθ − µcosθ)
. (8)

This thickness increases with the slope and becomes infinite for tanθ = µ +
µT0/µN0. Hence the avalanche develops for a slope angle in the restricted range

µ < tanθ < µ +
µT0

µN0
, (9)

and its thickness is always larger than the minimum value Hr obtained for an
avalanche flowing with a slope close to the angle of repose θr (with tanθr = µ)

Hr =
P ∗

φ0ρgcosθr
. (10)

From the above results one can deduce two quantities that are of immediate
interest for comparison with experiments : the grain velocity V (0) at the surface
of the avalanche

V (0)
√

gD
=

√

πφ0

4µT0

(

H

D

)
3

2
√

sinθ − µcosθ (11)

and the mass flow rate Q per unit width of the avalanche

Q =
3

2
φ0ρHV (0) . (12)

Looking at that last result, one can picture the avalanche as a surface flow
with a mean velocity V (0)/2 over a thickness 3H . This simple interpretation is
comforted by Fig(1) which represents typical velocity and solid fraction profiles
and which suggests that below a distance of order 5−6 H from the free-surface,
the medium is almost motionless (the velocity decay is exponential) with a solid
fraction close to the random close packing. While the predictions of the above
model are rather simple and easy to understand (note that V (0) and Q are
functions of θ only), no laboratory experiment is yet able to produce a truly
two-dimensional avalanche. All the experimental setups are limited by side-walls
and, as was convincingly demonstrated in [3, 4, 5], the side-walls strongly modify
the dynamics of granular surface flows. Of course the use of 3D constitutive
relations together with boundary conditions for the velocity would clarify the
issue. Our objective here is less ambitious and we just want to answer the
question : Can the above 2D approach be modified so as to include the main
frictional forces induced by the side-walls ?

4 The role of sidewalls in quasi-2D experiments

on avalanches

The simplest way to deal with side-walls within a (quasi)-two dimensional model
is to consider the equations of motion averaged over the transverse direction y,
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that is to say over the gap between the two side-walls. Let us call σ∗(z) that
averaged stress. The equations of motion become

0 = −
∂σ∗

xz

∂z
−

2

W
σw

xy + φ0ρgsin(θ) , 0 = −
∂σ∗

zz

∂z
−

2

W
σw

zy + φ0ρgcos(θ) (13)

where W is the width between the two sidewalls while σw
ij(z) are the components

of the stress tensor at the side-walls. The issue is to propose phenomenological
expressions for σw in terms of σ∗ so as to close the problem. Our choice is

σw
xy = µtσ

∗

zz +
1

2k
(σ∗

xz − µσ∗

zz) (14)

σw
zy = µnσ∗

zz . (15)

A Coulomb-like friction is assumed with friction coefficients µn and µt in the
z and x directions respectively. A dynamic friction force with a coefficient k
is moreover added in the flow direction only. It means that we acknowledge
the existence of an extra friction force due to the velocity gradient ∂Vx/∂y at
the sidewalls. And we supposed that the related force increases with the main
velocity gradient γ̇ = ∂Vx/∂z, itself driven by the excess shear σ∗

xz − µσ∗

zz as
suggested by (2). With the above expressions for the stress at sidewalls, the
solution of (13) is

σ∗

zz = φ0ρgcos(θ)(W/2µn)(1 − e−2µnz/W )

σ∗

xz − µσ∗

zz = φ0ρgcos(θ)kW (1 − e−z/kW )

[

tan(θ) −
µt

µn
+ (

µt

µn
− µ)f(z)

]

.

with

f(z) =
e−z/kW − e−2µnz/W

(2kµn − 1)(1 − e−z/kW )
. (16)

It is clear that two length scales, W/µn and kW , describe the friction on side-
walls. What is perhaps less evident is the existence of a third length scale, h,
giving the depth where the excess shear stress vanishes. The granular medium
is completely motionless below this depth which is defined as the solution of

f(h) =
µt − µntan(θ)

µt − µnµ
(17)

One can prove that 0 < f(z) < 1 so that the existence of h is bound to the two
conditions

µt/µn > µ and µ < tan(θ) < µt/µn . (18)

When these inequalities are not satisfied, then h recedes to infinity and disap-
pears from the list of pertinent length scales. The next step is crucial : we
assume that the averaged stress σ∗ obeys the same constitutive laws as the local

stress σ, an assumption which presumes that the flow is more or less uniform
across the width of the setup. Introducing the two expressions in the left-hand
side of (1) and (2) allows the calculation of the profiles φ(z) and Vx(z) as well
as all other pertinent quantities relative to the avalanches. In what follows we
focus on the simplest case where the role of µn and k is neglected. In this case
the only length scale witnessing to the friction on sidewalls is h defined as [4, 5]

h(θ, W ) = W
tanθ − µ

µt
. (19)
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The shear rate and the reduced volume fraction deduced from (1) and (2) are

ϕ(z) = 1 − exp(−
z

H
)exp

(

−(
1

Hr
−

1

H
)
z2

h

)

(20)

D

g

(

dV

dz

)2

=
φ0

µT0
(sinθ − µcosθ) (1 −

z

h
)

z

D
(1 − ϕ(z))2 . (21)

These equations, where 0 < z < h, are to be compared with the purely 2D
expressions (6) and (7) where 0 < z < ∞. The main point is the presence
(besides the grain size D) of two length scales, the thickness H(θ) of the 2D
avalanche and the screening length h(θ, W ) induced by the friction on sidewalls.
In the above expressions also appears Hr which is nothing but the minimum
value of H defined in (10). It is now clear that all experiments performed with
a distance W between the sidewalls such that h < Hr will be dominated by the
friction on these lateral boundaries. In that small h case, all over the thickness
h the solid fraction stays close to the random loose packing (hence ϕ(z) ≈ 0)
and one finds for the surface velocity and the flow rate per unit width

V (0)
√

gD
=

π

8

√

φ0

µT0

(

h

D

)
3

2
√

sinθ − µcosθ (22)

Q =
1

2
φ0ρhV (0) , (23)

two results which are similar to (11) and (12) but with h(θ, W ) replacing H(θ).
Conversely, the observation of a truly 2D avalanche requires the condition h >
5H to be satisfied. The main problem is our lack of knowledge concerning
the disorder pressure P ∗ which enters the expression (10) of Hr. With P ∗ ≈
100 Pa ≈ 20φ0ρgD, one deduces Hr ≈ 20 D and the condition h > 5H amounts
to

W

D
>

100µt

(sinθ − µcosθ)[1 − µN0

µT0

(tanθ − µ)]
. (24)

This condition is very severe close to the angle of repose but could be more
easy to fulfill with a small µt (i.e. with smooth sidewalls) and a large mass flux
flowing down with a slope slightly larger than the angle of repose.

5 Conclusions

It is far from easy to study avalanches of granular liquids in laboratory ex-
periments because of the unavoidable role of the sidewalls. The gap between
lateral boundaries must be very large to infer or check rheological laws from
experimental results. We have proposed a rheological model in which the com-
pressibility and the dilatancy of the flowing granular liquid is taken into account.
The compressibility is of entropic (or topological) origin. Its dependance on the
solid fraction is well understood ( from the entropy of a lattice-gaz model) but
the magnitude of the ”disorder pressure” P ∗ is not precisely known. However,
taking the existence of this disorder pressure for granted, we came to the conclu-
sion that upon enlarging the gap between the sidewalls, the avalanches should
merge into some limit 2D state where the mass flux and thickness depend on
the slope only. Our conclusion is thus very different from the one Jop, Forterre
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and Pouliquen [5] arrived at, with a mass flux and a thickness increasing with
the gap as some power law, whatever the magnitude of the gap between the
sidewalls. We do obtain such scaling laws (see(22) and (23)) but they are re-
stricted to the case h < H only. The existence of the intrinsic 2D thickness H
is due to both the compressibility and dilatancy effects represented in (1). We
are presently working on a 3D extension of the constitutive laws (1) and (2) to
improve over the above quasi-2D description.
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