
There is a large amount of experimental work dealing with dry granular flows (such 
as sand, glass beads, small rocks…) supporting the so called µ(I) rheology [Jop et al. 
06]. This rheology states that µ the ratio of the tangential to the normal constraints 
behaves as a Coulomb like friction depending on the Inertial number I (this number 
is the product of the grain size by the shear of the velocity divided by the square 
root of pressure divided by the grain density). The proposed dependance of µ is: 

We propose the implementation of this non newtonian rheology in a Navier Stokes 
Solver (the Gerris Flow Solver which uses a finite-volume approach with the Volume-
of-Fluid (VOF) method to describe variable-density two-phase flows).  We redefine I , 
and the kinematic viscosity
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The granular fluid is covered by a passive light fluid (it allows for a zero pressure boundary condition at the surface, bypassing an up to now difficulty which 
was to impose this condition on a unknown moving boundary).  
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The rheology is tested on the collapse of granular columns and quantitative comparisons with numerical simulations from Contact Dynamics are done.
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These figures can be reproduced using lydie/0.9/tas.gfs and lydie/9.1/tas.gfs. We
should also do this better using Lydie’s results directly.

These simulations were repeated for a ranging from 0.25 to 60. In order to estimate the
influence of numerical integration errors, the spatial resolution was also varied from 32/29 to 32/
212. Figure 7 illustrates the evolution of the normalised final deposit extent as a function of
aspect ratio a. Well-defined power law dependencies are observed with exponents of 1 and 2/3
respectively. The transition between the two regimes occurs for a ≈ 7. This is a larger aspect
ratio than that observed in experiments or discrete-grain simulations (a≈ 2). Recovering a tran-
sition for smaller a would require either a larger prefactor for the linear regime or a smaller pref-
actor for the power-law regime. For example, while the prefactor of 3.5 for the power-law regime
is close to that of Staron and Hinch (2005) (3.25), the prefactor for the linear regime is only 1.85
compared to 2.5 for Staron and Hinch. This may suggest that the mobility of the tip of columns
is under-estimated by the continuum model which could be explained by the limitations dis-
cussed previously. Note also the good convergence of the results with spatial resolution.
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Figure 7. Normalised final deposit extent as a function of aspect ratio. The different sets of points cor-
respond to the spatial resolutions given in the legend. The points which are obvious outliers correspond
to simulations which were still running when I generated the figure. This figure can be reproduced using
the scaling.plot gnuplot script.

Figure 8 gives the evolution of the maximum thickness of the final deposit as a function of
the initial aspect ratio. Linear dependence is observed for a ! 0.65, a power law with an expo-
nent of ≈ 0.35 for 0.65 < a < 6 followed by saturation with a maximum at a ≈ 15. From a ≈ 32,
the maximum thickness of the deposit is not reached on the axis of lateral symmetry of the
column anymore but in the deposited “wave” formed toward the front of the flow. The thickness
on the axis of lateral symmetry continue to decrease for a > 32 (Figure 9). These results are con-
sistent with Staron and Hinch (2005) although they did not discuss the transition for a > 32.
Note also that the maximum thickness of the deposit is much less dependent on the accurate
description/resolution of the dynamics of the avalanche tip than the horizontal extent.

Lydie, in your 2005 paper I don’t understand what H̄∞ is. Is it different from H0 R0/R∞? It

Evolution of the normalised final 
deposit extent as a function of 
aspect ratio a. Well-defined 
power law dependencies are 
observed with exponents of 1 
and 2/3 respectively.

We recover the experimental scaling [Lajeunesse et al. 04] and 
[Staron et al. 05]. Differences between the values of the 
prefactors are due to the difficulties to obtain the run out 
length: friction in the Navier Stokes code tends to underestimate 
it, whereas direct simulation shows that the tip is very gazeous, it 
can no longer explained by a continuum mechanic description.

Snapshots of collapse of three columns of aspect ration 0.5 1.42 and 6.26 (top to bottom)   

Collapse of columns of aspect ration 0.5 1.42 and 6.26 (left to right), comparison of Discrete Simulation Contact Method and Navier Stokes gerris, shape at 
time 0, 1, 2, 3, 4 and position of the front of the avalanche as function of time  (time measured with              and space with        )
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A possible experimental set up is a container filled by sand (left), the 
aspect ratio (height/length) is a.  At initial time, the gate is opened 
quickly. After the avalanche, the grains stop, the final configuration is 
at rest (right).  This poster compares results from Discrete Contact 
Method Simulations (simulation of the displacement of each grain) to 
a continuum Navier Stokes simulation with the µ(I) rheology.  
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The µ(I) has been obtained from experimental flows of dry granular flows 
[Jop et al. 06], we have implemented it in a Navier Stokes solver. 
To test the solver, we first recovered the classical analytical solution of 
steady avalanche, known as Bagnold solution (not presented on this 
poster [Lagrée et al.]). 
As a result, we reobtain with a good precision the collapse of granular 
columns (shape as function of time compared to Discrete Simulations). 
The experimental trends of the scaling of the run out are reobtained 
(however difficulties remain for the description of the front).
This opens the door to systematic studies of granular flows using this 
continuum approach.


