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Abstract

In this report we present a steady and an unsteady two-dimensional, laminar, incompressible
channel �ow model. The models are derived from the Navier Stokes equations on the basis of
boundary layer theory. We also present the numerical method used for solution of these models
by means of �nite di�erences. Their accuracy has been tested by solving these �ow models in
particular geometries for which analytical or approximate solutions are known. In these cases, the
models show rather good results with respect to the theoretical solutions.

Results of the steady �ow model have also been compared with results of direct numerical sim-
ulation of the complete Navier Stokes equations, by a commercial code FLUENT, applied on a
straight channel, which expands discontinuously. We �nd a discrepancy of 3% in the results for
the velocity �eld.

The steady �ow model has been used for simulation of the �ow through a �ue channel in the
mouthpiece of a recorder �ute. The results have been compared with experiments. The discrep-
ancies are about 10%. They could at least partially be explained by measurement errors, and by
e�ects of turbulence. We also give suggestions for methods which possibly will improve results.

The unsteady �ow model has been used for simulation of the �ow through the human glottis, in a
coupled simulation of the �ow and the vibration of the vocal folds. The vocal folds are described
with a simple single mass-spring model. This model is solved numerically with an unconditionally
stable method. Simulations have been carried out with a constant volume �ux and a constant
pressure drop over the channel.

The behaviour of the hydrodynamic force on the vocal folds has been examined qualitatively,
for both constant volume �ux and constant pressure drop. In case of volume �ux imposition we
observe a transfer of energy from the �uid to the vocal folds. In case of pressure drop imposition
we observe transfer of energy in both directions, depending on the value of the pressure drop. The
results are discussed qualitatively in reference with other vocal folds models and suggestions are
made for future work.

Vocal fold oscillation is observed in these simulations, even with one mechanical degree of freedom.
In contrast to other models which state that vocal folds oscillation requires at least two mechanical
degrees of freedom (two masses and two springs).
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Chapter 1

General introduction

In this report we present a steady and an unsteady two-dimensional, laminar, incompressible
channel �ow model. Channel �ow simulations have a broad �eld of applications. For example, in
the �eld of acoustical sound production. In �ue wind instruments we encounter channel geometries
which play a signi�cant role in the sound production. In biomechanics the air�ow through the
glottis, where voiced sound is produced, is accurately described with channel �ow models. In this
introduction we will discuss these two possible applications for channel �ow simulation, giving
an overview of what research activities are and have been done for better understanding of the
physics behind it.

1.1 The �ute

In spite of their long existence, the physics of many acoustic musical instruments is not yet well
understood. In particular the question why recorder �utes are built the way they are is not
answered. The search for the geometry giving the best sound quality is based on centuries of
expertise of the instrument builders.

Many aspects of the �ute are important for the quality of its sound. In a joint research e�ort of
the University of Pierre et Marie Curie (Paris VI) and the University of Technology in Eindhoven
(TUE), these aspects are studied. The studies are concentrated in experiments and numerical
simulations on the acoustic behaviour of the �ute.

In a recorder type �ute (see �gure 1.1) the musician blows into the �ue channel of the mouthpiece.
At the end the �ue channel diverges abruptly, causing the �ow to separate. A jet emerges which
hits a wedge called labium. The jet starts to oscillate because it is hydrodynamically unstable.
This oscillation is ampli�ed for the eigenfrequencies of the resonator tube, producing the sound.
The production of sound as a result of the interaction of the jet and the labium has been studied
by Fabre et al. [6]. Currently, Ségou�n is studying the in�uence of the length of the �ue channel
in the mouthpiece, as well as the stabilizing e�ect of using chamfers (cutting the wake end of
the �ue channel under an angle of less than 90 degrees) on the sound quality [20]. At the TUE
experiments have been performed on several aspects of the geometry of the �ue channel. The
in�uence of chamfers on the frequency characteristic of the produced sound has been determined
[2]. Velocity pro�les of the jet emerging from the �ue channel have been measured [23].

From those research activities the demand rose for numerical simulation models of the �ow through
the �ue channel. These will serve to improve the understanding of the formation of the jet at the
wake end of the channel. The behaviour of this jet is very important for sound production in the
�ute.
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Figure 1.1: Schematic drawing of a recorder �ute.

1.2 The larynx

Another interesting application of channel �ow simulations is the process of human speech pro-
duction in the larynx. Better understanding of the mechanical behaviour of the vocal folds will
have many applications. For example in numerical synthesis of speech which could be applied in
voice communication with computers, as a replacement for the keyboard and mouse. It can also
be used for e�cient encoding of speech for more e�cient data transport in telecommunication.

In �gure 1.2 a schematic drawing of the larynx is shown. Air�ow coming from the lungs below
is forced through the glottis, the opening between the vocal folds. Interaction of hydrodynamic
forces with the elastic vocal folds induces vibration. In periodic oscillation the vocal folds produce
a line spectrum with a fundamental frequency and higher harmonics. After passing the glottis, the
air�ow arrives in the epiglottis and the mouth, which play the role of resonators. They modulate
the spectrum depending on their shape. The shape can be changed by changing the position of
organs like the tongue. This process is called articulation. The oscillation of the vocal folds is in
�rst order approximation independent of articulation, because the acoustical feedback is negligible.

Various research projects are running on the vocal folds behaviour. The Institute of Perception
Research (IPO) is cooperating with several research laboratories, among which the group Gas
Dynamics of the physics department of the TUE, in a project on voiced speech production. In a
so-called STW project of the Rijksuniversiteit Groningen this university collaborates with the TUE
on the development of arti�cial vocal folds (protheses). The Institute of Speech Communication
(ICP) of the 'Intitut National Polytechnique' in Grenoble is working together with the TUE on
the diagnostics of vocal folds pathology.

Most research activities are focused on developing numerical models for the simulation of vocal
folds vibration. These models are two dimensional. The vocal folds pinch o� the airway from
the lungs like a pair of scissors cutting the pipe transversely (see �gure 1.2), giving a rather two
dimensional geometry to the opening in between, the so called glottis. This justi�es the assumption
of a two dimensional geometry. The two dimensional models study the �ow through the glottis
in the plane perpendicularly to the symmetry line between the vocal folds, in various degrees of
simpli�cation. Mostly such a model is combined with a lumped mechanical model for the vocal
folds (a set of mass-spring systems), also in various degrees of complexity.

A fairly simple, two-mass model of the vocal folds, based on the classic model of Ishizaka and
Flanagan is studied by Lous et al.[12], using a one dimensional quasi steady frictionless incom-
pressible �ow model. Pelorson et al.[17] have examined a similar model to this one, depicted in
�gure 1.3. They assume a quasi-steady incompressible frictionless �ow within the glottis. The
oscillation of the vocal folds is driven by the pressure in the �uid. A more complicated three-
mass, body-cover model is studied by Story and Titze [22]. They use an unsteady incompressible
frictionless model for the air �ow. A di�erent body-cover model is applied by Lucero [13]. In
this paper the propagation of surface waves of the cover of the vocal folds in the �ow direction is
studied. Even in the most simple models the behaviour is very complicated.

At the Gas Dynamics laboratory of the TUE experiments have been carried out on a rigid model
of the vocal folds with various shapes, including a study of �ow separation [9].
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Figure 1.2: Section through the larynx showing the laryngeal airway (left) and a view of the vocal
folds from above (right) (taken from [5]).

Figure 1.3: The two-mass model of the vocal folds, used by Pelorson et al.[17].

In the literature it is assumed that the most simple model predicting oscillation of the vocal folds
without acoustical feedback of articulation is a mechanical model with two degrees of freedom.
This is a so called two-mass model ([12],[17]). In this report we will investigate oscillation of a
mechanical model for the vocal folds with only one degree of freedom (single mass model).

Interesting results have also been obtained in research on blood �ow through arteries and veins. In
this �eld models for �ow in tubes and channels with deformable walls have been developed as well.
Walsh [24] carried out numerical simulations on a two-dimensional incompressible, inviscid �ow in
an elastic tube. The tube-wall is assumed to be a membrane suspended with springs. Young and
Tsai [25] have studied the behaviour of the pressure in a tube with a stenosis, and veri�ed their
model with experiments. A very accurate, but complicated model for �ow through collapsible
channels is used by Luo and Pedley [14]. They solve the full set of Navier Stokes equations for the
�ow with a �nite element method, and use a general membrane model for the tube-wall.

Pedley has also performed experiments with collapsible tubes, studying pressure and �ux charac-
teristics [15].
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1.3 Scope of the work

In this report we present models for steady and unsteady two-dimensional, laminar, incompressible
channel �ow together with the method used for numerical resolution. The report is divided into
two parts, discussing two related models with di�erent applications:

� Part I: Steady channel �ow, applied on the �ow in the channel in a mouthpiece of a recorder
type �ute.

� Part II: Unsteady channel �ow, applied on the air�ow induced vibration of the vocal folds.

The aim of this study was:

� to simulate the �ow through the channel in a mouthpiece of a �ute, with a simpli�ed �ow
model and attempt to reproduce results obtained by experiments.

� to develop a coupled simulation model of the �ow through the glottis and the vibration
of the vocal folds using simpli�ed models to enable real time simulation of the process of
phonation.
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Part I

Steady channel �ow
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Introduction

In the �rst part of this report we present a �ow model which is used to calculate the jet which
emerges from the �ue channel in the mouthpiece of a recorder type �ute. This simpli�ed model,
which is based on the Navier Stokes equations, consists of two parts. First the �ow through the
channel is simulated, followed by a jet �ow simulation. This simulation is a lot faster than the
simulation of the unsimpli�ed Navier Stokes equations. The results of the �ue channel simulation
are compared with the results of experiments [23].

In chapter 2 the model of �uid �ow which we used for simulation of the �ue channel �ow is
presented. In section 2.1 we give the derivation of the channel �ow model, based on the geometry
of a two dimensional channel. After that we derive the model which describes the jet �ow at the
end of the channel, in section 2.2.

In chapter 3 the numerical method of both channel and jet �ow simulation models are presented.
The stability of the simulations is studied and we discuss the coupling between the two simulations
for the complete �ow simulation from the entrance of the �ue channel to the jet behind.

In chapter 4 we present the results of the simulation of �ue channel �ow in comparison with
experimental results.

We conclude with a discussion of the results in chapter 5.
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Chapter 2

The �ow model

In this chapter we present the �ow models for channel �ow and jet �ow, respectively. Which are
used to simulate the �ow in a �ue channel and the emerging jet. In �gure 2.1 a picture of the �ue
channel is shown, on which the experiments from [23] are performed. When air is blown into the

Figure 2.1: Photograph of a mouthpiece of a recorder �ute (taken from [23]).

channel at the left side, boundary layers will develop in the channel. The sudden expansion of the
channel just upstream of its downstream end will cause the �ow to separate from the wall almost
immediately. We will thus treat the �ow in two coupled regimes, channel �ow and an emerging
jet, one after another.

We will derive a �ow model which is generally applicable to incompressible, steady laminar channel
�ow. In section 2.1 the equations describing the �uid �ow in a two-dimensional symmetric channel
will be derived. This derivation is based on the Navier Stokes equations. In section 2.1.1 we
simplify the equations based on estimations of magnitudes of all terms, which gives the set of
equations (RNS-p(x) equations) with which we describe the �uid �ow. The accuracy of this set of
equations is studied in section 2.1.4 by comparing characteristics of the �ow with the analytical
solutions for boundary layer growth from Blasius, the fully developed Poiseuille �ow and solutions
of an approximate method solving boundary layer growth. The RNS-p(x) equations are applicable
to two-dimensional symmetric channels with various geometries.
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At the wake end of the �ue channel the �ow separates, caused by the rapid expansion of the
channel. A two-dimensional jet will emerge from the channel into semi in�nite space.

This jet �ow is considered to be incompressible, steady and laminar. Jet �ow is described by
roughly the same equations as those for channel �ow. The di�erences with channel �ow will be
discussed and we present the system of equations describing two-dimensional laminar jet �ow
in section 2.2. The accuracy of this set of equations is shown in section 2.2.1 by comparing its
numerical solution to Bickley's analytical solution for jet �ow.

2.1 Channel �ow

The subject of study is the �ow in a two dimensional channel of a general geometry, depicted in
�gure 2.2. The height of the channel may vary in the longitudinal direction x. The geometry is
assumed to be symmetric with respect to middle line.

U0

y
xh(x)

symmetry line

upper wall

H

Figure 2.2: The channel geometry.

Generally, for the �ow we have to solve the Navier Stokes equations

@�

@t
+ ~r � �~u = 0 (2.1)

@�~u

@t
+ ~r � �~u~u = �~rp+ ~r � ~~� + ~f (2.2)

in which � is the density of the �uid, ~u is the velocity vector, p is the pressure, ~~� the viscous stress
tensor and ~f an external body force. We like to simplify this set of equations by neglecting the
least important terms based on estimation of orders of magnitude.

We consider the �ue channel and the vocal cords, which are sound sources. The dimensions of the
�ow geometry are small with respect to the typical wavelengths of sound-waves; and velocities are
low with respect to the speed of sound:M � 1. In this case mass conservation reduces locally to:

~r � ~u = 0 (2.3)

A more elaborate discussion on this approximation can be found in [9].

Furthermore, in this part we study steady �ow, so we will not take time derivatives of the velocity
into account. We consider laminar �ow. The model will be applied to cases with Reynolds numbers
ranging from order 10 up to about 1000, so it is reasonable not to consider turbulence. We also
impose absence of external forces. The only force that would be a candidate is gravitation. And
since the domain is vertically very small (some mm), we can neglect the in�uence. The momentum
simpli�es to:

�
�
~u � ~r

�
~u = �~rp+ �r2~u (2.4)

A typical �ue channel is several centimeters long, one centimeter wide, and a millimeter high.
Since the height of the channel is ten times smaller that its width, we neglect the in�uence of the
�nite width. So a two dimensional geometry remains.
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The coordinate system is placed with the x direction along the length of the channel and y in
vertical direction. We thus consider two components of the velocity ~u = (u; v), and we state that
the quantities are independent of z.

2.1.1 Scaling quantities

We choose suitable factors for scaling the variables and quantities, such that the scaled quantities
and variables will all be of order 1. . Boundary layers will develop at the upper and lower wall of
the channel. This means that the longitudinal component of the velocity will vary from 0 at the
walls to its maximum value in the middle of the channel. In other words: the longitudinal velocity
varies at scale U0 on the scale H . This de�nes the values of two of the scaling parameters

x = L�x y = H�y u = U0�u v = V �v (2.5)

For L we do not choose the value based on the geometry, but we will derive the scale based on
�uid dynamical arguments. The same goes for the scale V for the transverse velocity.

Substituting the scaled quantities in the mass conservation gives

U0
L

@�u

@�x
+
V

H

@�v

@�y
= 0 (2.6)

from which we can conclude that if we want to keep signi�cance of both derivatives, we have to
choose: U0=L = V=H .

This way the momentum equation in the x-direction looks like:

U2
0

L

�
�u
@�u

@�x
+ �v

@�u

@�y

�
= � P

�L

@�p

@�x
+
�U0
H2

�
H2

L2
@2�u

@�x2
+
@2�u

@�y2

�
(2.7)

and in the y-direction we write

U0V

L

�
�u
@�v

@�x
+ �v

@�v

@�y

�
= � P

�H

@�p

@�y
+
�V

H2

�
H2

L2
@2�v

@�x2
+
@2�v

@�y2

�
(2.8)

For L we state that the viscous forces (�U0=H
2) in the equation of momentum (2.7) must be of

the same strength as the convective forces (U2
0 =L). This leads to the de�nition of the longitudinal

scale:

L =
U0H

2

�
= H ReH (2.9)

This length can be interpreted as the scale on which a boundary layer of thickness H develops.

Since we only consider ReH � 1, the longitudinal scale is much greater than the H and thus the
@2�u=@�x2 in equation (2.7) vanishes. Another consequence is that V � U0. Since the momentum
in y-direction is V=U0 = 1=ReH times its x component and thus negligibly small. This yields:

@�p

@�y
= 0 (2.10)

For the magnitude of the pressure we choose P = �U2
0 which is a scale for pressure di�erences

when the Bernoulli equation can be applied.
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2.1.2 Reduced Navier Stokes system

We rewrite equations (2.6), (2.7) and (2.10) substituting the chosen parameters and leave out the
bars. The equations for conservation of mass, momentum in x and in y direction are, respectively:

@u

@x
+
@v

@y
= 0

u
@u

@x
+ v

@u

@y
= �@p

@x
+
@2u

@y2

@p

@y
= 0

(2.11)

we will refer to this set of equations as RNS-p(x), the reduced set of Navier Stokes equations of
which the pressure only depends on x. This in contrast to similarly reduced sets which keep both
longitudinal and transverse momentum equations.

An important aspect of the channel geometry in study is symmetry. The model of the channel is
symmetric with respect to the horizontal plane in the middle (see �gure 2.2). The solutions of the
Navier Stokes equations have this symmetry as well, provided that the entrance velocity pro�le is
symmetric. These entrance pro�les will be uniform and thus symmetric, so we solve for only one
half of the �ow. The origin of the coordinate system is placed in the middle of the channel, at the
upstream end. The upper wall will be denoted by y = h(x) (note that all is nondimensionalised
with H , half the height of the channel). This restriction is not necessarily made, but all cases to
which we will apply the model have this symmetry, so for these cases there is no need to keep it
more general. Moreover, assuming this symmetry enables us to choose the boundary conditions
unambiguously.

Boundary conditions

The equations are completed by the boundary conditions. In the precedent section we derived
three equations in (2.11) for three unknowns (u, v and p). The third equation tells us the pressure
is a function of x only. In the other two equations p(x) remains a third unknown, whereas we now
have only two equations left. Later on we will see that this is compensated for by an additional
boundary condition.

In the equation of momenum the pressure gradient with respect to x appears, so we need one
boundary condition for p(x). For this condition we can choose the pressure value at the entrance
of the channel p(0).

For the longitudinal velocity u the �rst derivative with respect to x appears, and the second
derivative in transverse direction. So for u three boundary conditions are needed. These are:

u = 1 at x = 0

u = 0 at y = h(x) (2.12)

@u

@y
= 0 at y = 0

The �rst condition corresponds to the uniform entrance velocity. No slip provides the second, and
the third is implied by symmetry.
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Only the �rst derivative of the transverse velocity with respect to y appears in the set (2.11). This
means we only need one boundary condition to solve for v, but we have two conditions, namely:

v = 0 at y = 0

v = 0 at y = h(x) (2.13)

the �rst coming from symmetry, the second from impermeability of the wall. One of these two
conditions is not needed as a boundary condition. It will play the role of the third equation in
order to close the formulation (note that we had only two equations to describe three unknowns).

For simplicity in numerical computation we prefer to make the wall equation disappear from the
boundary conditions. This is achieved by a transformation of the transverse coordinate.

2.1.3 'Dynamic' scaling

The transformation of � = y=h(x) achieves that throughout the channel 0 � � � 1. We call
this 'dynamic' scaling, since the transverse scale is a function of the position. The boundary
conditions for the velocities can be expressed in � = 0 and � = 1. As a consequence of the
transformation the RNS-p(x) equations will change. The derivatives with respect to x and y
respond to a transformation � = x, � = y=h(x):

@

@x
=
@�

@x

@

@�
+
@�

@x

@

@�
=

@

@�
� �

h

dh

dx

@

@�
(2.14)

@

@y
=
@�

@y

@

@�
+
@�

@y

@

@�
=

1

h

@

@�
(2.15)

The continuity and momentum equations to be solved in the channel in the new system of coordi-
nates are given below. The derivatives above are substituted, and we rename � with x and � with
y. This yields

@u

@x
� y

h

dh

dx

@u

@y
+

1

h

@v

@y
= 0 (2.16)

for continuity and the x momentum equation becomes:

u
@u

@x
� uy

h

dh

dx

@u

@y
+
v

h

@u

@y
= �@p

@x
+

1

h2
@2u

@y2
(2.17)

As boundary conditions we apply no slip and an impermeable wall (no suction or injection).

u = 1 at x = 0

u = v = 0 at y = 1 (2.18)

@u

@y
= v = 0 at y = 0

where y = 0 thus corresponds with the central symmetry line, and y = 1 with the upper channel
wall. At the entrance (x = 0) we prescribe the velocity pro�les u(x = 0; y) and v(x = 0; y) (for
example we give a uniform �ow in longitudinal direction: u(y) = 1 and v(y) = 0).

The set of equations (2.16) through (2.17) are solved numerically. The method is discussed in
chapter 3.1.

In order to show the accuracy and applicability of this set of equations we compare the numerical
solution of this set applied on rather well known problems with analytical and famous approximate
solutions.
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2.1.4 Solutions

We present three solutions of the Navier Stokes equations applied on a very particular case. In
this case we study the boundary layer growth in a channel with straight walls. The solutions to
be discussed are Blasius' theory for boundary layers, the Poiseuille solutions for fully developed
�ow and the von Kármán method for solving boundary layer equations.

These solutions are used to test the numerical solution of the RNS-p(x) equations. In the analyt-
ically solved cases, several quantities are conserved or have a behaviour which is characteristic for
the type of �ow.

Before we discuss the solutions we have to introduce some quantities which we will use. These
quantities are the displacement thickness and the momentum displacement thickness.

The displacement thickness is the distance over which the wall could be displaced in order to
obtain the same volume �ux in a frictionless (potential) �ow as in the actual �ow. In other words
it is the thickness in which there is loss of volume �ux with respect to frictionless �ow. This
thickness is denoted by �1 and is de�ned by:

�1 =

Z 1

0

�
1� u

U

�
dy (2.19)

We used a slightly adapted version of the de�nition in order to make in applicable to channel
�ow, U is the velocity in the middle of the channel (scaled with U0). We nondimensionalised the
transverse coordinate by Hh(x) and integrate from the centre to the wall. The proper de�nition,
though, of the transverse scale in boundary layer theory is

p
Rex (see for example [19]). The other

di�erence is that in the de�nition is integrated up to in�nity, while here is integrated from the
centre to the wall. This is a consequence of our de�nition: since u varies from 0 at the wall(s) to
U in the middle.

Another thickness we will need is the momentum displacement thickness. This thickness is as-
sociated with the loss of momentum in the boundary layer. The total loss of momentum in the

boundary layer, compared with potential �ow of velocity U , is �
R 1
0 u(U � u)dy. The momentum

thickness �2 is de�ned such that:

�U2�2 = �

Z 1

0

u (U � u) dy (2.20)

or,

�2 =

Z 1

0

u

U

�
1� u

U

�
dy (2.21)

First we consider a straight channel, in which h(x) =constant. Here we encounter two regimes for
which analytical solutions exist: entrance �ow and developed channel �ow. Near the entrance the
thickness of the boundary layers will be much smaller than the height of the channel, and in fact
we can regard the problem as a boundary layer developing above a �at plate placed in �ow. This
case has the famous Blasius' solution [19, VII e]. This solution describes the development of the
boundary layer on a �at plate, with a so-called self-similar pro�le.

On the other hand the development of �ow in a straight channel has been solved by means of an
integral method: the method of von Kármán.

Further downstream, where the �ow is fully developed, we encounter Poiseuille's solution. The
simulation results of the development of the �ow in a straight channel is depicted in �gure 2.3,
from which it can be seen that the parabolic Poiseuille pro�le appears downstream.
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Figure 2.3: Velocity pro�les u(y) at several of the longitudinal coordinate x(left) and the develop-
ment of the central velocity (right). The parabolic Poiseuille pro�le is attained at x � 0:2.

Blasius

Very close to the entrance we can regard the �ow close to one wall, neglecting the existence of the
opposite wall, as if it were in�nitely far away. In this case Blasius' theory can be applied. We will
not go into detail on this theory (for that, see e.g. [19, IX h]), but we give only the main idea and
the important properties of the solution.

The key is that Blasius' solution is self-similar. The longitudinal component u of a self-similar
solution has the property that two pro�les u(x; y) located at di�erent x-coordinates di�er only by
a factor in u and y, having the same shape. By choosing an appropriate transformation of the
transverse coordinate these pro�les can all be made congruent.

This transformation of the transverse coordinate is y = �
p
U0x=� = �

p
Rex. The factor

p
Rex

which is among others the factor of growth for all physical thicknesses (of the boundary layer �,
displacement �1, momentum �2, etc.) in a boundary layer on a �at plate.

The displacement thickness develops according to this theory:

�1 ' 1:72
p
Rex (2.22)

With this we can derive some typical features of channel entrance �ow.

From the de�nition of the displacement thickness we can derive a relation between the velocity
of the main �ow U , in the middle of the channel, and the displacement thickness �1. If we that
assume the main �ow is uniform (not yet disturbed by the boundary layers) and a �ux conservation
in x direction, this relation will be given by:

U(x) =
�

2 (1� �1(x))
(2.23)

where the �ux is given by:

� = 2

1Z
0

udy = 2 (2.24)

recalling that at the entrance we introduce a �at pro�le of velocity 1. With dimensions we would
�nd a volume �ux equal to 2HU0.

For uniform �ow we can apply Bernoulli's formula to calculate the pressure:

dp

dx
= �U dU

dx
(2.25)
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Substituting relation (2.23) for the velocity U and integrating, this becomes:

p(x) = �1

2
(1� �1)

�2
+

1

2

' ��1 ' �1:72
p
Rex

(2.26)

For the second equality we used a Taylor development of (1� �1)
�2, assuming that �1 � 1.

Summarizing we �nd that near the entrance of the channel all thicknesses and the pressure function
are proportional to

p
x. This can be seen from �gure 2.5 where these solutions of the growth of

�1 are plotted as a function of x, among others. The pressure is plotted in �gure 2.4.

Poiseuille

Further downstream the �ow develops a steady pro�le: the Poiseuille pro�le. Poiseuille �ow is
parallel and fully developed. The velocity pro�le does not change in the �ow direction. When
we substitute for these properties in the equation of momentum (2.17), we can derive the velocity
pro�le. In this case (v = 0 and also @u=@x = 0) the momentum equation becomes:

@2u

@y2
=
@p

@x
(2.27)

the solution is a parabola:

u(y) = �1

2

@p

@x

�
1� y2

�
(2.28)

which attains its maximum value at y = 0 (the centre of the channel) and is zero at both walls.
The negative sign relates a decreasing pressure to a �ow in positive x direction.

Directly from the Poiseuille pro�le (2.28) with the de�nition of the displacement thickness (2.19),
we obtain the displacement thickness in Poiseuille �ow:

�1 =
1

3
(2.29)

This is also plotted in �gure 2.5.

Integrating equation (2.28) over y gives the �ux. If the entrance pro�le is uniform with velocity
U0 (=1 without dimension), we obtain from conservation of �ux:

@p

@x
= �3 (2.30)

Substituting this into (2.28) gives that the velocity on the centre line of the Poiseuille pro�le is 3/2
times the entrance velocity. In the left graph of �gure 2.3 the maximum velocity on the middle line
of the channel is plotted as a function of x solved with the RNS-p(x) simulation, which reaches
the value of 3/2. In �gure 2.4 the pressure curve is given as a function of x. It can be seen that
the pressure follows Blasius' solution at the entrance and Poiseuille's curve further downstream.

von Kármán

An approximate method of solving the boundary layer problem is the von Kármán method. This
method is an integral method, it is based on integration of the equation of motion over the
boundary layer. This way the solution will satisfy only the mean di�erential equation within
the boundary layer, and the boundary conditions. It is applied when we are not interested in
satisfaction of the di�erential equations at every point. An integral method for solution of the
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Figure 2.4: Development of the pressure p(x) in a straight channel. The dashed curve (1) depicts
the pressure behaviour at the entrance (Blasius) and the dotted (2) in Poiseuille �ow.

boundary layer problem is desirable if an analytical solution is too complicated or does not exist.
The reason why we give this method here is because it is a very popular and well known method.

By integrating the momentum equation in x-direction, from (2.11) over y (from 0 to 1, using
continuity (the �rst equation in (2.11)) and substituting the de�nitions of �1 and �2, we obtain
the famous von Kármán equation:

d

dx

�
�2U

2
�
+ �1U

dU

dx
=
@u

@y

���������
y=0

(2.31)

This equation can be solved if we provide additional equations: the closure. In appendix A two
types of closures are discussed: the Falkner Skan closure and polynomial closures. The polynomial
closures provide expressions for the longitudinal velocity pro�le u(y), being a polynome of y of
some degree which satis�es the boundary conditions, containing a free parameter associated with
the boundary layer thickness. In this case we can calculate the thicknesses with their de�nitions
and the shear stress term (the right hand side of equation (2.31)), in terms of this parameter.
Substituting these quantities in (2.31) and integrate this equation, we can solve for the unknown
parameter.

The Falkner Skan closure provides numerical expressions for the dependence of the thicknesses
and stress term as a function of the boundary layer thickness. This closure requires numerical
integration of the von Kármán equation, which is explained in [11].
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Figure 2.5: The development of the displacement thickness �1 in the straight channel, calculated
with four di�erent methods: (1) Blasius' solution, von Kármán with (2a) FS closure, (2b) poly-
nomial closure of the �rst and (2c) fourth degree and (3) RNS-p(x) channel �ow simulation. Line
(4) represents �1 in Poiseuille �ow. The right �gure is a close look at the entrance of the channel.

The growth of the displacement thickness, calculated with these methods are depicted in �gure
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2.5, together with the solutions by Blasius and Poiseuille, in order to test the accuracy of the RNS-
p(x) equations. From these graphs it can be seen that the growth of the displacement thickness
calculated by the RNS-p(x) simulation is close to Blasius' solution at the entrance, and approaches
the value of Poiseuille �ow downstream. It is also in accordance with the solution of the integral
method. Though the integral solution does not restrict the growth of the displacement thickness
to an upper limit like the value in fully developed �ow.

2.2 Plane jet

For the jet �ow model we roughly make the same assumptions as for channel �ow. We consider
two dimensional, steady, incompressible and laminar �ow. The jet emerges from the end of the
channel into a semi in�nite space. In the transverse direction there is no border (mathematically
spoken). The jet has a transverse dimension of the height of the channel at its end, and the
coordinate y will thus be scaled with this factor, which is a constant throughout the domain.
Since we assume symmetric solutions in the channel, with respect to the horizontal plain in the
middle, only symmetric solutions are regarded for the jet as well.

Assuming again equilibrium between viscous and convective forces, like in section 2.1, the longi-
tudinal scale from equation (2.9) is applied. Again we use the scales:

x = L�x y = H�y u = U0�u v = V �v (2.32)

but here H corresponds with half the height of the channel at its open end where the jet emerges.

There are some important di�erences with the equations we use to solve channel �ow. One is
that we assume a constant pressure everywhere in the domain of the jet. This is a very common
assumption (see [19]), since the surrounding �uid is at rest. The absence of a pressure gradient
there impresses itself on the jet. The second di�erence between channel �ow and jet �ow is the
in�niteness of the domain in transverse direction of jet �ow.

The set of equations describing this jet �ow are thus the same as for the channel �ow from section
2.1.2. But we assume the absence of a pressure gradient. The set of equations describing a two
dimensional laminar jet is written:

@u

@x
+
@v

@y
= 0

u
@u

@x
+ v

@u

@y
=
@2u

@y2

p = constant

(2.33)

For conservation of mass, momentum in longitudinal and in transverse direction, respectively. The
boundary conditions are straightforward. Essentially we have two (the third equation gives trivial
solutions) equations for two unknowns. Two conditions for u are needed and one for v, which are
rather straightforward:

u = 0 for y !1
@u

@y
= v = 0 at y = 0 (2.34)

The latter are because we regard symmetric solutions. Again y = 0 corresponds to the plain of
symmetry.
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2.2.1 Solutions

Like in Blasius' theory for the boundary layer �ow, the jet has also self-similar solutions, described
by Bickley's theory. In his section we will just highlight some features of the Bickley solution, for
explanation, the reader is referred to Schlichting [19].

Bickley's solution

The self-similar Bickley pro�le for the longitudinal velocity is a rather simple function:

u(y) =
1

cosh2(y)
(2.35)

As the jet moves forward the pro�le expands, because it drags the surrounding �uid as a conse-
quence of friction (see �gure 2.6). The jet also slows down, the Bickley solution has the property
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Figure 2.6: Two calculated pro�les of u and their corresponding Bickley pro�les (dotted curves).
Pro�le 1 is recorded close to the slit and 2 further downstream. From curve 2 it can be seen that
the simulation looses accuracy if the transversal domain is limited where the u is nonzero.

that the velocity in the centre of the jet decreases according to: U � x�1=3. This means that the
ratio U=(dU=dx) for a jet has the following property:

U

dU=dx
� �3x (2.36)

There is a special feature of the RNS-p(x) in the model for the jet, (2.33). The absence of a
pressure gradient causes that the total �ux of momentum is conserved in the �ow direction. This
can be obtained by integrating the momentum equation over y, which results in:

@

@x

1Z
0

u2dy = 0 (2.37)

In �gures 2.7 and 2.8 the above discussed quantities, calculated by the numerical solution of equa-
tions (2.33) are plotted. In each �gure four curves are shown, corresponding to four di�erent
pro�les exerting from the slit. The curves in �gure 2.7 show that all entrance pro�les develop sim-
ilar pro�les downstream. The development of the quantity in equation (2.36) and the momentum
�ux in longitudinal direction are traced in �gure 2.8. From which one can see that all di�erent
pro�les behave as expected from Bickley's theory.
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Chapter 3

Numerical method

In this chapter the numerical method for solution of the RNS-p(x) equations is presented, based
on the method of �nite di�erences.

In section 3.1 we discuss channel �ow. First we present the grid used for the discretisation of
the domain of channel �ow. Then the RNS-p(x) equations (2.11) are given in the discrete form,
with explanation on the method of approximations of derivatives in section 3.1.1. After that, the
numerical solution of these discrete equations is written out step by step in section 3.1.2. The
accuracy of this solution, which has already been presented in chapter 2, and the stability are
brie�y discussed in section 3.1.3.

The model for jet �ow is discussed in section 3.2. The discrete form of the equations (2.33) is
presented in section 3.2.1. The numerical solution of those equation is explained in section 3.2.2.
And the accuracy and stability of the numerical solution is discussed in section 3.2.3.

At the end of this chapter we explain how the two models are coupled to obtain the complete
simulation of channel and jet �ow. This is done in section 3.3, and an example of such a simulation
is discussed and compared with the results of a commercial code FLUENT, which solves the
complete set of Navier Stokes equations.

There are a lot of di�erent ways to write the discrete form of the di�erential equations of this
problem. In general the freedom lies in the choice of the approximation of each di�erential term
and the location of each term in the domain. Shortly, the di�culty comes down to the choice of
indices associated to the quantities in play.

For example the equation describing an undamped mass spring system can be approximated in
many ways. In appendix B a short introduction to discrete approximation of derivatives is given,
applied on the mass spring problem. It will discuss three simple methods of approximation, which
only di�er in the choice of indices, and one more elaborate method which is unconditionally stable.
For the three simple methods the e�ect of this choice of indices on the accuracy and stability of
the numerical solution is shown.

For further reading one is referred to Cousteix [3, Chapter 8] and Peyret & Taylor [18, Chapter
2].
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3.1 Channel �ow

The two dimensional domain in the channel is divided into a grid nx � ny, see �gure 3.1 Discreti-
sation of the quantities de�ned on this domain:

ui;j = u(xi; yj) (3.1)

vi;j = v(xi; yj) (3.2)

pi = p(xi) (3.3)

for 0 � i � nx and 0 � j � ny. The height of the channel is written as hi = h(xi)

y
x

y  =1ny

y  =00

0x  =0 ix symmetry line

upper wall

known

Figure 3.1: The numerical representation of the the channel geometry.

As mentioned before we prefer to restrict y between 0 and 1, instead of 0 and h(x) (see section
2.1.3). This means we adjust the transverse pace dy = hi=ny in order to �t the grid into the
channel. The advantage of this is that the boundary conditions remain the same all over the
domain, and that the number of calculation points is conserved throughout the domain. Only a
rather simple coordinate transformation is required, given in section 2.1.3.

The main idea of the solution is that we start at x = x0, where we know u and v for all y, and
advance in x. At every step in x we solve the velocities for all y using the RNS-p(x) equations.

3.1.1 Discrete RNS-p(x) equations

We present the discrete form of the RNS-p(x) equations and discuss the approximations of the
derivatives in it brie�y. Here the terms with index i are known and we want to calculate those
with index i+ 1. Except for the geometry function h which is given for all xi at forehand.

For the x momentum equation (2.17) the following discrete form is chosen:

ui;j
ui+1;j � ui;j

�x
+

1

hi+1

�
vi;j � ui;jyj

hi+1 � hi
�x

�
ui;j+1 � ui;j�1

2�y

= �pi+1 � pi
�x

+
ui+1;j+1 � 2ui+1;j + ui+1;j�1

h2i+1�y
2

(3.4)

The terms with index i are known for all j, those with i+ 1 are to be solved.

For the �rst term in the left member we chose a straightforward discrete form, which is very close
to the de�nition of the derivative of a function f :

df(x)

dx
� lim

�x!0

f(x+�x) � f(x)

�x
(3.5)

The second term contains the derivative @u=@y which we have centered in yj . Appendix B argues
that the error of this approximation is of order �y2. This in contrast to the error �x of the simple
'forward' form applied in the �rst term, which we cannot centre in the same way, because we can
only take one step at the time in x.

The pressure gradient appears in the simple 'forward' form.
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The friction term is centered about yj which is the most standard form of approximating a second
order derivative. The error made is conform equation (B.24) of appendix B of the order of �y2.

The boundary conditions for the longitudinal velocity are conform (2.12):

ui+1;1 � ui+1;0 = 0

ui+1;ny = 0 (3.6)

the former due to the fact that we assume symmetric solutions; the latter because we apply the
no-slip condition.

In equation (3.1.1) we encounter two unknowns, namely the longitudinal velocity 1 ui+1 and the
pressure pi+1. Once we have ui+1 we can solve for vi+1 by integrating the continuity equation, of
which the discrete form looks like:

vi+1;j+1 � vi+1;j
�y

= �hi+1ui+1;j+1 � ui;j+1
�x

+ yj
hi+1 � hi

�x

ui+1;j+1 � ui+1;j
�y

(3.7)

Here the boundary conditions are, conform (2.1.2):

vi+1;0 = vi+1;ny = 0 (3.8)

by symmetry and impermeability, respectively.

The following section will explain the procedure which is followed for the solution of this system
of equations.

3.1.2 Solution

In the momentum equation (3.1.1) we can arrange all terms containing ui+1 to the left hand side,
and all known terms to the other. The equation can be written in the form:

Aui+1 = bi +
dp

dx

���������
i+1

(3.9)

where A is a matrix and ui+1 is a column vector ui+1;j . In fact A is a matrix with values di�erent
from zero on three diagonals, a tridiagonal matrix. On the main diagonal there are the quantities
in yj and the lower and upper diagonals contain quantities in yj�1 and yj+1, respectively. The
vector bi contains all terms with index i, so they are all known. The pressure gradient is exactly
the one appearing in the right hand side of (3.1.1). The solution goes as follows.

At the entrance of the channel we give the velocity pro�les for u and v. For example a uniform
entrance �ow in longitudinal direction will be given by u0;j = 1, v0;j = 0. The value of the pressure
at the entrance will be chosen equal to zero.

Estimation of pi+1
First, a value for the pressure pi+1 is estimated. For p0 we will take 0 as value, while for larger

i we estimate roughly:

pi+1 =
dp

dx

���������
i
dx+ pi = 2pi � pi�1 (3.10)

which is just extrapolation of the pressure gradient. This �rst approximation is further improved
in an iterative process, described in the following paragraphs.

1For convenience we denote the y dependence of the velocities by writing ui+1 which represents the vector
ui+1;j . Note that the pressure is independent of y.
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Calculation of ui+1
Next, we solve for ui+1 by inversion of the matrix A from equation (3.9). Since the matrix is

tridiagonal, a very quick method for inversion can be applied. This method is called the method
of factorization. It is brie�y explained in appendix B.

Calculation of vi+1
The transverse velocity is calculated by integration of the continuity equation (3.7) over y. We

begin at j = 0 where v = 0 and go up to the upper wall, where we end up with a certain value of
vi+1;ny which will probably not be equal to zero (because we do not yet know the exact value for
the pressure pi+1)!

The whole solution ui+1 and vi+1 depend on the pressure pi+1, especially the value vi+1;ny . We
write this dependence as a function vny(p). The boundary condition (3.8) tells us it has to be equal
to zero. If the deviation from zero is greater than 10�9, we try another value of pi+1, calculated
by means of a Newton iteration.

Newton iteration on the pressure
In this iteration we calculate the derivative of vny(p), at the estimated value of pi+1. This

derivative �v=�p is calculated by rerunning the solution of ui+1 and vi+1 twice, with a pressure
pi+1 + � and pi+1 � �.

�v=�p =
vny(p+ �)� vny(p� �)

2�
(3.11)

where we chose � = 5� 10�9

p
1

pp
2

p
3

vny

δv
δp

v

Figure 3.2: Three steps of a Newton iteration process to obtain the zero of the function vny(p).

For the next value of the pressure we extrapolate the derivative �v=�p from the 'old' value until it
hits vny(p) = 0.

pnew = pold � vny(pold)

�v=�p
(3.12)

And we start all over again from 'Calculation of ui+1' using the value pnew as pi+1. The Newton
iteration is visualized in �gure 3.2. The iteration stops when the transverse velocity at the wall is
su�ciently small: vny(p) < 10�9.

When this condition is satis�ed, the pro�les ui+1 and vi+1 have been found, and we can pass on to
the next step in x. We start the calculation again from 'Estimation of pi+1'. The whole program
is visualized in a �ow chart in �gure E.1.
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Brie�y, the RNS-p(x) simulation could be summarized as a black box which solves the velocity
�eld in and the pressure drop �p over the channel, for a given entrance velocity (�ux �).

3.1.3 Accuracy and stability

To test the accuracy of the numerical method used for resolution of channel �ow, we compare
several results with theoretical solutions. In section 2.1.4 the simulation results of �ow through a
straight channel are presented. They are compared with three other methods of solving this type
of problem. Two of those methods are analytic: Blasius' and Poiseuille's theory and the third is
an approximate method: von Kármán method.

In that section we have seen that the longitudinal velocity develops a parabolic pro�le (�gure 2.3)
with its maximum value according to Poiseuille. The pressure curve follows Blasius' solution near
the entrance of the channel, and further downstream the gradient becomes constant with value -3
from Poiseuille (�gure 2.4). The development of the displacement thickness has been compared
with Blasius' and Poiseuille's solutions also, and with the solution of von Kármán as well. In �gure
2.5 the curves of �1 of the RNS-p(x) simulation and the solutions from section 2.1.4 are plotted.
From this �gure it can be seen that the solution of the RNS-p(x) model run o� as Blasius, like the
von Kármán solution, and it reaches Poiseuille's value downstream. The displacement thickness
from Blasius' and von Kármán's theory grow in�nitely large. This is because they are essentially
developed for boundary layer growth in a non-con�ned �ow, which does not limit the growth of
boundary layers.

The stability of the numerical solution of the RNS-p(x) equation is studied by rerunning the
calculation taking di�erent step-sizes in both x and y directions. In the study the basis geometry
used is that of the �ue channel. We focused our attention on the diverging part of the �ue channel,
where the �ow tends to separate. Appendix C contains the full text examination of stability. As
can be seen in this appendix, �ow separation may cause instabilities in the simulation, the solution
is not convergent. Flow separation is a consequence of rapid expansion of the channel geometry.
By choosing a grid which is dense enough we can in general obtain convergent solutions. For
example in appendix C we have shown that for the channel geometry which resembles the �ue
channel (which expands 35 faster than it converges) maximum step-sizes dx and dy can be found
for which calculation results show smooth curves. For the chosen geometry we have to use at least
50 points in transverse direction, in order to obtain convergence of the solution. If the channel
expands less rapidly we need fewer points. In the geometry with the same angle convergence as
the �ue channel, but which expands twice as fast as it converges, instead of 35 times as fast, we
only needed 20 points transversally for convergence.

We can conclude qualitatively that the more rapidly the geometry changes the denser the grid has
to be to obtain convergent results.

3.2 Plane jet

In the next section the numerical solution of the equations describing jet �ow (2.33) is explained.
In general the same method is used as for channel �ow simulation. Though the absence of a
pressure gradient forces us to use a slightly di�erent technique.

3.2.1 Discretisation

The solution method for channel �ow (section 3.1.2) applied to a free moving jet described by (2.33)
is not convergent. The absence of the pressure gradient forces us to 'smoothen' the calculation in
another way. This can be achieved by mediating the implicit (with index i+1) and explicit value
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(the known value at xi) of some terms. This leads to the following possible discrete form of the
momentum equation:

ui+1=2;j
ui+1;j � ui;j

�x
+ vi+1=2;j

ui+1;j+1 � ui+1;j�1
2�y

=
ui+1=2;j+1 � 2ui+1=2;j + ui+1=2;j�1

�y2
(3.13)

where we de�ned the the halfway terms:

ui+1=2;j =
1

2
(ui+1;j + ui;j) (3.14)

and idem for vi+1=2;j . Again we state that all terms with index i are known (implicit terms) and
we solve for the explicit terms which have index i+ 1.

We cannot solve this equation directly for ui+1, since it is not linear. The exact way involves
iteration on ui+1 and vi+1. In this iteration process we will solve for the transverse velocity which
is de�ned implicitly in equation 3.2.1. The iteration process is explained in the next section.

In equation (3.2.1) the derivative @u=@x appears in the simple 'forward' manner, giving an error
in the order of �x. The derivative @v@y is centered in yj , as well as the viscous term on the right
hand side, both giving an error in the order of �y2. Globally we approximated the momentum
equation in the same way as that for channel �ow.

The discrete boundary conditions for the longitudinal velocity in the jet are:

ui+1;ny = 0

ui+1;0 � ui+1;1 = 0 (3.15)

The pro�le of the transverse velocity, vi+1, is calculated via the �ux (or stream function)  ,
unlike the channel �ow solution, but it comes down to the same thing. In fact �rst we integrate
the longitudinal velocity over y:

 i+1;j+1 =  i+1;j +
ui+1;j+1 + ui+1;j

2
�y (3.16)

with boundary condition:

 i+1;0 = ui+1;0
�y

2
(3.17)

Next, the transverse velocity is the derivative of the �ux with respect to x:

vi+1;j = � i+1;j �  i;j
dx

(3.18)

In the former two equations only direct straightforward discrete forms appear. For the transverse
velocity we have boundary condition vi+1;0 = 0 from (2.34). The following section deals with the
exact procedure followed for solution.

3.2.2 Solution

Iterating on the unknown velocities enables us to linearize equation (3.2.1) in terms of the un-
knowns. For the momentum equation the following form is chosen, where N is the index of
iteration:

1

2

�
uNi+1;j + ui;j

� uN+1
i+1;j � ui;j

�x
+

1

2

�
vNi+1;j + vi;j

� uN+1
i+1;j+1 � uN+1

i+1;j�1
2�y

=
1

2

 
uN+1
i+1;j+1 � 2uN+1

i+1;j + uN+1
i+1;j�1

�y2
+
ui;j+1 � 2ui;j + ui;j�1

�y2

!
(3.19)
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In the �rst step of iteration all terms with index N are equal to the terms from the precedent
position x = xi.

We bring all terms which have index N + 1 to the left hand side and obtain a form like in (3.9):

AuN+1
i+1 = bNi (3.20)

Note that in this equation the terms with index N are known (they are calculated in the precedent
iteration step). In A as well as in b terms with index i and iteration index N appear. In the
following the solution is laid out step by step.

Calculation of uN+1
i+1

First, the equation is solved for uN+1
i+1 from equation (3.20). The matrix A is inverted using the

method of factorization.

Calculation of vN+1
i+1

We solve for vi+1, by di�erentiation of the �ux, which is calculated according:

 N+1
i+1;j+1 =  N+1

i+1;j +
uN+1
i+1;j+1 + uN+1

i+1;j

2
�y (3.21)

where we depart from  N+1
i+1;0 = uN+1

i+1;0 dy=2. Next, the transverse velocity will be calculated by

vN+1
i+1;j = � 

N+1
i+1;j �  i;j

�x
(3.22)

where we depart from vN+1
i+1;0 = 0.

Once we have calculated the transverse velocity pro�le, we rename all indices N + 1 by N and
begin at 'Calculation of uN+1

i+1 '. This is done until the di�erence between uN+1 and uN for all j is
less than 10�9. Once this condition is satis�ed, we advance in x.

This procedure is visualized by aid of a �owchart in �gure E.2.

3.2.3 Accuracy and stability

In order to test the accuracy of the the numerical solution of the RNS-p(x) equations some results
are compared with properties of the analytical Bickley solution. The �rst test is the self similarity
of the Bickley pro�le. We introduce a Bickley pro�le from equation (2.35) at the slit, and watch
its development. In �gure 2.6 two calculated jet pro�les are plotted along with their corresponding
Bickley-shaped pro�les. We see a fairly good accordance between the two. A di�erence appears,
though, when the jet has enlarged as much as the transverse domain. In the �gure the transverse
domain is running from 0 to 5. The boundary condition for u at the upper end causes the pro�le
to di�er from the Bickley solution. Secondly the development of several di�erent entrance pro�les
and the ratio U=(dU=dx) and the momentum �ux are traced as a function of x (�gures 2.7 and
2.8). These are compared with the behaviour predicted by Bickley's theory. From that �gure it
can be seen that all pro�les adapt to the Bickley solution, with its features.

The stability of the jet �ow simulation is studied by varying the number of points in the domain.
The results are given in appendix C. From that we can conclude that near the slit (small values of
x) where the jet emerges into space the longitudinal step-size dx plays a dominant role in conver-
gence. Further downstream, where the jet has expanded transversally, the size of the transverse
domain becomes important. This is a consequence of the boundary conditions: we require u to go
to zero at position ny. Due to this choice the numeric solutions will di�er from Bickley's solution
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when the jet has expanded so much that longitudinal Bickley pro�le di�ers signi�cantly from zero
at that point.

The channel and jet �ow simulations have now been discussed separately. In order to apply it
on the �ue channel �ow, the two simulations have to be coupled. This coupling is discussed in
the next section. We describe the actual acts of coupling and the compare the results of such
a simulation, ran on a simple channel-jet geometry, with the same simulation performed by a
commercial code FLUENT which solves the complete set of Navier Stokes equations.

3.3 The coupled simulation

With an eye on the goal of simulation of �ue channel �ow, we discuss here the coupling of the
simulations of channel �ow and jet �ow, respectively.

This coupling is very simple. The channel simulation is run throughout the channel. The velocity
pro�les that emerge from the channel, where the �ow separates, both longitudinal and transverse
velocities, are taken as input pro�les for the jet simulation.

In both models the same numbers are used to nondimensionalise the quantities, so no conversion
has to be done. The only thing that has to be accounted for is that the transverse domain in the
jet simulation has to be much larger that that from the channel. In practice we take a transverse
domain in the channel of ny � dy = 250� 0:04, and in the jet 500� 0:16 (the factor four in dy is
taken for convenience, no particular other reason). The transverse domain is the 80 times as large
as that from the channel.

In order to see if the coupling works, we have compared our simulations results of the RNS
equations, with a commercial code called FLUENT. This program solves the complete set of
Navier Stokes equations.

3.3.1 Comparison with FLUENT
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Figure 3.3: schematic drawing of the situation used to compare our model with FLUENT

For this comparison, we have simulated the �ow in a short, straight channel (length: 3mm). At
the end of this channel, the �uid emerges in a jet (see �gure 3.3). At the inlet of the channel, the
�ow has a �at velocity pro�le of U0 = 10m=s. The Reynolds number based on half the height of
the channel is taken to be Re = 666. We present some curves calculated with the two programs
in �gures 3.4 and 3.5

From these four �gures it can be seen the velocity pro�les and the pressure drop in the channel
are very much alike for the two programs. The values of the central velocity, computed by the two
simulations di�er only by 2% at the end of the channel, and 3% at x = 0:025m. This obviously
justi�es the assumptions and approximations which we made in order to simplify the �ow model.
From the pressure curve in �gure 3.5 it can be seen that there are two small regions where the RNS-
p(x) model is less accurate. These regions are the upstream and downstream ends of the channel.
Here the pressure calculated by the RNS-p(x) simulation has a discontinuity in its gradient.
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Figure 3.4: Velocity pro�les u(y) at the end of the short channel (left) and at 22 mm distance
from the end of the channel, computed with FLUENT and the simulation of RNS-p(x) models.
Vertically the longitudinal velocity is displayed in m=s, and horizontally the transversal coordinate
in mm.
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Figure 3.5: The central velocity (left) and the pressure (right) as a function of x, computed with
FLUENT and the simulation of RNS-p(x) models.

But in general can be concluded that the accuracy of the model is quite reasonable compared with
full Navier Stokes simulation, for the considered problem.

The great advantage of the simpli�ed �ow model presented in the report and the solution of
the complete set of Navier Stokes equation is the gain of time. Typically a simulation such as
discussed above, took several hours of calculation time for FLUENT, whereas the simulation of
the RNS-p(x) model, only needed some minutes to obtain very close results.
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Chapter 4

Application: the �ue channel

The combined simulation of channel-jet �ow, discussed in section 3.3, is applied on a �ue channel
in a mouthpiece of a recorder type �ute. In �gure 2.1 a picture of the �ue channel that is studied
is shown. At the TUE velocity pro�les have been measured at various distances from the end
of the channel, for several Reynolds-numbers [23]. The measurements are carried out with a hot
wire. With the RNS-p(x) model simulation, we calculated velocity pro�les at the same positions
for those Reynolds-numbers.

In this chapter we present results of these calculations and compare those with the results of the
experiments. In section 4.1 we discuss the experiments in some detail, and present an example
of measured velocity pro�les. After that, in section 4.2 we present the geometry which has been
applied in the �ue channel �ow simulation. In section 4.3 we discuss the method we used in order
to �nd the right Reynolds-number in the simulation. This number is measured with the entrance
velocity, whereas in the experiments this velocity has not been measured. From the pro�les, some
quantities have been deduced, which are characteristic for the behaviour of the �ow. In section
4.4 we present these quantities, being the pressure di�erence over the channel, the volume �ux
and the momentum �ux, calculated from both experimental and simulation pro�les.

We discuss the comparison of results in the next chapter 5.

4.1 Experimental results

The air which is blown into the channel is coming from a high pressure source, with a Dantec
nozzle attached to it to obtain a uniform �ow. This way the velocity at the entrance of the channel
is constant over the transverse section of the channel within 7%. The velocity pro�les have been
measured at 1mm, 1.5mm and 2mm downstream of the end of the channel. The measurements
are carried out for various Reynolds numbers, by varying the entrance velocity (ReH = HU0=�).
Two examples of those measurements are given in �gure 4.1. Both pro�les are measured at 1.5mm
downstream of the channel end, for two di�erent Reynolds numbers. The measured velocity uexp
is the actual velocity, divided by the measured maximum velocity Umax;exp.

One can see in comparison of the two that the pro�le with the highest Reynolds number is steeper
than the one with a lower Reynolds-number. This is not very surprising when we keep in mind
that for lower Reynolds numbers viscous forces become more important and boundary layers will
be more developed.

We remark also that at both sides the pro�les have an o�-set velocity. This is an e�ect of jet
�ow. The jet 'drags' surrounding air in longitudinal direction due to viscosity, and it 'draws' air
towards it in transverse direction. Far from the centre of the jet there is a transport of air towards
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Figure 4.1: Two pro�les measured in the experiments, both at 1.5mm behind the channel. The
left pro�le was measured with ReH = 40 and the right with ReH = 302. The velocities are scaled
with the maximum value.

it. In velocity measurements with a hot wire one cannot distinguish between longitudinal and
transverse velocity-components. So the measured velocity uexp represents the quantity

p
u2 + v2,

rather than only the longitudinal component. In section 4.4 we will show that the the calculated
transverse velocity is in accordance with this e�ect.

In the right graph of �gure 4.1 a 'bump' in the right part of the pro�le appears. This is because
the hot wire itself is coming into �ow and a�ects the measurements (see [23]). Since it seems
that only the right half of the pro�le is a�ected, we will only use the left half of it. The part of
the measured pro�les that we will use is that for which y is inferior to the coordinate where the
maximum velocity is measured.

4.2 Applied geometry

For simulation of the �ue channel �ow, we applied a geometry in two segments: the channel and
the jet. The geometry of the �ue channel has been measured by v.d. Tillaart [23]. The height
of the channel at the front end is 2.2mm (the Reynolds numbers ReH are measured with half
this height). The total length of the channel is 70.5mm. From front to rear, the channel slowly
converges to about half its height at the entrance and then it diverges quickly to about 2mm
in the last 1.25mm. The �ow separates in the divergent part of the channel. Once the �ow is
separated it can be treated as a freely moving jet. In appendix C it is shown that the �ow separates
very quickly once the channel is diverging (within about 0.5mm). For simplicity we say the �ow
separates where the channel is the narrowest, at a position of 69.25mm. From there on we apply
the jet simulation. This way we neglect the e�ects of the �ow still being attached in the divergent
part.
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Figure 4.2: The geometry used for the �ue channel �ow simulation.

The geometry of the �ue channel model used in the simulations is as follows: a slowly, symmetri-
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cally converging channel, of which half the height decreases linearly with the longitudinal position.
Without dimensions this is written as

h(x) = 1� 1

2
�ReH x for 0 � x � L

HReH
� xend (4.1)

where H =1.1mm, half the channel height at the entrance, L =69.25mm and � is given by
0:01778. This geometry is depicted in �gure 4.2. From the wake end of this channel a jet emerges.
The positions at which the pro�les are measured in the experiments (at 1, 1.5 and 2mm from the
end of the channel) correspond to distances of 2.25, 2.75 and 3.25mm from the wake end of the
simulation model. The extra 1.25mm is the depth of the divergent part of the channel.

Because the inlet velocity in the experiments is not known a priory, it is not obvious to determine
the Reynolds number which corresponds with the di�erent measurements.

4.3 Determination Reynolds-number

The longitudinal scale in the numerical simulation is H ReH which is a scale based on �uid
dynamical behaviour: the scale on which a boundary layer of thickness H develops. The real
length of the channel is thus a certain factor times this scale, to be precise, the end of the channel
has the nondimensionalised coordinate: L=H ReH . This proportion (thus the Reynolds-number)
determines to what state the boundary layers are developed. The higher ReH , the shorter the
length of the channel appears in the nondimensionalised form and thus the less boundary layers
have had the chance to develop.

In order to �nd the Reynolds-numbers corresponding to the measurements we �rst choose a more
or less arbitrary ReH (corresponding to an arbitrary inlet velocity). This gives a certain value
of the central (=maximum) velocity at the places where the pro�les have been measured. In
comparison with the measured velocities Umax;exp, ReH can be adjusted to obtain the same value
for the central velocity (within 1%) as the experiments in an iterative process.

4.4 Comparison experimental and simulation results

In table 4.1 the results are shown of the experiments and simulation. We present quantities
calculated from the velocity pro�les from both experiments and simulation. The table is divided
into four segments, which are explained in the following text.

I Orders of magnitude

� Umax;exp: the maximum velocity measured at the exit of the channel, at 2mm distance,

� ReH : the Reynolds number found in accordance with the velocity above

� U0;calc: the entrance velocity corresponding with ReH (�at pro�le),

� �U2
0;calc: the normalization factor for the pressure 1.

II The pressure di�erence

� �pexp: the pressure di�erence over the channel (front-end), measured in the experiments 2,

1For the mass density of air we used � = 1:2 kg/m3

2The pressure di�erence in [23] has been measured in mm water-pressure. The conversion factor to N/mm2 is
�waterg � 10

�3 = 9:8
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I
Umax;exp (m=s) 1.49 5.25 8.97 12.77 27.07 36.08

ReH 40 125 212 302 667 909
U0;calc (m=s) 0.545 1.70 2.89 4.11 9.09 12.4

�U2
0;calc (N=m

2) 0.357 3.48 10.0 20.3 99.4 185

II
�pexp (N=m

2) 7.8 34 75 135 541 990
�pcalc (N=m

2) 7.55 31.7 67.1 115 417 709�
1� �pcalc

�pexp

�
� 100% 4 7 11 15 23 28

III
�exp (10

�3m2=s) at 1mm 1.74 4.94 7.83 11.5 25.0 33.3
1.5mm 1.68 5.01 8.02 11.2 24.7
2mm 1.83 4.98 8.16 21.2 24.4

�calc (10
�3m2=s) at 1mm 1.69 4.60 7.42 10.4 21.9 29.6

1.5mm 1.78 4.71 7.55 10.5 22.1
2mm 1.87 4.84 7.68 10.63 22.2

at 1mm 2 7 5 10 12 11�
1� �calc

�exp

�
� 100% 1.5mm 7 6 6 6 11

2mm 2 3 6 13 9
IV
�2;exp (10

�3kg=s2) at 1mm 2.09 21.9 60.4 131 667 1120
1.5mm 1.96 22.4 63.0 127 643
2mm 2.19 21.8 64.1 123 633

�2;calc (10
�3kg=s2) at 1mm 1.91 19.8 57.0 117 561 1037

1.5mm 2.03 20.2 57.6 117 562
2mm 2.14 20.6 58.2 118 563

at 1mm 9 9 6 11 16 8�
1� �2;calc

�2;exp

�
� 100% 1.5mm 4 10 9 8 13

2mm 2 6 9 18 11

Table 4.1: Experimental and calculated properties of the �ow through the �ue channel
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� �pexp: the same quantity calculated in the simulation times its dimension factor �U2
0;calc,

� the relative di�erence between the experimental and calculated pressure di�erences.

III The 'volume �ux'

� �exp: the 'volume �ux' calculated from the measured velocity pro�les at various distances
from the rear end of the channel (indicated in the �rst column). The �ux is calculated from
the data by:

�exp = 2
X
j

uexp;jUmax;expdy

where we integrated over half the pro�le up to where it reaches its maximum velocity (see
below for explanation),

� �calc: the 'volume �ux' calculated from the �ue channel simulation pro�les:

�calc = 2
X
j

s
u2j +

v2j
Re2H

U0;calcHdy

where we also integrated over half the pro�le,

� the relative di�erence between the experimental and calculated �ux.

The volume �ux derived from the experimental results is the integration of the measured velocity
pro�le. The measured uexp represents the quantity

p
u2 + v2, rather than only the longitudinal

component. In �gure 4.3 a measured jet pro�le is shown, together with the corresponding, calcu-
lated pro�les of longitudinal velocity and the absolute value of both longitudinal and transverse
components (

p
u2 + v2). For the measured pro�le an o�-set velocity appears, which is about 3%
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0.4

0.6

0.8
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0 0.5 1 1.5 2 2.5 3 3.5 4

measured
calculated, including transverse vel.

calculated, only longitudinal vel.

Figure 4.3: The used half of the measured velocity pro�le (�ipped horizontally) and the corre-
sponding calculated pro�le of only the longitudinal component, and the total velocity sqrtu2 + v2.
The pro�les are measured/calculated at 2mm downstream of the channel end, at ReH = 40

of its maximum value, which means 5� 10�2m/s. In the �gure it can be seen that the longitudinal
component of the calculated velocity alone does not have an o�-set. Inclusion of the transverse
velocity improves approximation of the measured pro�le. The calculated transverse velocity at
the right limit of the pro�le is about 2� 10�2m/s.

Therefore in the integration of the calculated 'volume �ux' we added the squared transverse
velocity in the integration. Note that the calculated longitudinal velocity is scaled with U0;calc,
the transverse velocity is scaled with U0;calc=ReH .
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In order to obtain the experimental 'volume �ux' we integrated one half of the experimental pro�les
up to the maximum, using all data-points for which the y coordinates are inferior to this one. If
we look at the measured pro�le in �gure 4.3 we see that the o�-set velocity is more or less constant
over about one mm. There is no reason a priory why we should not integrate the pro�le up to
y = 1:5mm, for instance, instead of the last data point. The choice of the integration limit will
a�ect the results. If we integrate to y = 2mm we �nd a volume �ux which is 2% smaller than the
one by integration over the total domain.

We integrated the calculated pro�les up to the last data point as well. This corresponds in �gure
4.3 with the limit y = 3:8mm. Integration up to y = 3mm decreases the calculated volume �ux
by 2%. Taking the same integration limits for both measured and calculated results would be a
lot more elaborate, for we have to determine it for every pro�le separately. Moreover this will
not improve the results given in table 4.1 because we would have to shorten the limits for the
calculated pro�les. This will cause the calculated 'volume �ux' to decrease, while they are already
inferior to the experimental results.

IV The 'momentum �ux'

� �2;exp: the 'momentum �ux' calculated from the measured velocity pro�les at various dis-
tances from the rear end of the channel (indicated in the �rst column), according to:

�2;exp = 2�
X
j

u2U2
max;expdy

where we integrated over half the pro�le up to where it reaches its maximum velocity,

� �2;calc: the momentum �ux calculated from the �ue channel simulation pro�les:

�2;calc = 2�
X
j

 
u2j +

v2j
Re2H

!
U2
0;calcHdy

where we also integrated over half the pro�le,

� the relative di�erence between the calculated and measured momentum �ux.

Generally, the sum of the longitudinal velocity times the density would give the momentum �ux
in the x direction. Since in the experiments

p
u2 + v2 is measured, rather than the separate

components, we added the transverse velocity in the sum of the momentum �ux as well.

For the 'momentum �ux' the choice of the integration domain has less in�uence on the results
than for the 'volume �ux'. Integration of the experimental pro�le up to y = 2mm would decrease
this �ux only by 0.1%. The 'momentum �ux' decreases also by 0.1% if we integrate the calculated
pro�le up to y = 3mm. So here the integration limits are not at all important, as long as they lie
in the region where the velocity pro�le is constant.
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Chapter 5

Discussion

We have shown that the channel �ow simulation (see section 3.1.3), and the jet �ow simulation
(see section 3.2.3) are quite accurate when compared with analytical and approximate solutions
of the boundary layer theory in speci�c cases.

In the section 3.3.1 we have shown that the simulation of the �ow in a straight channel with
an emerging jet, using our simpli�ed RNS-p(x) model, predicts within 3% the results of the
commercial code FLUENT which solves the complete two dimensional Navier Stokes equations.
The regions where the RNS simulation is less accurate are those close to the entrance and exit
of the channel. Here a discontinuity appears in the pressure gradient. This discontinuity is due
to the simpli�cations, which are not justi�ed in those regions. At the entrance of the channel,
for example, where the boundary layer is very thin, we cannot neglect the transverse pressure
gradient in the boundary layer. Very close to the wall at the entrance the full set of Navier Stokes
equations should be solved.

At the end of the channel, the discontinuity of the pressure gradient could be due to the absence
of downstream information in the simulation. Normally in sub-sonic �ows, which is here the case,
information of perturbations, abrupt changes in geometry etc. are carried upstream because these
perturbations travel with the speed of sound. The numerical solution of the RNS-p(x) model only
takes upstream information into account, so logically no e�ects of the abrupt end of the channel
are sensed in the channel itself.

The great advantage of simulation of the RNS-p(x) �ow model instead of full Navier Stokes
simulation is the gain of calculation time. For the problem discussed in section 3.3.1 FLUENT
took several hours of calculation, while the RNS-p(x) simulation took only several minutes. The
exact di�erence has not been measured and depends of course on the number of points in the
domain, the desired precision of results of FLUENT.

In chapter 4 we presented the results of the �ow simulation in a �ue channel in comparison
with experimental results. In �gure 5.1 the relative di�erence between the measured and the
calculated pressure di�erence over the channel is plotted against the Reynolds-number. The
di�erence increases with the Reynolds-number, which is possibly caused by turbulence. One of
the e�ects of turbulence is �attening of the velocity pro�le, causing a decrease of the maximum
velocity with respect to laminar �ow. Since we �tted the maximum velocity in the jet, we would
underestimate the Reynolds number of the �ow and thus the pressure di�erence.

In �gure 5.2 the relative di�erence between simulation and experimental results for both the
'volume �ux' and the 'momentum �ux' are given for di�erent Reynolds-numbers. As mentioned
in the previous section, in the experiments the quantity

p
u2 + v2 is measured, rather than u and

v separately. For the simulation results, we thus calculated the 'volume' and 'momentum' �uxes
based on

p
u2 + v2, instead of the exact de�nition based on u only. So we did not calculate the
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Figure 5.1: The relative di�erence between the calculated and measured pressure di�erence over
the �ue channel.
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Figure 5.2: The relative di�erence between the calculated and the experimental 'volume �ux' (left)
and the momentum �ux (right) for di�erent Reynolds-numbers, at three distances from the wake
end of the �ue channel, indicated in the upper right corner.

real volume and momentum �ux, rather a related quantity. We note that in general the relative
di�erence is positive, which means that the experimental results are greater than the calculated
results, which is also the case for the pressure di�erence. The increase of the di�erence in the
volume �ux as a function of ReH (�gure 5.2) could also be caused by underestimation of the
Reynolds number. This logically implicates an underestimation of the volume �ux.

The di�erence between the calculated and measured 'momentum �ux' has more or less the same
tendency as a function of ReH as the di�erence for the 'volume �ux'. Though we the discrepancy
in the di�erences calculated at 1mm,1.5mm and 2mm is larger than that for the 'volume �ux'.
Probably this is due to squaring the velocities to obtain the 'momentum �ux', which increases
systematic errors made in the value of the velocity.

As we already explained in the previous section the choice of the domain used for integration of
the pro�les in order to obtain the 'volume' and 'momentum' �uxes, a�ects the results. We have
quanti�ed this for the case of ReH = 40 at 2mm downstream the wake end of the channel. If we
shorten the domain by one �fth, at the edge of the pro�le where the velocity is the constant 'o�-set
velocity', we decrease both experimental and calculated 'volume �uxes' with 2%. This reduction
of the domain decreases the 'momentum �ux' by only 0.1%. This is logically smaller than the
'volume �ux' reduction because we squared the velocities, suppressing the smallest values, those
at the edges of the pro�le.

Generally the transverse domains of the calculated pro�les are 3.8mm wide, whereas the measured
pro�les have a domain of roughly 2.5mm, which vary for every pro�le within 1mm. Choosing
exactly the same domain for each pro�le would be very elaborate which could make a di�erence of
about 3% for the 'volume �ux' (shortening the domain by 30% will decrease the value with 3%).
Moreover, for the 'momentum �ux' the di�erence will be much less (about 0.2%). For this reason
we did not adjust the integration domains.
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We conclude that the model for simulation of channel and jet �ow that there is a rather good
match with analytical models and full Navier Stokes simulation in particular cases. There is about
10% di�erence between quantities calculated by simulation and experiments.
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Part II

Unsteady channel �ow
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Introduction

In part 2 of this report we present our model of the �ow through and the motion of the vocal
folds. The �ow is described with a two-dimensional unsteady channel �ow model, which is based
on the steady channel �ow model in part 1 of this report. This �ow model is combined with a very
simple single-mass-spring model describing the motion of the channel wall, which represents the
vocal folds. The behaviour of the hydrodynamic pressure on the vocal fold oscillation is studied.

In chapter 6 we present the unsteady channel �ow model which is based in the Navier Stokes
equations. The accuracy of this model is shown by applying the model on two known problems.
After that we present the numerical method which is used to solve the �ow model, in chapter 7.

In chapter 8 we use this �ow model to simulate vibration of the vocal folds, which are represented
by a simple one-mass spring model. Lastly we discuss the results of the simulation model for
unsteady �ow.
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Chapter 6

The model

In this chapter we present the model for unsteady channel �ow. The goal is to describe the
mechanics of an unsteady �uid �ow through a channel of which the geometry is changing in time.
At the same time we want to describe the motion of the channel wall. These models will be
combined in an autonomous simulation of the vocal folds oscillation.

The derivation of the equations describing the unsteady �uid �ow is analogous to the one in the
�rst part of this report for the RNS-p(x) model. The unsteady model is presented in section
6.1. We show its accuracy by comparing its solution with analytical solutions of two particular
problems: the Rayleigh problem and a periodic perturbation of Poiseuille �ow, in section 6.1.2.

The geometry of the channel is, like in the �rst part, two dimensional and symmetric with respect
to the centre line. In the unsteady �ow model we allow (a part of) the wall of the channel to deform
in vertical direction only, see �gure 6.1. In the simulation of the vocal folds, which is explained in
chapter 8, the mechanics of the mobile part is described with a mass-spring equation. In section
6.2 we discuss to some detail the mechanical model which we used to describe the mechanics of
the wall.

6.1 Unsteady channel �ow

For this model we reduce the full Navier Stokes equations (2.1) in practically the same way as in
section 2.1. Again we constrict our view to small scales and small velocities in comparison with
acoustics. So we can assume incompressible �ow. We study the �ow in a two-dimensional channel
with a movable wall, as depicted in �gure 6.1

U0

y
x

symmetry line

upper wall

H
h(t,x)

h(t,x)

u(t,x)

Figure 6.1: The channel geometry for the unsteady �ow model.

Now we permit the velocities to change in time, so we want to keep the unsteady term @u=@t.
Since the geometry is still a channel we will apply the same scales for x, y, u and v (equations (2.5)
through (2.9)). Again we assume the pressure to be constant across the section of the channel.
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So, mass conservation is still the same:

@u

@x
+
@v

@y
= 0 (6.1)

Conservation of momentum in the x direction gives:

@u

@t
+ u

@u

@x
+ v

@u

@y
= �@p

@x
+
@2u

@y2
(6.2)

and we still have

@p

@y
= 0 (6.3)

from conservation of momentum in y direction. The three equations given above are also known
as the Prandtl boundary layer equations [19, Ch 7].

Note that in equation (6.2) we implicitly applied a time scale to nondimensionalise the equation.
The time derivative of u is as important as all other terms in that equation (order 1). In order to
keep this term we are forced to choose U0f = U2

0 =HReH , where f is the frequency (we assume,
of course, harmonic perturbations). This gives the order of magnitude of the frequency:

f =
�

H2
(6.4)

When we take H in the order of mm, the frequencies are in the order of 101Hz. The frequency of
audible sound is:

20Hz < f < 20kHz (6.5)

For these frequencies the term @u=@t will be at least of order 1.

The boundary conditions are again straightforward. Again we regard only symmetric solutions.
We apply the no slip condition and thus demand that the �uid moves with the same velocity as
the wall. Since the wall motion is only in the transverse direction, the boundary conditions are
simply:

u = 0 at y = h(t; x)

v =
@h

@t
at y = h(t; x) (6.6)

v =
@u

@y
= 0 at y = 0

For simplicity in numerical solution we will again transform the transverse coordinate in order to
obtain that y varies between 0 and 1.

6.1.1 'Dynamic' scaling

We thus transform the coordinates: � = t, � = x and � = y=h(x):

@

@t
=
@�

@t

@

@�
+
@�

@t

@

@�
+
@�

@t

@

@�
=

@

@�
� �

h

@h

@t

@

@�
(6.7)

@

@x
=
@�

@x

@

@�
+
@�

@x

@

@�
+
@�

@x

@

@�
=

@

@�
� �

h

@h

@x

@

@�
(6.8)

@

@y
=
@�

@y

@

@�
+
@�

@y

@

@�
+
@�

@y

@

@�
= +

1

h

@

@�
(6.9)
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Substituting these equations (6.1) and (6.2) and rename � with t, � with x and � with y, we obtain:

@u

@x
� y

h

@h

@x

@u

@y
+

1

h

@v

@y
= 0 (6.10)

for continuity, which is still the same as in the steady case. The x momentum equation becomes:

@u

@t
� y

h

@h

@t

@u

@y
+ u

@u

@x
� uy

h

@h

@x

@u

@y
+
v

h

@u

@y
= �@p

@x
+

1

h2
@2u

@y2
(6.11)

As boundary conditions we apply no slip and an impermeable wall (no suction or injection).

u = 0 at y = 1

v =
@h

@t
at y = 1 (6.12)

v =
@u

@y
= 0 at y = 0

where y = 0 thus corresponds with the central symmetry line, and y = 1 with the upper channel
wall.

To show the accuracy of this set of equations we will apply them to two rather well known problems
which have analytical solutions.

6.1.2 Solutions

One problem that can be studied with this set of equations is the Rayleigh problem.

The Rayleigh problem

In this problem the growth of boundary layers is studied in a channel which is set to motion
abruptly, or viewed another way: initially the channel is �lled with �uid, having a uniform longi-
tudinal velocity. If we apply this problem to a �at plate, which is put into a uniform �ow �eld of
velocity U0, we have to solve the equation:

@u

@t
=
@2u

@y2
(6.13)

The boundary conditions of this problem are:

u = 0 at the wall

u = 1 in�nitely far from the wall (6.14)

Initially, we put the velocity u = 1 everywhere. The solution of this problem is (see Schlichting
[19, Ch 5]):

u = erf

�
y

2
p
t

�
(6.15)

This pro�le is self-similar, like the Blasius solutions for steady boundary layers. The factor
p
t is

the rate of growth for the boundary layer, displacement and other thicknesses.

Every point which has coordinate x < t the information from the entrance of the channel has
arrived in �ow. At the entrance the �ow remains uniform and of constant velocity, so from there
a steady boundary layer will develop as in Blasius' theory. For those points the boundary layer
thus relaxes to the value given by the steady solution in section 2.1.4.

In �gure 6.2 a plot is shown of the growth of the displacement thickness in the channel as a function
of time. We see that the displacement thickness grows, as predicted in the analytical solution,
with factor

p
t: �1(t = 0:01) ' 0:1, �1(t = 0:04) ' 0:2 and at t = 0:1 we have �1 ' 0:3. When t

increases the displacement thickness approaches the steady solution (see section 2.1.4).
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Figure 6.2: The solution of the Rayleigh problem. The growth of the displacement thickness �1 is
plotted against x for several time steps. The solution tends to the steady channel �ow.

Periodically perturbed Poiseuille �ow

Another problem which can be solved with the model above is a periodical perturbation of
Poiseuille �ow. We study solutions of the equation:

@u

@t
= �@p

@x
+
@2u

@y2
(6.16)

with boundary conditions u(t;�1) = u(t; 1) = 0. We impose oscillation of the pressure gradient:

@p

@x
= Kei!t (6.17)

We look for solutions in the form u(y; t) = u(y)exp(i!t). Substituting this into the equation, it
becomes:

i!u�K � @2u

@y2
= 0 (6.18)

The general solution is:

u(y) =
iK

!

 
1� 2e

p
i! cosh(

p
i!y)

e2
p
i! + 1

!
(6.19)

from which it can be seen that the ratio of amplitude of u and the pressure decreases proportional
to !�1.

This behaviour is visualized in �gure 6.4. The geometry of the channel is straight (length= 0.3)
with a small, oscillating bump near the entrance. This bump is Gaussian shaped, centered at
x = 0:025, width 1=120 and a height of 0:3. In �gure 6.3 the situation is captured at a certain
moment. The position of the upper wall of the channel, the wall shear stress and the velocity on
the centre line are displayed, as well as some longitudinal velocity pro�les throughout the channel.
The restriction causes an acceleration in the �ow, and right after the bump there is a region of
separation, as can be seen from the wall shear stress curve, and the velocity pro�le at x = 0:03 in
the right �gure.
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Figure 6.3: The geometry of the channel, the central velocity and the wall shear stress (divided
by 10) in the channel at a given moment (left) and longitudinal velocity pro�les at four di�erent
places in the channel (right).

This bump oscillates with ! = 100 and 200, generating the oscillations in the Poiseuille pro�le and
the pressure gradient. In �gure 6.4 the velocity on the centre line and the pressure gradient at the
end of the channel are traced as a function of time. The amplitude of dp=dx is roughly a factor !
times the amplitude of U . From equation 6.19 we can calculate the phase di�erence between the
pressure gradient and the maximum velocity. For both frequencies we obtain a phase di�erence
of about 0:4�, which is in accordance with the curves in the �gure.
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Figure 6.4: The velocity on the centre line U (left scale) and the pressure gradient (right scale) at
the end of the channel as a function of time, in response to an oscillating small bump in the wall.
In the left �gure the bump oscillates with frequency 100, in the right 200.

For very low frequencies ! ! 0 we �nd the steady Poiseuille �ow. By writing out a Taylor
development of all exponentials (N.B. cosh(x) = 1=2(ex + e�x)) up to order !, we �nd:

lim
!!0

u(y) =
K

2

�
1� y2

�
(6.20)

where K is the steady pressure gradient, in comparison with equation (2.28).

6.2 Wall motion

In the discussion of the �ow model we already mentioned that we allow the wall to move. For the
sake of simplicity, this motion is restricted to the transverse sense only. The mobile part of the
channel wall will represent the vocal folds. In our model we will describe the mechanical behaviour
of the vocal folds with a simple one-mass-spring system. In �gure 6.5 this model is visualized.

A mass m is positioned in an envelope representing the channel wall, which has the shape of a
cosine. It is suspended with a spring of sti�ness k in a rigid frame and a damper with damping
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Figure 6.5: The mass-spring model for wall motion.

constant b. When applied on the vocal folds, m represents its inertia, the spring represents the
sti�ness of the surrounding tissue, and the damper the internal dissipation. We de�ne the function
�(t) which represents the displacement of the mass at a certain time t with respect to the initial
position �0, the dashed curve in �gure 6.5.

The equation of mechanical equilibrium is:

m
@2

@t2
�(t) + b

@

@t
�(t) + k�(t) = f(t) (6.21)

where f(t) is an external force which is applied on the mass in the positive y direction. This force
will be the hydrodynamic force on the wall, when we apply this model on the vocal folds.

This mass-spring model is undoubtedly a far too simple representation of the vocal folds. But
we will see that this model already has an interesting behaviour. And since the hydrodynamic
behaviour is our main point of interest, we would better keep the vocal folds model as simple
as possible. However, the wall model can easily be generalized to a model of a one dimensional
membrane with a longitudinal tension, suspended by springs of sti�ness k per unit length. In
appendix D we present the general wall model which could be applied in future work.

The mechanical behaviour of our model is solved numerically by a method which is called the
Newmark method. The special advantage of this method is that it is unconditionally stable,
independent of the value of the parameters. We will discuss this method brie�y in the next
chapter. More details are given in appendix D.
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Chapter 7

Numerical method

In this chapter we present the numerical method used for solution of the unsteady �ow model, as
well as the mass-spring model for wall motion.

First, in section 7.1 we present the discrete approximation of the unsteady RNS-p(x) equations
from section 6.1. And write out its solution step by step. The accuracy and stability are brie�y
discussed in section 7.1.2.

In section 7.2 we present the discrete equation of motion of the mass-spring wall model which is
the Newmark approximation. It is solved by a prediction-correction technique, explained in 7.2.2.

Presenting the solution of the steady channel �ow model in chapter 3, we mentioned that in the
simulation we start with a given velocity pro�le (volume �ux) at the entrance. The channel �ow
simulation calculates the velocity �eld and the pressure di�erence over the channel. We thus
impose a constant �ux as a �ow source. In simulation of the air�ow through the larynx we assume
this way the lungs, from which the air arrives at the larynx, to be a source of volume �ux. This
does not seem to be very realistic. We also implemented a pressure source model for the lungs in
our simulation. In stead of imposing a �ux we then impose a pressure drop over the length of the
channel. The numerical realization of both 'lung' models will be discussed in the next section.

7.1 Channel �ow

The time derivative of the longitudinal velocity will be included in the straightforward way:

@ui;j
@t

=
un+1i;j � uni;j

�t
(7.1)

where n denotes the instant t = tn. This term, together with a term from the time derivative
of the wall position function h(t; x) will be added to the steady momentum equation (3.1.1). All
terms appearing in the equation will be de�ned implicitly, thus at t = tn+1, except for the old
velocity term in the time derivative, of course. The main idea of solving the unsteady channel
�ow model is that for every instant tn, we solve for the �ow on the whole domain in the channel
in the same way as we did in steady channel �ow, after which we pass on to the next instant tn+1.

The approximation of the time dependent equation of momentum in x-direction, equation (6.11),
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has the form:

un+1i+1;j � uni+1;j
�t

� yj

hn+1i+1

_hn+1i+1

un+1i;j+1 � un+1i;j�1
2�y

+un+1i;j

un+1i+1;j � un+1i;j

�x
+

1

hn+1i+1

 
vn+1i;j � un+1i;j yj

hn+1i+1 � hn+1i

�x

!
un+1i;j+1 � un+1i;j�1

2�y
(7.2)

= �p
n+1
i+1 � pn+1i

�x
+
un+1i+1;j+1 � 2un+1i+1;j + un+1i+1;j�1�

hn+1i+1 �y
�2

where _hni is the vertical velocity of the wall at t = tn and x = xi. In this equation the unknowns
are the ones with both high index n+1 and low index i+1, the rest is from the precedent step in
x or in t which are known. However, the height of the channel hn+1i+1 is a known function at time
tn+1 for all xi. We do not solve it in the channel �ow simulation, it is given externally. In case
we impose the wall motion (like in the solution of the perturbed Poiseuille �ow, section 6.1.2) it
is given for all tn and xi. In the combined simulation as applied for simulation of the vocal folds
it is calculated by the wall motion simulation. The exact coupling will be explained in chapter 8.

In comparison with equation (3.1.1), the discrete form of the momentum equation in steady �ow,
one can see that nothing has changed when it comes to approximation of derivatives.

The boundary conditions for the longitudinal velocity are conform (6.12):

un+1i+1;1 � un+1i+1;0 = 0

un+1i+1;ny = 0 (7.3)

Once we have solved for un+1i+1 we integrate the continuity equation to obtain vn+1i+1 . This equation
has not changed with respect to the steady �ow model, it is exactly equal to (3.7) at time tn+1:

vn+1i+1;j+1 � vn+1i+1;j

�y
= �hn+1i+1

un+1i+1;j+1 � un+1i;j+1

�x
+ yj

hn+1i+1 � hn+1i

�x

un+1i+1;j+1 � un+1i+1;j

�y
(7.4)

The discrete form of the boundary conditions for v, from equation (6.12), are:

vn+1i+1;0 = 0

vn+1i+1;ny = _hn+1i+1 (7.5)

So far, there is no di�erence in the method between an imposed volume �ux and imposed pressure
drop. This di�erence will come forward in the exact path followed for solution of the set.

7.1.1 Solution

The solution of the set of equations presented above is to the solution of that in the model of
steady channel �ow. For both the imposed �ux and the imposed pressure di�erence we follow the
schedule described below.

At t = 0 we �ll the channel with a certain velocity �eld. This may be a uniform �ow or Poiseuille
�ow or something like that, for we need an initial condition for the whole velocity �eld. At the
channel entrance we keep p0 = 0 for all tn.
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Estimation of pn+1i+1

The solution starts with an estimation of the new pressure. Unlike the steady �ow model,
however, here we choose just the precedent pressure instead of extrapolate it from the curve. For
some unknown reason, the extrapolation gives awkward results in the calculated, new pressure
function.

Calculation of un+1i+1

Next, we solve equation (7.1) for un+1i+1 . All terms having both indices n+1 and i+1 are moved
to the left hand side, in order to put the equation in the form

Aun+1i+1 = b+
dp

dx

���������n+1
i+1

(7.6)

where A is a tridiagonal matrix and b contains terms from precedent calculation steps. This
matrix is inverted using the method of factorization.

Calculation of vn+1i+1

After that, we solve for the new transverse velocity by integrating the equation of continuity
exactly analogous to the steady model (see section 3.1.2). At the upper wall, we have to �nd v
equal to the transverse velocity of the wall. Like in the steady model, this will generally not be
the case with the estimated pressure from above. In a Newton iteration on the pressure value, the
discrepancy between the transverse velocity of the wall and of the �uid are decreased to 10�9.

Newton iteration on the pressure
This iteration process is analogous to the one applied in steady �ow (section 3.1.2). The di�er-

ence with the steady channel �ow model is that now we are not looking for the zero of the function
vny(p), but simply for the root of vny(p) � _h. The derivative of vny(p) is determined (note that

this is the same as the derivative of this function translated over _h). The next pressure value will
be equal to

pnew = pold � vny(pold)� _h

�v=�p
(7.7)

and we iterate this way on the new value of the pressure, solving un+1i+1 and vi+1 each time. This
iteration will be continued until the transverse velocity of the �uid and the wall di�er less than
10�9.

When this condition is satis�ed, we move one step in the positive x direction, until we arrive at
nx. In case we imposed constant volume �ux, we now pass on to the next instant, and start the
solution from x0. In case we imposed a constant pressure drop over the channel, the di�erence
with the constant �ux comes forward.

Imposed pressure drop
When the pressure drop is imposed, we vary the �ux at the entrance of the channel in order

to get the desired pressure at the end. We thus search for the amplitude of the entrance velocity
pro�le. This search is done with another Newton iteration.

Newton iteration on the entrance �ux
First, we give a volume �ux at the entrance of the channel: � =

P
j(u

n
0 ), which will be taken

equal to 1. We do the whole calculation above, starting from 'Estimation of pi+1' to the end of
the Newton iteration on the pressure, for the whole channel. This gives us a certain value of the
pressure at the end of the channel, and thus the pressure drop. We determine the derivative of
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that pressure drop as a function of the �ux, by repeating the calculation above for �+� and ���,
taking the di�erence and divide it by 2�.

The new value of the �ux is that obtained by extrapolation of the pressure drop as a function of
the volume �ux �p(�) to the imposed pressure drop.

�new = �old � �p(�old)��pimp

@�p=@�
(7.8)

This iteration is repeated until the di�erence between the calculated and the imposed pressure
drop is less than 10�9.

Summarizing, in case of imposed pressure drop we add a feedback loop in the simulation modifying
the entrance �ux, after having solved the whole velocity �eld, at one instant t = tn. The di�erence
between the two methods is visualized in �gure 7.1.

RNS-p(x)
u, v

Φ ∆ p

modify flux

Figure 7.1: Visualization of the solution in case of imposed pressure di�erence over the channel.
The e�ect, with respect to imposed �ux, is an extra loop in which the entrance velocity is modi�ed
in order to get the desired pressure drop.

After having solved for the whole channel we pass on to tn+1, and start again from the beginning.

7.1.2 Accuracy and stability

For the accuracy of the unsteady channel �ow model we have shown in section 6.1.2 that the
Rayleigh problem and harmonic perturbation of fully developed �ow are solved properly.

In the solution of the Rayleigh problem we traced the growth of the displacement thickness in
time. In �gure 6.2 it can be seen that this growth is indeed in accordance with the analytical
solution and that the curve relaxes to the steady state solution for channel �ow.

For harmonic perturbation of Poiseuille �ow we have shown that the phase factor and the amplitude
ratio of the velocity and the pressure gradient are in accordance with the analytical solution.

The stability of this simulation is comparable to that of the steady channel �ow simulation. This is
because we only added the term @u=@t with respect to that model. Numerically, we de�ned most
terms implicitly, which often has a stabilizing e�ect (see appendix B). We have not studied the
stability of this simulation thoroughly. But we expect the same behaviour as the steady channel
�ow simulation, with additional conditions for the choice of �t. The simulation of the Rayleigh
problem (see section 6.1.2) has been rerun for several values of �t. For this problem the code
seems to be stable even for �t = 0:5.

7.2 Wall motion

The discretisation of the vertical displacement of the mass in our wall motion model is very simple,
we write: �n = �(t= tn).

For the approximation of the equation of mechanical equilibrium (6.21) we use the approximation
from the Newmark method. This method is a numerical method for solution of mass-spring like
systems. In appendix D.2 and in [7] this method is discussed in more detail. Here we will only
highlight some important features.
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7.2.1 Discrete equations

The Newmark method is a one-step integration method, so we have to decompose the derivative
@2=@t2 into two derivatives of the �rst degree. The Newmark approximation of the equation of
motion is:

_�n+1 = _�n +
1

2
�t ��n +

1

2
�t ��n+1 (7.9)

�n+1 = �n +�t _�n +
1

4
�t2 ��n +

1

4
�t2 ��n+1 (7.10)

In [7] we can see that the error made by these approximations is of order �t3�(4) in equation (7.9)
and the error for �n+1, equation (7.10) is of order �t3�(3).

Substituting this into the equation of motion at time tn+1, we get:

�
m+

1

2
�t b+

1

4
�t2 k

�
��n+1 (7.11)

= fn+1 � b

�
_�n +

1

2
�t ��n

�
� k

�
�n +�t _�n +

1

4
�t2 ��n

�
(7.12)

Since we introduced implicit terms in the calculation of the new displacement and velocity, equa-
tions (7.9) and (7.10), this system is solved by a prediction-correction method. We explain this
method by following the solution step by step.

7.2.2 Solution

We need initial conditions for both displacement and velocity. So in t0 we de�ne both �
0 and _�0.

In the following the we start from a known state of the mass-spring system at t = tn. And we
solve the state at time tn+1.

prediction
First we predict the values of the displacement and velocity of the membrane using the state at

instant tn:

_�n+1� = _�n +
1

2
�t ��n (7.13)

�n+1� = �n +�t _�n +
1

4
�t2 ��n (7.14)

calculation of ��n+1

With the estimated displacement and velocity, we can calculate the acceleration at instant tn+1,
using the equation of motion (7.11). The solution is direct, we divide the right hand side by the
factor in font of ��n+1.

correction
After that we correct the displacement and the velocity using the the acceleration term just

calculated:

_�n+1 = _�n+1� +
1

2
�t ��n+1 (7.15)

�n+1 = �n+1� +
1

4
�t2 ��n+1 (7.16)
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Once we have corrected, we can advance in time. The �owchart explaining the Newmark method,
applied on a more general problem, is shown in �gure E.3.

On the accuracy of the Newmark method, a brief discussion can be found in appendix D. We
can conclude that the approximations shown above introduce an error in the periodicity of the
solution of the problem. In [7] this error is calculated:

�T

T
=
!2�t2

12
(7.17)

where T is the period of the calculated solution and ! is the angular frequency of the exact
solution.

An important feature of the Newmark method is that it is unconditionally stable. The parameters
(m, b, k) and the time-step �t do not intervene in the factor of ampli�cation (see appendix D).
This factor has always the value of unity.

For the moment the external force is not yet speci�ed. In the simulation model for the vocal folds
we will apply the hydrodynamic force as the driving force on the mass. In the next chapter we
will explain how we coupled the unsteady �ow model and the model for wall motion exactly.

53



Chapter 8

Application: vocal folds

In this chapter we present our model for simulation of the �ow through and the motion of the
vocal folds. In �gure 8.1 a schematic drawing of this model is shown. The model is symmetric with
respect to the �ow channel axis (the dashed line in the �gure). The vocal folds are represented by
a one-mass-spring system, positioned in an envelope which forms a cosine-shaped constriction in
the channel The position of the wall is then given by:

p(x)dx

y
x

U0

����
����
����
����

����
����
����
����

������
������
������

������
������
������

m

k

h(t,x)

S(t)

�����������
�����������
�����������

�����������
�����������
�����������

Figure 8.1: The model for the vocal folds.

h(t; x) = S(t)
1

2
(cos(2�x=Lm)� 1) (8.1)

where S(t) represents the section of the channel at the position of the mass, Lm is the longitudinal
dimension of the vocal folds (upstream-downstream). The channel is straight if S = 1, and totally
pinched if S = 0. Note that one can choose the initial value S(0) freely.

In this model the mechanical behaviour of the vocal folds is described by the simple relation (in
reference to (6.21)):

�� + � = � F (8.2)

which determines the displacement � of the mass, with respect to the initial position, as a function
of time. We took m = k = 1 and b = 0 to keep things simple, but we added a coupling coe�cient
� for the force F which we can change to regulate the relative importance of F with respect to m
and k. The section S evolves in time, according to:

S(t) = S(0) + �(t) (8.3)

Equations (8.1) through (8.3) describe the relation between the displacement of the mass in the
mass spring model and the position of the channel wall h(t; x).
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We use the hydrodynamic pressure as a coupling between the �ow and the wall motion. In principle
the relationship between the pressure distribution and the force on the mass can be very complex.
Here we chose for the most simple relationship. We integrate the pressure over the glottis and
apply this force as source term F in equation (8.2). We apply thus the mean value of the pressure
as interacting force.

The behaviour of this simple model of the vocal folds is already rather complicated. Even if we
only couple the pressure in this simple way. This is because the pressure is a function of the wall
displacement and thus appears active in the simulation of the vocal folds motion.

In the next section we present the exact geometry which was applied to study the model of the
vocal folds. Then we study the behaviour of the mean pressure F as a function of S(t) and the
behaviour of the mass-spring system in response to F .

8.1 The applied geometry

The geometry of the channel which represents our model of the airway through the vocal folds,
is depicted in �gure 8.1. For the nondimensionalised height we chose H = 1 (of course), for the
length of the channel we chose 1 as well (so in real the length L will be equal to HReH). The cosine
shaped constriction is placed in the middle of the channel, between two straight, rigid parts having
height 1. The 'vocal fold' has a length of Lm = 0:2, so it is situated on the interval 0:4 � x � 0:6.

We examined the mean pressure response for the two di�erent �ow models: the imposed �ux and
the imposed pressure di�erence. These studies are presented in section 8.2 and 8.3, respectively.
In each section we �rst examine the response of the force F to an imposed state of the wall motion
(�(t) and _�(t)). This is done by keeping S constant in time: the static response, and forcing an
oscillation of S(t) in the elastic part of the wall: the dynamic response.

After that we show the motion of the vocal folds by really coupling the simulations. Numerically
the coupling means that for the functions hn+1 and _hn+1 at time tn+1 in equation (7.1) we take
the wall position and velocity derived from the predicted state of the mass-spring system �n+1�
and _�n+1� . With those we solve for the pressure function pi, of which the mean value we apply as
the external force in the mass-spring model.

8.2 Imposed �ux

The �rst case we examine is the imposed �ux. The entrance velocity is kept constant in time.

First the static force response is determined by determining the mean pressure for di�erent values
of S which are kept constant. In �gure 8.2 the force F is depicted as a function of S.

The pressure in the �uid is always negative, because the value at x = 0 is chosen zero. The
pressure decreases as x increases, forcing a �ow in the positive x direction. The mean pressure
force decreases dramatically for S approaching 0. If we pinch-o� the channel, and impose a �ux
at the same time, we force the same amount of �uid through a channel becoming smaller. The
�uid is accelerated because of �ux conservation. For frictionless �ow the velocity will accelerate
according to

U =
U0
S

(8.4)

where U tends to in�nity if S tends to 0, causing a dramatic pressure drop over the vocal folds.

For the dynamic response of the pressure an oscillation of the mass is forced. The section oscillates
about S = 1 with an amplitude of 0:05. The channel is thus repeatedly pinched and enlarged. In
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Figure 8.2: The force F as a function of the section of the channel, static response.
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Figure 8.3: The response of the force F as a function of oscillating S. The dotted line across the
loops is the static response. The solid loop, the force response to oscillation, runs clockwise. The
dashed loop is the pressure response predicted by asymptotic analysis [21].

�gure 8.3 the dynamic response of the pressure is shown. The dynamic response of the force forms
loops which run in clockwise direction. In other words, the force is di�erent for decreasing and
increasing section. From the �gure it can be seen that the force is greater (in a negative sense) if
the section decreases, than for increasing section. The pressure in the �uid exercises work on the
moving mass, and thus transfers energy. The energy is injected into the motion of the mass.

For forced oscillations of very small amplitudes like the one imposed above, we could say the
oscillation is a small perturbation in the wall of a straight channel. In that case an asymptotic
development can be made in order to solve the �ow over the little oscillating bump. In the analysis,
done by Smith [21], it is found that the pressure response to the perturbation is a function of the
section and the velocity of vibration:

F � a(S � 1) + b
@S

@t
+ c (8.5)

These coe�cients can be solved for, and they are in the order of unity [21]. We veri�ed this
behaviour by �tting the coe�cients. The coe�cients a and c can be �tted from the curve of the
static response (�gure 8.2): a = 0:66, c = �0:62. The value of b is guessed to have best �t on
sight, which yields: b = 0:13. This �tted curve is plotted in �gure 8.3, the dotted loop.

A very similar behaviour of the pressure in unsteady channel �ow over constrictions or expansions
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has been found by various authors, among which Lucero [13], Pedrizzetti [16] and Young & Tsai
[25].

The behaviour of the mean pressure conform (8.5) is applied to the mass spring model of the vocal
folds, equation (8.2), where we took � = 0:2. The way in which the oscillator responds to that is
depicted in �gure 8.4, from which we can see that the amplitude of oscillation increases. This is

η

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40

Figure 8.4: The response of the mass spring system to the force F from equation (8.5).

due to the response of the pressure to the displacement of the mass. Substituting equation (8.5) in
(8.2), we can interpret the term b from the former as a negative damping term for the oscillator.
The �uid exerts work of the wall, via the pressure. The net energy transfer is equal to the area of
the force loop in �gure 8.3.

The behaviour of the mean pressure for the case that we impose a constant pressure drop over the
channel (0 � x � 1), is di�erent from the constant �ux model. This case is discussed in the next
section.

8.3 Imposed pressure di�erence

For this case we vary the entrance velocity (�ux) in order to obtain the desired pressure di�erence.

The static pressure response is depicted in �gure 8.5 for three di�erent values of the imposed
pressure drop 1: �p = �4, -2.9 and -2. These curves have the same shape, they di�er only by
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Figure 8.5: The force F as a function of the section of the channel, static response, for three
di�erent values of the imposed pressure di�erence (left), and the dependence of the volume �ux
on S for the case �p = �2:9.

1These values are arbitrarily chosen, as well as the values later on in the �gures 8.6 through 8.8. However, in
case of Poiseuille �ow we have �p = �3 over a straight channel with length 1 (see section 2.1.4). So we have one
value above and one below the pressure di�erence Poiseuille.
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a factor in F . The force increases (in a negative sense) when the channel is pinched, until a
minimum in the curve is attained for S = 0:5. If the channel is pinched further, the force becomes
less negative. This is because of a reduction of the volume �ux, in order to keep the pressure drop
over the channel constant. For �p = �2:9 the dependence of the volume �ux on the section of
the channel is also depicted in �gure 8.5. As can be seen from that, the volume �ux decreases if
the channel is pinched, in order to obtain the demanded pressure drop.

The dynamic pressure response is investigated for three di�erent values of �p: -1.5, -3.5 and -5.5.
For that, we force an oscillation of the section S about the value 0.5 with an amplitude of 0.2.
The behaviour of the force to that is displayed in �gures 8.6 through 8.8.
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Figure 8.6: The dynamic response of the force F to a forced oscillation of S; �p = �1:5 (left) and
the behaviour of the mass-spring model in reaction to this force.

For the pressure drop �p = �1:5, the mean pressure shows a hysteresis loop running counterclock-
wise (�gure 8.6). The pressure is less strong when the section decreases, than when it increases.
This means that there is a transfer of energy from the membrane to the �uid. The pressure adds
a damping term in the vocal fold model. As a consequence for this pressure di�erence the oscilla-
tion will die out. This can be seen in the right �gure, where the simulations of the �ow and the
membrane are actually coupled. The damping term is very weak because the imposed pressure
drop is small, causing the force to be small as well.
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Figure 8.7: The dynamic response of the force F to a forced oscillation of S; �p = �3:5 (left) and
the mass-spring oscillation responding to this pressure.

In case the pressure drop is -3.5 the force loop crosses its path halfway. The upper right part runs
in a counterclockwise sense, causing a damping in the oscillation. The lower left part, however,
runs in the opposite direction amplifying the oscillation. These two term cancel each other at least
partially. Depending on the exact ratio of the two areas, the oscillation will damp out, ampli�ed or
even have a constant amplitude. The right �gure of 8.7 displays a slightly damped oscillator which
is the result of coupling the simulations of the �ow and the membrane (run with �p = �3:5).

58



F

S

-0.8

-0.78

-0.76

-0.74

-0.72

-0.7

-0.68

-0.66

-0.64

-0.62

-0.6

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

t

η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

Figure 8.8: The dynamic response of the force F to a forced oscillation of S; �p = �5:5 (left) and
the mass-spring oscillation responding to this pressure.

For a pressure drop of value �5:5 gives qualitatively the same force behaviour as the case where
the �ux in imposed. The biggest loop runs in clockwise direction (see �gure 8.8). This gives again
a transfer of energy from the �uid to the membrane, of which the oscillation ampli�es, as can be
seen from the right �gure.

As a conclusion we could say one passes from a damped oscillation to an ampli�ed, by increasing
the imposed pressure drop.
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Chapter 9

Discussion

As we have seen in section 6.1.2 the unsteady �ow model gives accurate solutions to the Rayleigh
problem and the oscillatory Poiseuille �ow. The simulation is most probably fast in comparison
with full Navier Stokes simulation, since we use an analogously simpli�ed model of the Navier
Stokes equations as for the steady channel �ow model. In case we impose the volume �ux in our
simulation it is per time-step as fast as the steady channel �ow simulation. In case we impose a
pressure drop, for each instant the �ow simulation is rerun several times, in order to �nd the right
�ux in accordance with the pressure drop. The amount of time this takes is proportional to the
number of iterations on the volume �ux needed. Real time simulation of the vibration of the vocal
folds will most probably not be possible with this �ow model.

The numerical method used for solution of the mass-spring model of the vocal folds is uncondi-
tionally stable, an error occurs in the periodicity which is of order !2�t2.

We have studied the behaviour of the mean pressure F in response to a forced oscillation of the
vocal folds in section 8. We have observed that this force shows hysteresis. There is a transfer of
energy between the �uid and the vocal folds, via the pressure.

For an imposed volume �ux we �nd a net transfer of energy from the �uid to the vocal folds
(see �gure 8.3). When this force is implemented on the mass-spring system, it oscillates with an
increasing amplitude. We have no physical constraint for the amplitude of oscillation (such as the
section S cannot become negative). So, in a coupled simulation of the �ow and vocal folds motion,
the amplitude of oscillation will increase without a limit (see �gure 8.4).

In case we impose the pressure di�erence over the channel, we observe a transfer of energy in
both directions. In �gures 8.6, 8.7 and 8.8 we have shown the behaviour of the mean pressure
for decreasing pressure di�erences (which are �p = �1:5, �3:5 and �5:5, respectively.). For the
weakest pressure drop (�p = �1:5) we �nd a net energy transfer from the vocal folds to the
�uid. The oscillation of the vocal folds will be damped out this way. In case �p = �3:5, we �nd
energy transfer in both directions of roughly the same order, and if we impose �p = �5:5 energy
is transferred from the �uid to the vocal folds.

An important aspect of our model is that one mechanical degree of freedom is su�cient for simu-
lation of the vibration of the vocal folds (only one mass and spring). Pelorson et al. [17] and Lous
et al. [12] use a quasi steady �ow model which requires two mechanical degrees of freedom (two
masses and two springs) to explain vocal fold oscillation.

Like in our model, in the two-mass model of Pelorson et al.[17] the pressure is the driving force of
oscillation. In this two-mass model the masses can oscillate with a phase di�erence. This causes
the glottis to change from convergent to divergent (i.e. the way it is depicted in �gure 1.3) and
back. In a divergent channel �ow-separation can occur. Pelorson et al. calculate the point of
separation, which is a function of time related to the dynamic geometry, and suppose that beyond
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this point a jet emerges. Beyond this point they thus apply a constant pressure, which is equal to
zero. The force they apply as source for oscillation is the pressure integrated up to the point of
separation.

In our model we observe �ow-separation in certain cases as well. For example in �gure 9.1, we
captured the unsteady �ow simulation (with imposed volume �ux) at a time that S = 0:5. We
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Figure 9.1: The situation of the �ow simulation through the glottis at a certain moment. The
curves of the geometry (right scale), pressure and he wall shear stress (left scale) are shown. The
latter passes through zero which means that separation occurs.

see from the curve of the wall shear stress, that separation occurs in the diverging, downstream
side of the vocal folds. In our simulation we observe that the �ow re-attaches to the wall, an
e�ect that is not extraordinary but rather di�erent from the model of Pelorson et al. [17]. A
possible explanation for this di�erence is that we apply a rather smooth shape of the vocal folds
and a rather weak constriction of the airway, whereas in the model of Pelorson et al. the vocal
folds are allowed to close the airway. For the calculation of the force we integrate on the interval
0:4 � x � 0:6, even if separation occurs within this interval.

An interesting aspect is that in many two-mass models the vocal folds can collide with each other,
closing the airway. In normal speech this is in fact what is happening, the vocal folds open
and close periodically. In our model, we do not allow the vocal folds to collide. It seems that
phonation can also take place even if the vocal folds are not touching each other, which justi�es
our assumption.
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Chapter 10

General conclusions

In the �rst part of this report we showed that for steady channel �ow, simulation of the RNS-p(x)
model has quite accurate results when applied on a particular geometry for which analytical solu-
tions exist. The results of this model, applied on a straight channel geometry with a discontinuous
expansion, have been compared with the results of simulation of the complete two dimensional
Navier Stokes equations by FLUENT (section 3.3.1). We found a discrepancy in the resulting
velocity �elds of 3%.

The steady RNS-p(x) channel �ow model has been used to simulate the �ow through a �ue channel
in the mouthpiece of a recorder type �ute. The results of these simulations display a discrepancy
of about 10% in comparison with experimental results.

The unsteady �ow model which is based on the same physical assumptions as the steady model,
has been applied for simulation of the �ow through the glottis, in a coupled simulation of the �ow
and the vibration of the vocal folds. The vocal folds are described with a single mass-spring model
which is numerically solved with an unconditionally stable method.

Vocal fold oscillation is observed in these simulations, even with one mechanical degree of freedom.
This in contrast to the models of Pelorson et al. [17] and Lous et al. [12] where a quasi steady �ow
model is used which requires two mechanical degrees of freedom (two masses and two springs) to
explain vocal fold oscillation.

In conclusion we give some suggestions for future work:

� implementation of an adjustable grid in longitudinal direction in the simulation of the �ow
models, where the density of calculation points can vary over the domain,

� a quantitative comparison of our and other results of vocal folds simulations, containing
order of magnitude of the forces, frequencies etc,

� study of the physical validity of re-attachment of �ow after separation, and verify whether
a constant pressure should be imposed beyond the point of separation or not,

� implementation of a way to constrain the motion of the vocal folds physically,

� generalization of the vocal folds model, to obtain a more realistic behaviour.
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Appendix A

The von Kármán equation

The boundary layer problem can be solved using an approximative method, based on the von
Kármán equation. The von Kármán equation is obtained by integrating the momentum equation
(2.17) over y (from 0 to 1, using continuity (2.16) and the de�nitions of �1 and �2, we obtain the
famous von Kármán equation (see [19]):

d

dx

�
�2U

2
�
+ �1U

dU

dx
=
@u

@y

���������
y=0

(A.1)

Further, we de�ne the ratio between the displacement thicknesses and the momentum displacement
thickness H12:

H12 =
�1
�2

(A.2)

this ratio is a function of dU
dx and �1.

In the von Kármán equation we thus encounter three unknown quantities: �1 (or �2), U(x) and
the derivative @u

@y . It is convenient to de�ne a friction coe�cient, called f2 by:

@u

@y

���������
y=0

= f2
H12

�1
U (A.3)

which is, like H12, a function of dU
dx and �1. Until now, these parameters H12 and f2 are yet

unknown. But it is possible to calculate these functions once we have chosen a certain velocity
pro�le u(y), the closure of the problem. Here we will discuss two possible closures: the Falkner
Skan method and a polynomial closure.

The Falkner Skan closure
This method gives us numerical values of H12 and f2, which can be approached by the following

functions (see �gure A.1):

H12 = 2:5905 exp(�0:37098 � �1)

if �1 > 0:6 H12 = 2:5905 exp(�0:37098 � 0:6) (A.4)

f2 = 0:9396

�
� 1

H12
+

4

H2
12

�

where we have introduced another parameter �1, which is de�ned by:

�1 = �21
dU

dx
(A.5)
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Figure A.1: The ratio H12 as a function of �1 according to the Falkner Skan closure. The curve
is �tted through the points [SCHLICHTING?].

This leaves us with only two unknown quantities, �1 and U(x). By conservation of �ux (2.24) we
can express U(x) as a function of �1.

We do now have a solvable coupled set of equations, namely the von Kármán equation (A.1),
which we can write as:

U2 d

dx

�
�1
H12

�
+

�
1 +

2

H12

�
�1U

dU

dx
= f2

H12

�1
U (A.6)

using (A.4), (A.5) and U as a function of �1, from �ux conservation.

These equations have been solved for �1 using a program written in C, by means of the method
of �nite di�erences.

Polynomial closure
The second method closing the set of equations is simpler: the polynomial closure. Here we

choose a polynomial for u(y) in terms of y, respecting the boundary conditions (u(0) = 0 and
u0(y� = �) = 0 (For a few examples, see [19, p.206].). From this we can calculate the factor
H12, and the derivative du=dy at the wall. Moreover, if the chosen polynomial has no further
parameters, these quantities will both be constant for all x. Still using �ux conservation we can
now integrate the von Kármán equation by hand. This results in the variable x as a function of �
(rather than the other way round):

x = c�1
��

1

H12
+ 1

�
�

2
+

2

�

�
3

2H12
+ 1

�
ln

�
1� ��

2

�
+

�
2

H12
+ 1

�
�

2� ��

�
(A.7)

where we have de�ned �=2�1=� and c is the �rst derivative of the chosen velocity pro�le at the
wall:

c =
@u

@y

���������
y=0

(A.8)

From equation (A.7) we can solve � (and �1) using Newton's method, but it's much simpler to
calculate x from given values of �. Since � is a monotonously increasing function of x, there won't
be any problems using this technique. We have applied this solution to two di�erent velocity
pro�les: a linear pro�le (c = 1, � = 1 and H12 = 3 which have also been done in [23]) and a
polynomial of the fourth degree in y (c = 2, � = 3

5 and H12 = 2:554).

In this method we permit �1 to become as thick as h=2, with U tending towards in�nity (equation
2.23). There are several ways to limit the growth of �1, in order to keep physical signi�cance of
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the model. One possibility is to set the upper limit to the value �1 has in Poiseuille �ow. For the
parabolic velocity pro�le (2.28) we can easily �nd: �1 = 1=3 by using the de�nition (2.19).

The solutions of the displacement thickness are plotted in �gure 2.5, and compaired with Blasius',
Poiseuille's solutions and the numerical solution of the RNS-p(x) equations.
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Appendix B

Numerical methods

In this appendix some basic principles of numerical methods are explained. In section B.1 several
methods will be discussed of putting di�erential equations in a discrete form in order to solve it
by one-step integration. We will discuss three straightforward approximations of a second order
di�erential equation and a more complicated approximation: the Newmark approximation.

In section B.2 we discuss a very fast numerical solution of a system of linear equations. This
method is called the the method of factorization and it is basically a quick algorithm for inversion
of three diagonal matrices.

B.1 Discretisation methods

Consider a function f(x) de�ned on a range a � x � b, which is discretised by the set x0 =
a; x1 : : : xN = b. The discrete representation of this function is fi � f(xi). Say f is a solution of
a di�erential equation.

In general, the mth derivative of f at x = xi is approximated by:

dmf(xi)

dxm
=

j=J2X
j=J1

ajfi+j (B.1)

where J1, J2 are integers and aj are found by expressing fi+j in terms of fi by means of Taylor
expansion:

fi+j = fi + j�x
df(xi)

dx
+

(j�x)2

2

d2f(xi)

dx2
+ � � �+ (j�x)k

k!

dkf(xi)

dxk
+Rk (B.2)

where �x is the pace size (xi+1 � xi, taken constant here) and Rk is the rest term of order k:

Rk =
1

k

xi+jZ
xi

dk+1f(�)

dxk+1
(xi + j�x� �)

k
d� (B.3)

An example: we approximate the �rst derivative of f , where we use the two neighbouring points,
i.e. we take J1 = �1 and J2 = 1:

df(xi)

dx
u

(1� �) fi+1 + 2�fi � (1 + �) fi+1
2�x

(B.4)
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with � an arbitrary constant, which depicts the freedom of choice we have for discretisation.
Substituting the Taylor expansion determines the error of the approximation:

���x
2

d2f(xi)

dx2
+

�x2

6

d3f(xi)

dx3
(B.5)

Specifying � gives several standard forms of approximation:

� � = �1: forward
df(xi)

dx
u
fi+1 � fi

�x
(B.6)

with error O (�x)

� � = 0: centered

df(xi)

dx
u
fi+1 � fi�1

2�x
(B.7)

with error O ��x2�
� � = 1: backward

df(xi)

dx
u
fi � fi�1

�x
(B.8)

with error O (�x)

The choice of indices in discretisation determines not only the error of approximation, but also
the stability of the algorithm, as we will see later on.

The second derivative of f can also be expressed in a million ways. The choice of indices in
discretisation determine the accuracy and stability of the numerical method.

B.1.1 Straightforward approximations

With a straightforward approximation we mean that the approximation is just a a question of
choosing the indices of the discrete function. We will illustrate the e�ects of these choices by
numerical solution of the mass spring system.

We solve the di�erential equation of a undamped mass-spring system.

d2�

dt2
= �!2� (B.9)

With the initial conditions:

�(0) = �0
d�

dt
(0) = _�0 (B.10)

In order to be able to solve this numerically, by means of simple integration, we have to split the
equation B.9 into two equations of the �rst degree:
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d�

dt
= _�

d _�

dt
= �!2� (B.11)

with of course the same initial conditions.

We solve these equations with three di�erent numeric schedules; a so called explicit, implicit and
a partially implicit schedule.

We have two ordinary (but coupled) di�erential equations of the �rst degree, two unknowns (�
and _�) and two conditions (B.11). So we can solve it.

We have to discretise the two unknowns and our variable t. We use the index i which runs from
1 to N to indicate the pace in time:

�i = �(t = ti) 1 � i � N

_�i =
d�

dt
(t = ti) (B.12)

Three di�erent approximations to the second derivative of � are given below, with their in�uence
on the accuracy and stability of the solution.

Explicit schedule

The most natural way to insert our discretised system into the equations would be, what is called
the explicit schedule. We apply the 'forward' approximation twice:

�i+1 � �i
�t

= _�i

_�i+1 � _�i
�t

= �!2�i (B.13)

This schedule does not work, it is unstable. We will see why when we calculate the di�erence
between the exact and the discretised di�erential equations, with the help of Taylor series.

Accuracy and stability
First, we substitute the �rst equation of (B.13) into the other. We obtain:

�i+2 � 2�i+1 + �i
�t2

+ !2�i = 0 (B.14)

In fact it is not exactly equal to zero, because �i is not the exact solution to the problem. In order
to �nd the discrepancy we examine the Taylor expansion of the discrete solution. We develop the
individual terms in a Taylor series about (t = ti) up to order �t3:

�i+2 = �
���������
ti
+ 2�t

d�

dt

���������
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+ 2�t2
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dt2
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dt
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dt2
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1

6
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d3�

dt3

���������
ti
+O(�t4) (B.15)
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From this we can calculate the di�erence between the exact and the discrete second derivative:

�i+2 � 2�i+1 + �i
�t2

=
d2�

dt2

���������
ti
+�t

d3�

dt3

���������
ti
+O(�t2) (B.16)

where �i = �
���������
ti
, because we begin from a known value..

Substituting this into equation (B.14), using the original di�erential equation (B.9) to write the
second derivative as �!2�, we get:

(B:14) =
d2�

dt2
� !2�t

d�

dt
+ !2� +O(�t2) (B.17)

In which we recognize the di�erential equation of a 'negatively' damped oscillator (see �gure B.1).
This approximation introduces a oscillation source. The approximation of the undamped oscillator
is not accurate. The negative damping coe�cient means that the amplitude of oscillation always
will increase. No matter which �t or ! we choose, the oscillator will be unstable. We can show
this by another simple method, determining the stability of numeric approximations: the von
Neumann method.

Stability: von Neumann's method
We start from initial, known situation at t = t0, which we call �0. The method states that every

step forward in time introduces an error in the form of a complex factor z:

�n = zn�0 (B.18)

When this behaviour is substituted into a discrete approximation of the di�erential equation, we
can solve for the factor z. The method is said to be stable if kzk � 1. The module of z is called
the ampli�cation factor.

When we apply this on the explicit approximation, we get:

z2 � 2z + 1 = �!2�t2 (B.19)

For determination of stability we regard only the module of z.

We solve for z, which gives:

z = 1� i!�t (B.20)

of which the module is always greater than 1, whatever ! or �t might be. The explicit schedule
is unconditionally unstable.

Implicit schedule

Here we change the discretised equations slightly. To be precise: we change the indices of the right
member of both equations of (B.13). We apply the 'backward' or implicit approximation:

�i+1 � �i
�t

= _�i+1

_�i+1 � _�i
�t

= �!2�i+1 (B.21)
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When we substitute the �rst equation into the second one, we obtain:

�i+1 � 2�i + �i�1
�t2

+ !2�i+1 = 0 (B.22)

Not surprisingly, again this is not exactly correct. We express �i�1 in a Taylor series about (t = ti):

�i�1 = �
���������
ti
��t

d�

dt

���������
ti
+

1

2
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dt2

���������
ti
� 1

6
�t3

d3�

dt3

���������
ti
+O(�t4) (B.23)

If we use this, together with (B.15), to trace the error between the exact and discretised derivatives,
we see the term with �t (which appears in eq. (B.17)) disappear (in fact all odd-powered terms
disappear). When we take a larger number of terms in the Taylor development, we obtain:

�i+1 � 2�i + �i�1
�t2

=
d2�

dt2

���������
ti
+

1

12
�t2

@4�

@t4

���������
ti
+O(�t4) (B.24)

We substitute this into equation (B.22), and we write out the Taylor series for !2�i+1. Using (B.9)
again, this gives:

(B:22) =
@2�

@t2
+ !2�t

@�

@t
+ !2� +O(�t2) (B.25)

Notice the + sign in front of the second term in the right member. This schedule solves in fact
the di�erential equation of a damped oscillator (see �gure B.2).

Applying von Neumann's method in order to determine the stability, gives:�
1 + !2�t2

�
z2 � z + 1 = 0 (B.26)

which has solutions:

z =
1� i

p
3 + 4!2�t2

2 (1 + !2�t2)
(B.27)
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The squared norm of this complex number is:

jzj2 = 1

1 + !2�t2
(B.28)

Since !2�t2 is always positive, the implicit approximation is unconditionally stable, but it is
damped out.
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Figure B.2: The result of the implicit schedule.

Partly implicit schedule

In reference to the explicit schedule, we now only change the index of the right member of the
second equation in (B.13):

�i+1 � �i
�t

= _�i

_�i+1 � _�i
�t

= �!2�i+1 (B.29)

This gives the combined schedule:

�i+2 � 2�i+1 + �i
�t2

+ !2�i+1 = 0 (B.30)

Using the Taylor expansions again, we obtain the di�erential equation:

(B:30) =
@2�

@t2
+ !2

�
1 +

!2�t2

12

�
� +O(�t3) (B.31)

This schedule solves the di�erential equation of an oscillator with a slightly perturbed frequency
(in order �t2). If we also write out the perturbation of order �t3 we obtain the result:

(B:30) =
@2�

@t2
+
!4

40
�t3

@�

@t
+ !2

�
1 +

!2�t2

12

�
� +O(�t4) (B.32)
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Again, a damping term has appeared in the equation, but now in third order of �t.

The von Neumann method gives the equation:

z2 � 2z + 1 = �!2�t2z (B.33)

which has two roots:

z = 1� !2�t2

2
� !2�t2

2

p
!2�t2 � 4 (B.34)

there are three di�erent cases to be examined (note that !�t is positive):

� !�t < 2: both roots are complex. In this case the module is:

kzk = 1 (B.35)

and thus stable

� !�t = 2. In this case the module of the roots is:

kzk = ������1� !2�t2

2

������ = 1 (B.36)

again stable

� !�t > 2: both roots are real, they are:

z = 1� !2�t2

2
� !2�t2

2

p
!2�t2 � 4 (B.37)

the module of root '+' is smaller than 1 since
p
x2 � 4 < x for x > 2. But the root '-' is less

than -1 for !�t > 2, and thus unstable.

We conclude that this schedule is stable under assumption that !�t < 2. In �gure B.4 the e�ect
of choosing �t beyond the stability condition is shown, the solution is unstable.

A somewhat more complex and more general method of discretisation is the so-called Newmark's
method. This method is explained below. This method uses parameters which allow to choose the
accuracy of approximation. The advantage of this is that we can obtain very accurate and very
stable numerical solutions with it. The Newmark method is also described in [7, Ch7]
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B.1.2 The Newmark approximation

For the solution of the equation of movement, we calculate the state of the system at time tn+1 as
a function of the known state in the previous step tn. This state is the vector (�; _�)n. We develop
the new state of the system in terms of the previous, known state, by a Taylor series conform
equations (B.2) and (B.3) from appendix B. We can write this development in the following form:

_�n+1 = _�n +

tn+1Z
tn

��(�)d� (B.38)

�n+1 = �n +�t _�n +

tn+1Z
tn

(tn+1 � �)��(�)d� (B.39)

which is thus the exact solution. The normal straightforward explicit method in B.1.1 takes 0
for the two integrals and neglects a lot of information. Newmark's method has its signi�cance in
approximation of these two integrals, by writing out ��(�) in terms of the acceleration at time tn
and tn+1.

In order to do that, we develop ��n+1 in a Taylor series at time � in the interval [tn; tn+1]:

��n = ��(�) + �(3)(�) (tn � �) + �(4)(�)
(tn � �)

2

2
+ : : : (B.40)

��n+1 = ��(�) + �(3)(�) (tn+1 � �) + �(4)(�)
(tn+1 � �)

2

2
+ : : : (B.41)

We multiply these equations by (1� 
) and by 
, respectively. Adding the two gives for ��(�) the
formula:

��(�) = (1� 
)��n + 
��n+1 + �(3)(�) (� ��t
 � tn) +O
�
�t2�(4)

�
(B.42)

We repeat this, but now we multiply by (1� 2�) and by 2�, respectively:

��(�) = (1� 2�)��n + 2���n+1 + �(3)(�) (� � 2�t� � tn) +O
�
�t2�(4)

�
(B.43)
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Next, we substitute (B.42) in (B.38) and (B.43) in the equation for �n+1 (B.39). This gives for
the integrals:

tn+1Z
tn

��(�)d� = (1� 
)�t��n + 
�t��n+1 + r
 (B.44)

tn+1Z
tn

(tn+1 � �)��(�)d� =

�
1

2
� �

�
�t2��n + ��t2��n+1 + r� (B.45)

where the errors are as follows:

r
 =

�

 � 1

2

�
�t2�(3)(� 0) +O

�
�t3�(4)

�
(B.46)

r� =

�
� � 1

6

�
�t3�(3)(� 0) +O

�
�t4�(4)

�
(B.47)

with tn < � 0 < tn+1.

The constants 
 and � are parameters which are free to choose. As a function of these two
parameters we produce di�erent approximations of ��(�).

Substitution of (B.44) and (B.44) in the formulas (B.38) respectively (B.39), gives the approxima-
tions of Newmark's method:

_�n+1 = _�n + (1� 
)�t��n + 
�t�n+1 (B.48)

�n+1 = �n +�t _�n +

�
1

2
� �

�
�t2��n + ��t2��n+1 (B.49)

The solution of this system is not straightforward, since in the position and the velocity of the
equation above the acceleration is included implicitly (at time tn+1). We solve this system by a
prediction-correction method which is explained in chapter D.2.

B.2 Solving a system of linear equations

A very quick way of solving a system of linear equations is the method of factorization. We give
a set of linear equations, written in the form:

Af = b (B.50)

where A is a tridiagonal matrix N �N , f is a vector of unknowns and b is a given vector.

It is a recursive method of 'sweeping' the tridiagonal matrix. The system of equations can be
written in the form:

Ai;i�1fi�1 +Ai;ifi +Ai;i+1fi+1 = ci 1 � i � N � 1

f0 = F0 fN = FN (B.51)

the latter are known constants. More conveniently, we will denote the terms in the upper diagonal
with ui, the main diagonal with mi and the lower with li. Keeping the index of the current row,
this puts the equation in the form:

lifi�1 +mifi + uifi+1 = ci 1 � i � N � 1 (B.52)

For this system a recurrence relation exists:

fi = Xifi+1 + Yi i = 1; : : : ; N � 1 (B.53)
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The coe�cients Xi and Yi can be found by substituting (B.53), applied on i1, in equation (B.52)
and solve it for fi:

mifi = ci � uifi+1 � li (Xi�1fi + Yi�1) (B.54)

Putting this equation in the form of (B.53) we recognize the coe�cients:

Xi =
�ui

mi + liXi�1
Yi =

ci � liYi�1
mi + liXi�1

i = 1; : : : ; N � 1 (B.55)

The coe�cients X0 and Y0 can be determined as follows. We solve equation (B.52) with i = 1 for
f1, in the form of (B.53):

f1 = � u1
m1

f2 +
c1 � l1F0

m1
(B.56)

Comparing this to (B.55), with i = 1, we can identify:

X0 = 0 Y0 = F0 (B.57)

The method is applied by �rst calculating Xi and Yi for i = 1; : : : ; N � 1 with (B.55). Then we
take (B.53) to solve fi from N � 1 down to 1.

For further reading, [18] and [10] are interesting books on numerical methods.
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Appendix C

Stability of RNS-p(x) simulation

In this section we present an experimental study of the stability of the simulation programs for
steady channel and jet �ow.

The stability of the channel �ow simulation program is studied by varying the pace dx and dy
and regarding the results. The study is carried out on a speci�c part of the �ue channel, namely
the diverging part at the end of the channel. In the divergence the �ow separates from the wall
and causes back-�ow. This is an e�ect which provokes unwanted oscillations and divergence of the
solution.

For the nondimensionalised variable x, the equation of the channel wall is written as follows:

H = 1� �Rex for 0 � x � 1

2�Re

H =
1

2
+ ��Rex for x � 1

2�Re
(C.1)

Here the length of the channel L has the value 70=hReh, with h = 1mm because we regard only half
the channel. In the equation above is � the angle of convergence and � the ratio of divergence and
convergence. For the real �ue channel as depicted in �gure 2.1 these parameters are: � = 0:00357
and � = 35. In the study presented below, the factor � has been varied also.

C.0.1 Channel �ow

We will change the step-size of both variables for the case � = 10 (nothing special; just an
intermediate value), and see what happens. We will set the longitudinal step-size to dx = 0:001
and calculate the shear stress curve for di�erent dy displayed �gure C.1. From this �gure we can
see that the curves calculated for values of dy up to one hundredth are well on top of each other.
For higher values instabilities occur.

Now, we will vary dx for a given value of dy, which is set to 0:005. The results are shown in �gure
C.2. Here the calculations are consistent for dx . 0:001. It is clear that the critical values of dx
and dy, above which instabilities occur, depend on �. The greater this parameter, the more points
we need in calculation.

This is illustrated by �gure C.3, where for each � we used a rough grid of calculation and a grid
with a hundred times as many points (ten times in both directions). For � = 2 both wall shear
stress curves are practically the same. But for larger � this similarity diminishes.

Now, we shall try to �nd the roughest grid which allows us to calculate the wall shear stress curve
in the diverging part of the actual �ue channel (� = 35). In �gure C.4 we display this search. We
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Figure C.1: The wall shear stress as a function of x, for di�erent steps in transversal direction.
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Figure C.2: The wall shear stress as a function of x, for di�erent steps in longitudinal direction.

start from a very �ne grid and �rst increase the step-size dx. We see that for dx � 0:0002 the
curves are very close to one another, so we take dx = 0:0002. Now, we increase dy for �xed dx and
we can see the wall shear stress function begins to oscillate when dy = 0:02, the solution becomes
divergent.

Taking dx = 0:0002 and dy = 0:02 we have approximately the roughest grid in which we can
calculate the shear stress curve smoothly. For the Reynolds number chosen (Re = 853:2) the �ue
channel has a nondimensionalised length of L ' 1:7. This means that we have to have 850 points
in longitudinal direction. Usually in such a case the best thing to do in order to decrease the time
needed for calculation is to separate the di�erent parts of the channel (the converging and the
diverging part). For the converging section we can apply a rougher grid, because the slower things
change the less points we have to use (see �gure C.3). Nevertheless, the program which solves the
reduced Navier Stokes equations is fast enough to use the �nest needed grid throughout the whole
channel.

In �gure C.5 the wall shear stress curve, calculated with the new grid, is displayed. The curve is
smooth now, and we can determine the calculated point of separation of both methods. We can
do this using the output �les of the programs, interpolating the point of separation between the
calculated points in front and behind. This gives x� = 70:3mm for method 1. and x� = 70:6mm
for method 2..

C.0.2 Plane jet

The stability of the jet �ow simulation has been studied by varying the step-sizes and numbers
of points in the domain and observe its in�uence on several quantities. In section 2.2.1 it is
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shown that in the model of jet �ow the momentum �ux is conserved and also that the quantity
u(du=dx)�1 decreases as �3x. We will follow these quantities in our search.

For all the calculations in this section, we started with arbitrary velocity pro�les coming from the
channel simulation. The pro�les are shown in �gure C.6.

We begin with an investigation of the transverse domain. By varying the number of points ny,
keeping the rest constant (dx = 0:01, nx = 200 and dy = 0:1). In �gure C.7 the in�uence
of variation of ny on the momentum �ux and the velocity pro�les is shown. Looking at the
longitudinal velocity pro�les in that �gure we can say that if the transverse domain is smaller
than the pro�le itself, the solution is no longer accurate.

Next take ny = 250, dy = 0:1 and increase the step-size dx. In �gure C.8 we can see its in�uence
on the momentum �ux and the quantity u(du=dx)�1.

From these �gures it can be seen that the momentum �ux becomes less accurate and it even
oscillates for dx = 0:1. The quantity u(du=dx)�1 is even more sensitive for dx. The value
oscillates about the correct solution for dx = 0:05, and becomes divergent for larger dx.

Let's see what increasing the transverse domain for the worst case above (dx = 0:1) will change. In
�gure C.9 again the momentum �ux and u(du=dx)�1 are shown. From that we can see a taking a
twice as big transverse domain has improved the results downstream, but for small x the solution
is not very accurate. The upstream parts of the two curves are the same, independent of the choice
of ny, whereas further downstream they di�er. In �gure C.10 the longitudinal velocity pro�le of
these two cases are shown.
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Figure C.5: The wall shear stress as a function of x�. The curve 'RNS' is calculated with the new
grid. In the right �gure we zoomed in on the separation point.
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Figure C.6: The longitudinal (left) and transverse (right) velocity pro�les, taken as entry for the
jet simulation

At y = 0 we observe oscillations. Here the e�ect of taking di�erent transverse domains is very
clear. Forcing the pro�le to �t in that domain causes the solution to get less accurate.
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Figure C.7: The momentum �ux (left) as a function of x and the pro�le u(y) at x = 2 for di�erent
ny.
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Appendix D

Solution of a membrane model

In this chapter we present the general model of the membrane motion. The model we use in this
report for the vocal folds is a simple, particular case of this model. In the �rst section we present
the equation of motion.

In section D.2 we present the numerical solution of this problem: the Newmark method. This
method has a special approximation of the equation of motion and has the advantage that it is
unconditionally stable.

D.1 The membrane model

For the elastic part of the wall we apply a membrane. Since we only regard the �uid in 2 dimensions,
this membrane will be a one dimensional membrane. This membrane has a mass density of m,
a longitudinal tension of S and it is suspended in a rigid frame with springs of strength k and
dampers with damping constant c (see �gure D.1). We shall assume small deformations only in
vertical direction. The displacement of the membrane � is a function of the longitudinal coordinate

y
x

���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������

�0
�

Figure D.1: The model for the motion of the membrane.

x, and is de�ned in the positive y direction.

Writing the mechanical equilibrium gives:

m
@2

@t2
�(t; x) + b

@

@t
�(t; x) + k�(t; x)� S

@2

@x2
�(t; x) = F (t; x) (D.1)

where F is an external force applied on the membrane in the positive y direction.

In the model of the membrane we do not nondimensionalise the terms, because we like to have
the liberty to choose its mechanical behaviour at will, i.e. choose the parameters m, b, k and S.
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The membrane is suspended between its two ends at x = 0 and x = Lm Thus the boundary
conditions of this problem are:

�(t; 0) = �(t; Lm) = 0 (D.2)

which represent two �xed points in space. We permit the membrane to turn about these points,
for this instant.

Since we have second order di�erential equation with respect to time as well, we need two initial
conditions:

�(0; x) = �0 (D.3)

@

@t
�(0; x) = _�0 (D.4)

We permit a lot of liberty to decide the boundary and initial conditions.

D.1.1 Solutions

The solutions are as well known as its problem. We will highlight some of them for simple
veri�cation with the simulation. In all cases we will assume the absence of external forces.

Free membrane: b = k = 0

Here we will sow the solution of the di�erential equation of a membrane which has no springs nor
dampers attached to it. The equation of motion is the wave equation:

m
@2

@t2
�(t; x) = S

@2

@x2
�(t; x) (D.5)

with the boundary and initial conditions conform the previous section. The general solution is:

�(t; x) = Aei(kx�!t) +Bei(kx+!t) (D.6)

where S=m = k2=!2. Taking the boundary condition into account, we obtain the solution:

�(t; x) = �0 sin(knx)e
i!nt+� (D.7)

with kn = n�=Lm and ! related to it conform the expression above, the phase factor � is deter-
mined by the initial conditions.

In �gureD.2 an example is shown. It displays the movement of an elastic membrane, held between
two �xed points at x = 0 and x = 10. We took m = S = 1 and half a period and a full period of
a sine function as initial condition. The former case shows an oscillation of the membrane with
! = �=10, and oscillates twice as fast.

Chain of uncoupled springs

The other solution we examine is the simple mass-spring equation. In this case we assume absence
of longitudinal tension. We leave out the damping as well. In absence of the tension there is no
coupling in longitudinal direction, so each point moves separately according to the equation of
mechanical equilibrium:

m
@2

@t2
�(t) + k�(t) = 0 (D.8)
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Figure D.2: The displacement of the membrane as a function of t and x, for two di�erent initial
conditions: half a period (left) and a whole period between the �xed ends. Here m = S = 1 is
chosen.

with initial condition (D.3). The solutions of this equation is:

�(t) = �0 cos(!t) +
_�0
!

sin(!t) (D.9)

where ! =
p
k=m, the famous harmonic oscillator.

Now we add the damping term b. The solution is then.

�(t) = �0 exp

 
�b�pb2 � 4km

2m
t

!
(D.10)

the damped mass-spring system. The critical damping factor is the one for which the exponent
passes from real to complex, has value b = 2

p
mk.

In �gure D.3 an example of a non-damped an critically damped oscillator is given.
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Figure D.3: The displacement of the undamped and critically damped mass spring system. For
both cases m = k = 1 is chosen.

D.2 Numerical method

D.2.1 Discretisation

simple: �nj = �(t = tn; x = xj) which we solve for every pace in time. For the discretisation of
the equation of mechanical equilibrium, we have chosen the so-called Newmark's method. This
method is a one step integration method, like the other methods. The method is generalised
with the aid of parameters, which permits to 'place' the approximation of the derivatives. It is
explained brie�y in appendix B.
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D.2.2 Newmark's method

For solution of the equation of motion (D.1) we substitute �(x) in Newmark's discretisation
method. The second derivative with respect to x will be centered in j:

@2

@x2
eta(t = tn; x)!

�nj+1 � 2�nj + �nj�1
�x2

(D.11)

When we put the x dependence into vector notation, the equation of motion writes:

M�� +C_� +K� S� = F (D.12)

where all coe�cients are written as matrices. The matrices M, C and K are diagonal matrices
containing respectively the mass density, the damping coe�cient and the spring constant on the
diagonals. The matrix S is a tridiagonal matrix representing (D.11), with �2S=�x2 on the
principal diagonal and S=�x2 on the two diagonals just above and below the principal.

D.2.3 Solution

As explained in appendix B the Newmark approximations of the displacement and the velocity
can be written as:

_�n+1 = _�n + (1� 
)�t��n + 
�t��n+1 (D.13)

�n+1 = �n +�t _�n +

�
1

2
� �

�
�t2��n + ��t2��n+1 (D.14)

Substituting these approximations into the equation of motion(D.12), and writing this out at the
instant t = tn+1: �

M+ 
�tC+ ��t2 (K� S)� ��n+1 =
fn+1 �C ( _�n + (1� 
)�t��n)� (K� S)

�
�n +�t _�n +

�
1

2
� �

�
�t2��n

�
(D.15)

Which is the convenient form with all known terms on the right hand side, all unknown on the
left hand side. Except for the external force. This force is implicitly de�ned and has to be known
at fore-hand.

The solution of Newmark's method is somewhat di�erent from other one-step integration methods,
because of the added corrective terms in the approximations of the displacement and the velocity.
A method of prediction and correction will be used which will be explained in the following.

Departing from a known state of the system at time tn the solution goes as follows.

prediction
First we predict the values of the displacement and velocity of the membrane using the state at

instant tn:

_�n+1� = _�n + (1� 
)�t��n (D.16)

�n+1� = �n +�t _�n +

�
1

2
� �

�
�t2��n (D.17)

calculation of ��n+1

With the estimated displacement and velocity, we can calculate the acceleration at instant tn+1,
using equation (D.15). This equation is of the form which we can solve by inverting the matrix
appearing in front of ��n+1 by the method of factorization.
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correction
After that we correct the displacement and the velocity using the the acceleration term just

calculated:

_�n+1 = _�n+1� + 
�t��n+1 (D.18)

�n+1 = �n+1� + ��t2��n+1 (D.19)

Once we have corrected, we can advance in time. The �owchart explaining this method graphically,
is shown in �gure E.3

To see how well this method works we investigate a bit the accuracy and stability of Newmark's
method.

D.2.4 Accuracy

In [7, Ch7] an elaborate discussion of the accuracy and stability is given. We will not repeat this
here.

We give a rather qualitative derivation of the error in the periodicity made in case the parameters
as chosen 
 = 0:5 and � = 0:25. With the results of the harmonic oscillator we can derive this
error of periodicity. If the harmonic oscillator with period T is solved, the solution of Newmark's
method has period T +�T . The frequency has the relation ! = 2�=T with the period. So, the
solution will be an oscillation with frequency

!c =
2�

T

�
1

1 +�T

�
(D.20)

where the index c indicates it is the solution of the calculation. The error gives in �rst order
approximation:

!c = !

�
1� �T

T

�
(D.21)

where ! is the exact frequency (the one we should have). The solution is thus of the form:

�(t) = cos (!ct) = cos

�
!t

�
1� �T

T

��
(D.22)

We will visualize the error in order to verify. We subtract the analytical solution from the numeric
solution:

cos(!ct)� cos(!t) = cos

�
!t� �T

T
!t

�
� cos(!t) (D.23)

In order to bring the error forward we apply trigonometric rules for cosine:

cos

�
a� b

2

�
= cos

a

2
cos

b

2
+ sin

a

2
sin

b

2
(D.24)

cos

�
a+ b

2

�
= cos

a

2
cos

b

2
� sin

a

2
sin

b

2
(D.25)

Subtracting the latter from the former gives

cos

�
a� b

2

�
� cos

�
a+ b

2

�
= 2 sin

a

2
sin

b

2
(D.26)
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In reference to (D.23) we identify

a = 2!t

�
1� �T

T

�
b =

�T

T
!t (D.27)

Now, the di�erence between the analytical and numerical solutions can be written as

2 sin

�
2��T=T

2
!t

�
sin

�
�T!t

2T

�
(D.28)

the �rst sine oscillates very rapidly, whereas the second varies slowly. The error in periodicity
produces an envelope with amplitude 2 of the rapidly varying function. The frequency of the
envelope is

�T!

2T
=
!3�t2

24
(D.29)

The error is plotted in �gure D.4 and D.5. From the �rst two �gures it can be seen that for higher
! the frequency of the envelope function is less accurately represented by formula (D.29), because
we neglected the higher order terms in the determination of this frequency. Those terms become
more important for higher frequencies.
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solution Newmark
2sin(w3dt2/24*t)
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Figure D.4: The error in periodicity from the Newmark method, solving the equation (D.8) with
m = k = 1 (left) and k = 4 (right), both have �t = 0:25. The frequency of the envelope function
represents the error conform (D.28). Neglect of higher order terms in the error causes the mis�t
in the right �gure, where those terms are more important while the frequency is greater.

By decreasing the time step-size, the error is more precisely determined. And the error in period-
icity has decreased with factor 4 (� �t2).
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Figure D.5: The error in the periodicity conform (D.28) for the case m = 1, k = 4, for �t = 0:125.
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D.2.5 Stability

On the stability of the damped and undamped mass-spring system an elaborate discussion can be
found in [7]. As a function of the two parameters 
 and � the accuracy and stability is studied
by the method of von Neumann. The conclusion is that for the case 
 = 1=2 and � = 1=4 the
method is unconditionally stable. There is, however, an error in the periodicity, which is derived
in the previous section:

�T

T
=
!2�t2

12
+O ��t3� (D.30)

where T is the period of oscillation. Since the whole numeric approximation formulas contain
a lot of terms, a thorough analytical study of stability will be rather complicated. In appendix
B.1.2 we discuss the error in the periodicity in the solution via Newmark's method applied on the
mass-spring system.
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Appendix E

Flowcharts

In this section the �owcharts of the steady channel �ow simulation, the steady jet simulation and
the Newmark method for the membrane simulation are presented.
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Figure E.1: The �owchart of the steady channel �ow simulation.
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Figure E.2: The �owchart of the steady jet �ow simulation.
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Figure E.3: The �owchart of the Newmark method for simulation of the membrane.
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