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Chapter 1

Introduction

During the months september, october, november and december of the year 2000
I have done a traineeship at the University of Pierre et Marie Curie in Paris. The
background of the traineeship is how to simulate blood ow trough arteries. This
could be very usefull in the future in hospitals. For example, specialists could pre-
dict if a certain shape of an artery could cause a stenosis and do something about
it before people really get the stenosis.
At the university in Paris a code has been developed by P-Y Lagr�ee and Lorthois
[10] and Koen Goorman [7] for liquid, incompressible ow through tubes, using the
Reduced Navier-Stokes equations. In this method the Navier-Stokes equations are
simpli�ed using the boundary layer theory. This results in the Reduced Navier-
Stokes equations which are more simple to solve numerically than the full Navier-
Stokes equations. However they still are approximations.
The RuG, the University of Groningen, has developed during the last years a code,
see D.J. Kort [8] and E. Loots [12], which solves the complete Navier-Stokes equa-
tions in very much di�erent cases. For example, almost all geometries can be used
and there is the possibility for in- and outow cells as well as liquid sloshing in a
cube. With this code blood ow can also be simulated by making the right geometry
and use in- and outow cells. Although this code does not make real approximations
it might not be very usefull in the near future because it takes much more time to
solve the full Navier-Stokes equations.
Further, these two di�erent methods will be called RNS, Reduced Navier-Stokes,
and NS, Navier-Stokes. The goal of this traineeship is to compare these two codes
in di�erent cases. Also some practical problems are simulated.
In chapter 2 the mathematical model as well as the three used numerical models are
explained in four sections. In chapter 3 a lot of simulations are done for straight 2D
tubes with or without stenoses in case of a constant inow velocity or a pulsatile
one. Chapter 4 is all about the BIACORE 2000, a machine in the hospital that sim-
ulates blood ow and mesures quantaties of chemical reactions at the wall. Finally,
in chapter 5 simulations are made for the more relistic 3D geometries with stenoses.
Chapter 6 contains the overall conclusions.
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Chapter 2

Modeling

In this chapter we �rst explain the mathematical model of liquid ow with his
boundary conditions that are necessary in the of blood ow through tubes. After
that, in section 2.2, 2.3 and 2.4, the three used numerical models are explained.

2.1 Mathematical model

Blood ow through arteries of course is a 3D ow. So the 3D Navier Stokes equations
hold. However a straight blood vessel is in �rst approximation a cylinder. So a axi
symmetrical form of these equations could be used. In the examples of section 3 a 2D
code is used to solve the equations. The results can be interpreted as the mechanics
in the crosssection of the artery. For any 2D ow domain �lled with a Newtonian
uid (like blood in �rst approximations) the unsteady incompressible Navier-Stokes
equations hold. These equations are given here below.

� First we have the equation expressing the conservation of mass in each volume:

@u

@x
+
@v

@y
= 0

Here u denotes the velocity in the x-direction and v the velocity in the y-
direction.

� Second we have the equations expressing the conservation of momentum in x-,
and y-direction, respectively:

@u

@t
+ u

@u

@x
+ v

@u

@y
= �@p

@x
+ �(

@2u

@x2
+
@2u

@y2
) + Fx

@v

@t
+ u

@v

@x
+ v

@v

@y
= �@p

@y
+ �(

@2v

@x2
+
@2v

@y2
) + Fy

In these equations, t denotes the time, p the pressure scaled by the density,
� the kinematic viscosity and F = (Fx; Fy)

T the external body force. Our
simulation does not include an external body force. Therefore it will be omitted
here.
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With u = (u; v)T these equations can also be denoted as:

r � u = 0 (2.1)

@u

@t
+ (u � r)u = �rp+ �(r � r)u (2.2)

Of course these equations need boundary conditions. The blood cannot ow through
the wall and due to its viscosity it sticks to the wall. This yields at the wall:

u = 0 and v = 0

The pulsatile ow of the blood is simulated at the inlet of the artery by pushing it in.
The blood volume to be pushed in, can be controlled by the area of the inow cross
section and the blood velocity at the inlet. Therefore we have the inow condition:

u(x; y; t) = uin(t)

At the outlet we prescribe the uid to be unidirectional and the pressure to be equal
to the pressure outside of the uid :

@u

@n
= 0 and p = p0

Here n = (nx; ny) is the outward pointing normal on the outow boundary.

Other conditions on the inow and outow are also possible. The inow could be
described fully developed and at the outlet the condition �pn+ 1

Re
@u
@n = 0 could be

imposed. However, the conditions imposed have been proved very useful in other
simulations and are already implemented.
On the other hand thee conditions cause to need an extra long tube. The developing
of the ow in the direction of the wall needs time and length. At the start of the
simulated artery, it has to be fully developed and not only a function of time . The
outow also has a small e�ect on the ow near the end of the tube causing to need
for an extra bit of tube at the end of the simulated artery.

2.2 Numerical model

For the computations of the blood ow the computational domain is decomposed
into �ve di�erent kind of cells: boundary cells, exterior cells, inow cells and outow
cells. The exterior cells play no role in the discretization process, so they will not
be mentioned here again.
The grid used is totally staggered. All the velocities are placed in the middle of the
lateral faces of the cells and the pressures are placed in the centres of the cells. Now
the Navier- Stokes equations have to be discretized. The projection method is used
here. This is an expicit method using the abrevation:

Rn = �r(ununT ) + �r � run
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Now we split equation 2.2, the conservation of momentum, into two pieces using u�

and discretize them in time using forward Euler:

u� � un
Æt

= Rn

un+1 � u�

Æt
= �rpn+1

When we add these two equations, the u� vanishes and the result are the time
discretized Navier-Stokes equations: (Together with the equation of mass of course)

un+1 � un

Æt
= Rn �rpn+1 (2.3)

r � un+1 = 0 (2.4)

Here Æt is the time step and n and n+ 1 denote the old and the new time level.

We have to discretize in space too. Because we can not use any boundary con-
dition yet, this discretization can only be made for ow cells. First the discrete
versions of the divergence and the gradient operators have to be de�ned. The diver-
gence operator r becomes Dh and the gradient operator grad becomes Gh. In both
cases h denotes the spatial step. Because we only discretize in ow cells, this has
to be expressed in the divergence operator as well: Dh = DF

h +DB
h . The F repre-

sents here the inner ow domain and the B the boundary. Because of the unknown
boundary velocities the complete discretization becomes

DF
h u

n+1 +DB
h u

n+1 = 0

un+1 = un + ÆtRn
h � ÆtGhp

n+1

By substitution of the second into the �rst equation, the pressure Poisson equation
is obtained:

DF
hGhp

n+1 = DF
h (
un

Æt
+Rn

h) +DB
h

un

Æt
(2.5)

This equation is solved, with the SOR method, and we can obtain the velocity �eld
by substituting the pressure in equation 2.3.
Finally we have to look at the boundary. In boundary cells the pressure is not
de�ned, so we can not use the Navier-Stokes equations. Therefore the velocities at
the boundary are set to satisfy u= 0 at the wall. This is done by interpolation and
the use of mirror points.
This method is stable if:

CFL =
UmaxÆt

h
< 1 and �

Æt

Æx2
<

1

2
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2.3 Reduced Navier-Stokes

Because this report involves the comparison of a full Navier-Stokes code and a Re-
duced Navier-stokes code, the ideas of the Reduced Navier-Stokes equations will be
explained here.
To derive the RNS equations from the NS equations �rst the variable will be made
dimensionless. The x, y, u, v, t and p will be scaled using parameters from the
system. For the y we use the height of the tube so that the dimensionless variable
will range from 0 to 1. For the u, which is the velocity in x-direction we use a scale
of the input velocity U0. So this recults in:

x = L�x; y = H �y; u = U0�u; v = V �v; p = P �p; t = T �t

Here variable with a bar denotes the dimensionless variables. The other scales will
be derived later.

After substituting these new variables into the conservation of mass we can conclude
that we have to choose U0

L = V
H . After substituting these variables in the momentum

equations and stating that the viscous forces must be of the same strength as the

convective forces, we see that �U0

H2 =
U2

0

L . This leads to the scale for x:

L =
U0H

2

�
= HReH

Because we only consider ReH � 1 the scale for x is much larger than the scale for
y and thus the @2u

@x2
vanishes from the equation of momentum. Also @p

@y = 0 because

U0 � V . For the scale of the pressure we choose P = �U2
0 and for T = L

U0
.

When all this is applied to the Navier stokes equations and they are rewritten the
following equations remain, called the Reduced Navier Stokes equations:

@u

@x
+
@v

@y
= 0 (2.6)

@u

@t
+ u

@u

@x
+ v

@u

@y
= �@p

@x
+
@2u

@y2
(2.7)

@p

@y
= 0 (2.8)

At the wall we use the same boundary conditions that are used in the Navier Stokes
code:

u = v = 0

At the entrance we have a �xed pressure and the velocity is given:

u(x = 0; y; t) = uin(t) and p = 0

These equations are being solved by a code using a �nite di�erence method. In our
examples, unless otherwise noted, U0 will be 1 and the Reynolds number (ReH) will
be 100. An analytic solution using this idea is given in Appendix A.
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2.4 Thwaites Method

In this section a short explanation of the Thwaites method will be given, see also
Comolet [6] , Schlichting [15] and Veldman [17]. This method is derived from an
integral form of the stationary Boundary Layer equations called the 'Von K�arm�an'
equation:

@Æ2
@x

+
Æ2(2 +H)

U

@U

@x
=

Cf

2

whereH = Æ1
Æ2
and Cf the wall shear stress coeÆcient. The Æ1 and Æ2 are abreviations

for:

Æ1 =

Z 1

0
(1� u

U
)dy

Æ2 =

Z 1

0

u

U
(1� u

U
)dy

In the boundary layer the assumption is made that the u varies from 0 at the wall to
U at the border of the boundary layer and the outer uid which ows with velocity
U . So u = Uf(yÆ ) in the boundary layer. The equations can be rewritten now using

Y =
Æ22
�
; T =

��0Æ2
�U

; � = �Æ
2
2

�

dU

dx

to:

UY 0 = 2T � 2�(H + 2)

Because T and H are both function of � we can rewrite the equation as:

Y 0 =
F (�)

U
(2.9)

It happens to be that F (�) is nearly a linear function of �. The second equation
that is solved is the equation of ux conservation, i.e. the product of the velocity in
the outer uid and the width of that outer region remains constant. So this results
in:

U(h1 � 2Æ1) = cst (2.10)

In the used code the equations 2.9 and 2.10 are solved. In 2.10 the constant is chosen
equal to 1.
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Chapter 3

Numerical Simulation of 2D

ows

In this chapter we �rst look at an simple example of ow through a straight artery
without stenosis. After that we will simulate a stenotic artery with pulsatile inow.
In section 3.3 a comparisation is made with the Thwaites' method of C. Villain.
After that we take again the �rst stenotic example but with realistic dimensions!
In section 3.5 simulation of ow through an aneurysm, which is the inverse of an
stenosis, is made. Section 3.6 discusses the non-axisymmetric stenoses and 3.7 an
bifurcation with or without stenosis.

3.1 A simple unsteady example

The �rst simple example we used was not realistic in the case of an artery of a human
being, but it was more to validate the codes. There are two stationary parallel planes
at height h and �h. In our example we used h = 1cm. We used the inow condition:
u = 1 cms and v = 0 at the entrance. It is known that this inow condition will result,
after a long enough length of the planes and a long enough time, in a streampro�le
that can analytically be described by the (2D-)Poiseuille ow. The velocity between
the plates is then given by

u(y) =
1

2�

dp

dx
(y2 � h2) (3.1)

Here � denotes the dynamic viscosity. Note that this equation denotes a parabolic
velocity pro�le. In �gure 3.1 the velocity in the middle of the tube, i.e. y = 0, is
plotted against the length of the tube at four di�erent times. Notice that it takes
time to fully develop the Poiseuille ow. After about 20 seconds, this pro�le does
not change anymore and the ow is fully Poiseuille at 10 cm from the beginning.
The same is plotted in �gure 3.2 but this is a combined plot with the NS results as
well as the RNS results. The RNS method is quite faster then the NS method: RNS
calculates this uid with 800 points in x-direction and 500 points in y-direction, that
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t = 1
t = 5

t = 10
t = 20

Figure 3.1: At di�erent times, the ve-
locity in the middle of the tube, i.e.
y = 0, is plotted against the length
of the tube for the Navier Stokes code.
(Re=100) x in cm

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-10 -5 0 5 10

t = 1,  NS
t = 1, RNS
t = 5,  NS

t = 5, RNS
t = 10,  NS

t = 10, RNS

Figure 3.2: At di�erent times, the ve-
locity in the middle of the artery, i.e.
y = 0, is plotted against the length
of the tube. For the NS and the RNS
code. The scales for the x and t here
is xNS = 100xRNS + 5 and tNS =
100tRNS . (Re=100) x in cm

makes 400.000 points, in approximately 50 minutes. The NS method uses a grid of
200 by 50 points, so only 10.000 points, but calcutes about 12 minutes. In the �rst
steps of the calculation Como takes a lot time to iterate the pressure but after the
stationary ow pro�le is achieved it goes quite quick because Como iterates until
a certain precision is achieved. Anyhow, the RNS is visible a lot quicker than NS if
you take into account that RNS uses 40 times as much points!
In �gure 3.3 the pressure is plotted in the middle of the tube from the NS results,

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.05 0.1 0.15 0.2

NS
RNS

Analytic (linear) solution

Figure 3.3: Comparision of the pres-
sure as a function of the length of the
tube at y = 0. (Re=100)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

RNS
NS

Analytic solution (parabolic)

Figure 3.4: Velocity from the middle of
the tube to the wall at the end of the
tube. (Re=100)

the RNS results as well as the analitically solution which is derived from the dp
dx in
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the Poiseuille stream pro�le. The volume ow can be written as follows

Q =

Z h

�h
u(y)dy =

1

2�

dp

dx

2

3
h3

and must be equal to U0 � 2h. This leads to the following expression for dp
dx :

dp

dx
=

6�U0

h2

In �gure 3.4 the velocity as function of the y at the end of the tube is plotted. Here
are also the NS, the RNS and the analytically solution plotted. From the picture it is
obvious that both methods almost have the same parabolic pro�le as the analytical
solution 3.1.
These four examples were made with Reh = 100. In �gure 3.5 the �nal velocities
as function of the tube length are plotted again for di�erent Reynolds numbers as
well as the dimensionless RNS result. We observe that when the Reynolds number
increases, the NS method tends to RNS.

1

1.2

1.4

1.6

1.8

2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Re = 28
Re = 100
Re = 200

Re = 1000
RNS solution

Figure 3.5: The stationary velocities at the middle of the tube, i.e. y = 0 are plotted
against the length of the tube for di�erent Reynolds numbers. The longitudinal scale
used here is the RNS scale. (dimensionless)

3.2 An unsteady pulsatile example

In this section the �rst of the unsteady examples in a artery with a stenosis will be
discussed. Here as in all examples the artery is still a sti� tube. This stenosis has
the shape of a cosinus that 'lies' on the wall, so its minimum in the lower wall is at
the height of the wall as is its maximum at the higher wall. This is shown in �gure
3.6. Of course the height and the length of the stenosis can be changed manualy.
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The stenosis used in the picture is twice as high as the one used in the example to
make its shape better visible.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.5

0

0.5
Shape of the artery with stenose

Figure 3.6: Artery with a stenosis twice as large as used.

We used an instationairy inow condition:

u(x; y; t) = 0:25 cos(t) + 0:75

This inow condition is independent of x and y but only of t. The maximum value,
at t = k � 2�; k 2 N, is 1 and the minimum value at t = � + k � 2�; k 2 N is
0.5. This can be seen in �gures 3.7, 3.8, 3.9 and 3.10 where the velocity in the
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0.8

1

1.2

1.4

1.6

1.8
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Figure 3.7: The velocity in the middle
at t = 5�

2 . Dimensionless scales.
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Figure 3.8: The velocity in the middle
at t = 3�. Dimensionless scales.
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Figure 3.9: The velocity in the middle
at t = 7�

2 . Dimensionless scales.
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Figure 3.10: The velocity in the middle
at t = 4�. Dimensionless scales.
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middle of the tube is plotted against the length of the tube at four di�erent times:
t = 5�

2 ; t = 3�; t = 7�
2 and t = 4� respectively. So these are the times average value

with negative slope, the minimum value, the average value with positive slope and
the maximum value respectively. It can be seen that these value for the velocity
occur at the beginning of the tube, but because the inow is independent y, the
velocity in the middle of the tube immediately increases as a result of the boundary
condition at the walls. This was already seen in �gure 3.1.
It is clear that the velocities of the two methods almost agree in all pictures. This is
not the case for the pressure which can be seen in �gures 3.11, 3.12, 3.13 and 3.14.
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0

1
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0 0.02 0.04 0.06 0.08 0.1
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Figure 3.11: The pressure in the middle
at t = 5�

2 . Dimensionless scales.
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Figure 3.12: The pressure in the middle
at t = 3�. Dimensionless scales.
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Figure 3.13: The pressure in the middle
at t = 7�

2 . Dimensionless scales.
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Figure 3.14: The pressure in the middle
at t = 4�. Dimensionless scales.

3.3 A comparisation with Thwaites' method

In this section the comparisation between NS, RNS and Thwaites method is dicussed,
see 2.4. C. Villain made a code that solves the Boundary Layer equations using
Thwaites' method. There is another geometry used, shown in �gure 3.15.
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Figure 3.15: The used geometry.(dimensions in cm)

There are two simulations used. First we simulated a constant inow with inow
velocity u = 350 cms . The results can be seen in �gure 3.16.

−1 −0.5 0 0.5 1 1.5 2

400

500

600

700

800

x, in cm

U
, i

n 
cm

/s

NS      
RNS     
Thwaites

−1 −0.5 0 0.5 1 1.5 2
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

5

x, in cm

p,
 in

 N
/c

m
2

NS      
RNS     
Thwaites

Figure 3.16: The velocity on top and the pressure at the bottom for the three
methods. (Re=583)
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Because h = 0:5 cm and � = 0:152 cm
2

s In this plot, as well as in the plot for unsteady
inow, the Thwaites code stops far before the stenosis is ended because it can not
go further than the separation point. After this the method does not work well any
more because the U is prescribed instead of Æ1. In �gure 3.17 and 3.18 we used an
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Figure 3.17: The velocity on top and
the pressure at the bottom for the
three methods at minimal inow veloc-
ity. (Re=583)
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Figure 3.18: The velocity on top and
the pressure at the bottom for the three
methods at maximal inow velocity.
(Re=583)

unsteady inow of the form:

uin = 350
cos(100�t) + 1

2

To improve the NS computation we have to increase the tube to avoid negative
e�ects of the outow boundary conditions. This because the outow condition of
the NS method is a bit di�erent from the others. The frequency is chosen to be very
small because in this case it is sure that even the NS method will give fast results.

3.4 Realistic dimensions

From Siegel [16], some realistic data of how a blood vessel looks like and what kind
of stenoses are possible in it were used. The stenosis pictured in �gure 3.6 is of
the same form as the writers of the article used to approximate a real stenosis.
However, the actual values of the distances are di�erent. They looked at short and
long stenoses, respectively with length of 6 and 12 times the radius of the artery.
For both stenoses they studied 50, 75 and 90% stenosis. So that is more than in
example 3.2, where 0:15

0:5 = 30% stenosis is used. The artery in this case is also much
narrower, the radius is only 0.2 cm., and the inow much larger. They used an
inow of 100 ml

min .
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Figure 3.19: The velocity in the middle
in case of a long stenosis. x in cm.
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Figure 3.20: The velocity in the middle
in case of a short stenosis. x in cm.
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Figure 3.21: The pressure in the middle
in case of a long stenosis. x in cm.
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Figure 3.22: The pressure in the middle
in case of a short stenosis. x in cm.
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Figure 3.23: The wall shear stress at
the lower boundary in case of a long
stenosis. Note the bad representation
as a result of the discretization. x in
cm.
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Figure 3.24: The wall shear stress at
the lower boundary in case of a short
stenosis. Note the bad representation
as a result of the discretization. x in
cm.
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3.4.1 Example with constant inow

First we simulate this by using the constant inow velocity of 100 ml
min . In this case

that corresponds with uin =
100=60
0:22� � 13:269 cmsec . So Reh = 75.

In the �gures 3.19 and 3.20 the velocity and in �gures 3.21 and 3.22 the pressure
are plotted at the middle of the artery. The �rst plot is of a long stenosis and the
second of a short stenosis. In both cases the stenoses centers are at x = 0 and a
50% stenosis is used.
Further there are also made two plots of the wall shear stress (�gures 3.23 and 3.24)
in order to compare them with the plots made by the author. The shear stresses at
to lower are written into a �le. Actually, for each x, du

dy at the wall is written is this
�le.
Como �rst checks whether a cell is a boundary cell or not and if it is neighbour
'above' him is a uid cell. In this case he calculates the quotient of the velocity just
above the boundary and the cell width in y-direction. If the boundary lies just in a
corner of the cell, then the du

dy will be greater then if the boundary will be almost
in the middle of the cell. That is why the plot is not very smooth in the area of the
bumb.
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Figure 3.25: The velocity in the middle
in case of a long stenosis. x in cm.
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Figure 3.26: The velocity in the middle
in case of a short stenosis. x in cm.
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Figure 3.27: The pressure in the middle
in case of a long stenosis. x in cm.
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Figure 3.28: The pressure in the middle
in case of a short stenosis. x in cm.
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Especially in the case of the long stenosis this does not work very good. This because
more cells had to be used in order to solve the problem. Some of the cells there get
an horizontal boundary in the area of the stenosis and other a line with a small
derivate.
It is visible in case of the short stenosis that at the end of the stenosis the wall shear
stress is negative. This means that the velocity near the wall is pointed in the other
direction as would be expected. In the �gure of the long stenosis this is not visible,
mainly because of the fact that the data for this �gure were not very good.

3.4.2 Example with pulsatile inow

In this case we used again a cosinus-inow. This time to better approximate the
realistic data, it is multiplied by the uin of the last section. So our new inow-
function is:

uin(t) = 13:269 � (0:25 � cos(t) + 0:75)

So again Reh = 75. The same results as in the previous section are plotted. So we
have the velocities in �gures 3.25 and 3.26 and the pressure in �gures 3.27 and 3.28
when the inow speed is maximal and minimal.

3.5 Steady ow in an aneurysm

So a stenosis is a little narrow section of an artery as shown in �gure 3.6. The
opposite of a stenosis is an aneurysm: The diameter will be more than 150% of the
diameter you expect in the artery. Like is shown in �gure 3.29.
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Figure 3.29: An artery with an aneurysm. x and y in cm.

These aneurysms are also very dangerous. For example if an aneurysm in the aorta
ruptures, which might happen, the patient has 10 % change of surviving mainly
because he can not get to the hospital in time.
The dimensions that were used are realistic dimensions for an aneurysm in the aorta.
They were taken from Bluestein and al.[3]. Two di�erent Poiseuille inow velocities
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are used with di�erent volume ow yielding a Reynolds number of 900 and 3600. In
�gures 3.30 and 3.31 the stream lines through the aneurysm for these two di�erent
cases are plotted. It is clearly visible that in the aneurysm itself is a great area of
backward ow.
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Figure 3.30: The stream lines through
the aneurysm with Reynolds number
equal to 900. Dimensions in cm
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Figure 3.31: The stream lines through
the aneurysm with Reynolds number
equal to 3600. Dimensions in cm
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Figure 3.32: Velocity pro�le at x = 0,
i.e. in the middle of the aneurysm.
Re = 900. Dimensions in cm
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Figure 3.33: Velocity pro�le at x = 0,
i.e. in the middle of the aneurysm.
Re = 3600. Dimensions in cm

In �gures 3.32 and 3.33 the velocities in the middle of the aneurysm is plotted against
the height of it. Here again it is for Re = 900 as well as Re = 3600 very good visible
that a backward ow occurs.
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3.6 Non-axisymmetrical stenosis

Here we will look at stenoses that are the same in shape at the upper and the lower
wall, but one part is shifted in x-direction as is shown in �gure 3.34.
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Figure 3.34: The �ve stenoses that were used in this simulation. Dimensions in cm

The purpose af this section is to verify if the idea is right that when if the stenosis
is split in two parts of which the second is placed further upstream then the �rst,
the upstream part will have no inuence on the ow further downstream.

Following this idea in the case 3, the ow for x < 0:5 should remain the same as in
case 6.
We used in this simulation everywhere a at inow velocity of 40 cm

s , which gives us
a Reh � 200. In �gure 3.35 the velocity in the middle of the tube is plotted against
the length of it. Note that not the whole tube is represented in the �gure but only
the part that we are interested in. The velocity is given for the uid through stenosis
1,2,3,4 and 6. Notice that there is no di�erence between stenosis 3 and reference
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Figure 3.35: The velocity in the middle of the tube for stenosis 1, 2, 3, 4 and 6.
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stenosis 6 for x < 0:5, so the idea is right: there is no inuence of the downstream
bump on the upstream one.
These results were also compared with the results of the RNS method. In �gure
3.36 the velocity in the middle of the tube for both methods is given in case of a
'normal' stenosis 1. In �gure 3.37 the same velocity is given for the stenoses 2, 3
and 6 from Como and for the RNS method with stenosis 6. Note the di�erent scale
of the velocities! As expected there is almost no di�erence between the velocities in
3.35 for the cases 3,4 and 6. At least for cases 4 and 6. In �gure 3.37 the di�erence
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Figure 3.36: The velocity in the middle
of the tube for stenosis 1, both Como
and RNS
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Figure 3.37: The velocity in the middle
of the tube for stenosis 2, 3 and 6 for
Como and RNS (only shape 6)

between case 3 and case 6 for x < 0:5 is clearly visible, instead of in �gure 3.35.
This can be explained by two reasons. First the scale of the y-axis in �gure 3.37
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has a range of 35 while the range in �gure 3.35 is 55. So in �gure 3.37 a di�erence
is more easy visible. Second the simulations in �gure 3.35 are all made with a grid
of 100X50 points while in �gure 3.37 for some simulations a 80X40 stretched grid is
used! Notice the di�erent distance of the points for cases 2 and 3.

3.7 Stenotic bifurcation
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Figure 3.38: Pressure contour lines
a stenotic bifurcation. Dimensions
in cm
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Figure 3.39: The stream lines through a
stenotic bifurcation. Dimensions in cm
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Figure 3.40: Pressure contour lines
a non-stenotic bifurcation. Dimen-
sions in cm
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Figure 3.41: The stream lines through a
non-stenotic bifurcation. Dimensions in
cm

In this section a start is made for a next investigation which will mainly cover blood
ow through bifurcations. A bifurcation is a place where an artery splits. In �gure
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3.38 the pressure contour lines are plotted and in �gure 3.39 the stream lines. In all
cases here Reh � 6.
In this case there is only one stenosis in the artery at the right side. The diagonal
artery has twice the radius of the horizontal and vertical ones, which have the same
the radius. In the picture it is good visible that most of the stream lines take the
more easy way out through the normal vessel. As a reference plots are made of the
pressure and streamlines in the non-stenotic bifurcation, see �gures 3.40 and 3.41.
In �gures 3.42 and 3.43 the velocity pro�le just after the bifurcation is plotted in
the two directions. In �gure 3.42 the pro�le for the non-stenotic case is plotted. As
expected these two pro�le are exactly the same because the geometry is symmetric.
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Figure 3.42: Inow in the after-
bifurcation vessel in case of a non-
stenotic vessel (dashed) as well as the
Poiseuille pro�le in these cases (line).
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Figure 3.43: Inow in the after-
bifurcation vessel in case of a stenotic
vessel (dashed) as well as the Poiseuille
pro�le in these cases (line). Dimensions
in cm

In �gure 3.43 the same is plotted for the stenotic case. Here the two pro�le are quite
di�erent. The pro�le just before the stenosis is much lower than the other, which can
be expected when we look at the streamlines in this cases. In both cases, however,
is this pro�le not Poiseuille of course because the direction of the ow turns 45o.

3.8 Conclusions

In this chapter we have done the validation of the RNS method and Como. As
expected are the results nearly the same for large Reh, but the RNS method calcu-
lates much faster. On the other hand, Como is better because it can handle almost
every geometry, see section 3.7, and has no approximations in his numerical method.
Regarding to section 3.6, we can say that there is a e�ect of a second stenose on the
uid around the �rst, but this happens only when the second starts immediately
after the �rst and this e�ect is in fact neglectible small, see �gure 3.35.
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Chapter 4

The BIACORE 2000

The BIACORE 2000 is used to mesure constants or di�erent chemical reactions at
the wall of an artery. It consist of some tubes through which a blood-like uid
ows. In this section the uid through the detection area of the BIACORE 2000 is
simulated, especially the wall shear stress at the detection wall. There are a lot of
curves in the whole machine, but because the distance between the curves is much
larger than the width of the tubes, the uid after a curve is fully Poiseuille before it
arrives at the next curve. The dimensions of the detection unit are given in �gure
4.1. At least, these are the dimensions that were given in the Biacore Manual [4].
When the element is observed with a loupe, the height of 2:6 mm can not be right.
It should be much smaller. In the simulations we used the real values, given by a
Biacore engineer, but it happened to be that the length was still great enough to
assume a Poiseuille inow at each curve.

Exact dimensions of the BIACORE 2000 detection unit
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inflow outflow 

detection area 

interesting curve 

Figure 4.1: The shape of the detection unit in the BIACORE 2000.

In this section only the ow in the neighboorhoud of the last curve before the
detection area in simulated. It is obvious why a Poiseuille inow is used here. The
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pump of the BIACORE 2000 has a range from 5 to 100 �
min , hence the Reynolds

number will vary between 0.55 and 11.

4.1 The ow simulation through the BIACORE 2000

To calculate the exact Poiseuille inow, di�erent inow volumes were read from
the manual [4] and with them and the dimensions of all parts of the tube a 2D
parabolic velocity pro�le is generated that had the same volume ow as the inlet of
the machine. Two dimensional because the simulating is again two dimensional.
In �gure 4.2 the shape and some stream lines are plotted for the interesting area in
the BIACORE 2000.
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Figure 4.2: The shape, the stream lines and the approximated inow velocity in the
BIACORE 2000.

Because the hospital was especially interested in the wall shear stress at the detection
wall, in �gure 4.2 x = 0:0025 cm, plots are made of the wall shear stress between
y = �0:01 cm and y = �0:03 cm. After this area the ow is again fully Poiseuille.
This can be seen in �gure 4.3 at an inow of 10 �l

min .

From this picture can be seen that at 0:1 mm after the curve the ow is again
Poiseuille. For other values of the inow volume the shape of the �gure stays the
same, only the quantity of wall shear stress increases linear. The BIACORE 2000
computes the plaque at the wall only for a small piece of the wall at x = 0:0025 cm,
he assumes the ow to be Poiseuille and starts meassuring at a x-value more then
0:1 cm. So the results from the BIACORE 2000 are computed with the correct
velocity pro�le.
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�l
min . (Re=0.75 due to the data from [4].)

4.2 Discussion

umax =

r =

11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0

0.17 135.3 141.1 147.1 152.9 158.8 164.7 170.6 176.5

0.18 127.7 133.3 138.9 144.4 150.0 155.6 161.1 166.7

0.19 121.1 126.3 131.5 136.8 142.1 147.4 152.6 157.9

0.20 115.0 120.0 125.0 130.0 135.0 140.0 145.0 150.0

0.21 109.5 114.3 119.0 123.8 128.6 133.3 138.1 142.9

0.22 104.5 109.1 113.6 118.2 122.7 127.3 131.8 136.4

0.23 100.0 104.3 108.7 113.0 117.4 121.7 126.1 130.4

In the tabular above the absolute wall shear stresses for Poiseuille ow are written
for di�erent maximum velocities and di�erent radii. This in case of a Poiseuille ow.
The values are determined by computing the analytical solution for @u

@r where r is
the radius of the tube. This results in:

@u

@r
= �2 umax

r

The chosen values of umax and r are realistic values of human arteries. The values
in the table are for 'healthy' arteries with average radius. The aorta for example has
a radius of 0.5 cm, while there exist also narrow arteries with radii much less then
0.1 cm. A wall shear stress of 130 s�1 in an arterie with r0 = 0:2 cm will happen at
an inow velocity of 13 cm

s hence a volume ow of about 17 �l
min . The BIACORE

2000 has a pump range of 5-100 �l
min . Hence the wall shear stress varies between 39

and 780 s�1. So the realistic human artery values are among them. So the maximum
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wall shear stress that can be reached by the BIACORE 2000 is 780 s�1. This does
not include all the wall shear stresses of stenotic vessels. In the worst case, with
a very narrow stenosis, wall shear stresses have been mesured to be around 20000 s�1.

When a pulsatile inow in used, a Womersley pro�le will develop after a long enough
distance in the tube. An important quantity here is � = r20

!
� . In �gure 4.4 the wall

shear stress is plotted for three values of � using Mathematica. The points are the
values for � = 1, the line is for � = 10 and the upper values are for � = 50. From
this picture it is not strange to suggest that the maximum value of the wall shear
stress is equal to

p
�, which should hold for large �, see Appendix A. At least for

the � = 50 it seems to hold (
p
50 � 7:07).
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Figure 4.4: For � = 1; 10; and 50 the
wall shear stress is plotted as function
of time for one period.
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Figure 4.5: The dashed line is the max-
imal wall shear stress as function of �.
The other is the asymptotic value

p
�.

So in �gure 4.5 the maximum wall shear stress as function of � is plotted as well as
the curve y =

p
�. Now it is clearly visible that for large value of � the maximum

wall shear stress is nearly
p
�. Anyway for all � the wall shear stress is of the order

of
p
�. At last some typical values for di�erent arteries are presented here.

artery diameter �
Ascending aorta 1.5 cm 174.2
Descending aorta 1.3 cm 132.3
Femoral Artery 0.4 cm 12.3
Carotid artery 0.5 cm 19.4
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Chapter 5

Three dimensional stenosis ow

In this chapter the program COMFLO, see Kort [8] and Loots [12], is used to
simulate 3D ow blood through a stenosis in an artery. Therefore a cylindrical
geometry is used which was already implemented in COMFLO. The z-axis will be
used here as the length of the artery.
The stenosis can be de�ned in two ways. In the �rst case a stenosis only in the
x-direction is used, letting the radius af the y-direction constant. This is visualized
in �gure 5.1. This problem is more similar to the 2D-problem than the second, but
the latter is more realistic.
The second stenosis is an axisymmetrical stenosis. This geometry is plotted in �gure
5.4.

5.1 'One direction' stenosis

In this section the results from the 2D geometry in section 3.2, now with constant
inow will be compared with the results from the geometry in �gure 5.1.
The inow velocity is taken equal to 1 in both cases. The velocity pro�le in the
middle of the artery is shown in 5.2. The pressure pro�le in shown in �gure 5.3.
In the picture of the velocities, the velocity of the 3D ow is higher than the 2D
ow. The most important thing in explaning this occurance is that COMFLO uses,
when he simulates a 2D ow, a 3D geometry in which the z-direction has only one 1
cell. Whatever the dimensions are, the 2D geometry will always be extended in the
z-direction. So in the used 2D cases, the geometry is a beam.
At two walls, y = ymax and y = ymin, the velocity is taken 0, but at the other
two (in z-direction) not. The velocity pro�le in the tube will be Poiseuille as seen
in �gure 3.4. So this 2D velocity pro�le is only 0 at y = ymin and y = ymax, not
at zmin and zmax.

This pro�le is of the form:

u(x) = 1:5uin

�
1� x2

h2

�
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Figure 5.1: The di�erent planes of the geometry for a 'one direction' stenosis.
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Figure 5.3: Pressure pro�les

because

1

h

Z h

0
u(x)dx = uin

In the 3D case the velocity at the wall of the whole cylinder is taken to be 0 so we
get a 3D Poiseuille velocity pro�le. This pro�le has to have a higher maximum to
get the same average value which should be equal to uin. The 3D velocity pro�le is
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of the form :

u(x; y) = 2uin(1� 1

h2
(x2 + y2))

because

1

�h2

Z Z
x2+y2=h2

u(x)dxdy = uin

In the �rst case, the maximum is equal to 1:5uin. This is smaller than 2uin from
the second case. So the velocity in a straight tube will always be higher if a 3D
axisymmetrical geometry is used instead of a 2D geometry. These values are good
visible in the pictures.

5.2 Axisymmetrical stenosis

In this section blood ow through the geometry shown in �gure 5.4 will be discussed.
This situation is more realistic in the case of blood vessel ow. In this 3D case with
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Figure 5.4: The di�erent planes of the geometry for an axisymmetrical stenosis.

an axisymmetrical geometry we used again only time-independent inow because it
takes a lot of time for Como to calculate a 3D ow, especially when the inow is
dependent of time. With the choosen inow we always have a stationary solution
after some time. Three di�erent kinds of inow are chosen:
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1. u(x; y; t) = uin = cst at inow

2. u(x; y; t) = 2uin(1� 1
h2
(x2 + y2)) Poiseuille inow

3. u(x; y; t) = a + bx. With a and b chosen so that the volume ow in the
three cases stays the same. We will call this the 'scheef' inow.

We choose di�erent inows because we want to know what the inuence if of the
entry pro�le at the �nal ow. These pro�les are choosen because the �rst two are
simple pro�le in 3D and the third inow is a approximations of the ino in a stenosis
that is located just after a bifurcation, like in �gure 3.38 and 3.39. In �gure 5.5 these
di�erent velocties are plotted at the x-axis for y=0. In each of the three cases a total
inow of 240 ml

min is taken. This results in a Reh of 600.
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Figure 5.5: The three di�erent inow of this section. Dimensions in cm

In �gure 5.6 the velocities in the middle of the tube in the three di�erent cases of
inow are plotted. Of course the Poiseuille inow starts with a higher velocity but
will come closer to the other two. In this case 30 points in x- and y-direction are
used and 60 in z-direction. This is not very much and that is why more points are
used in the further examples. In �gure 5.7 the same is plotted with a 50X50X100
grid. These results are di�erent but with the example with a 50X100X100 grid the
calculation of Como takes about 5 days on a Linux PC 750 instead of less than an
hour for a 30X30X60 grid!
In �gures 5.8, 5.9 and 5.10 the velocity in the middle of the tube is plotted for the
case of all di�erent inows for di�erent numbers of points. Now it is clear that
it is very important that enough points are used, especially for the area after the
stenosis. The examples with the �nest grid looks most like the RNS results. This
can be seen in �gure 5.11. Here the velocities in the middle of the tube made by
Como and by the RNS method are plotted. The RNS method in this section uses
only a at pro�le.
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To get an idea of the ow in tranversal direction through such a axisymmetrical
stenosis, there are 9 plots made using arrows toindicate the direction of the ow in
the x-y plane. Three plots for every type of inow respectively in the beginning of
the stenosis, in the middle and just before the end. This can be seen in �gure 5.12,
5.13, 5.14. Note that the picture for the middle of the stenosis have the same size
so of course another x and y-scale is used than in the �rst and the third. That is
why there are less arrows in the picture (less points).
When we take a �rst look at the picture, the picture for the end of the stenosis
for inow 2 and 3 are not symmetric. We expected this any way for the inow 2,
Poiseuille, because an axisymmetrical inow through an axisymmetric tube with an
axisymmetrical stenosis would expect an axisymmetrical outow. Then we notice
that even in the beginning of the stenosis the Poiseuille ow is not axisymmetric
anymore. This requires an explanation.
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Because only the direction is given for the transversal velocity, it says nothing about
the actual speed. When we look better at all the data, it happens that the longitu-
dinal ow is O(101) in the beginning of the tube, the three �gures on the left, and
of O(102) in the stenose and at the end of the tube, see also �gure 5.6 and 5.7. The
transversal velocity, on the contrary, is in the middle and at the end of tube of order
10�2, so in the 6 pictures most at the right. Because there is such a large di�erence
between these orders, we can say that the unexpected details of the �gures are just
errors of the calculations.
In the beginning of the tube, the left three �gures, the order of the tranversal veloc-
ities in case of Poiseuille inow (2) is also 10�2 and of the other two is 100 so that
even the �rst image of 5.13 can be neglected. As a result, only the �rst picture of
�gure 5.12 and 5.14 are valuable for us.
Because 5.12 has an inow that is constant for both x and y, so the uid will go
simultaneosly to the center of the tube when we procede in the tube. In �gure 5.14
the inow 3 is used, which is high for high values of x and 0 at the lower boundary
of x. So this picture makes sense because the velocity is negative in the x-direction
for x > �0:1 and is much larger than in positive x-direction for x < �0:1. All the
uid has to go to the center of the tube and at the right-hand side there a lot enters
the tube because of the inow condition!
So the inuence of the exact inow pro�le is very weak: a 3D pro�le can not be
recognized after the stenosis. It's changed into a nearly axisymmetrical one!
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Figure 5.12: Transversal velocity directions for a at inow (1). Resp. begin, middle
and end of stenosis
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Figure 5.13: Transversal velocity directions for Poiseuille inow (2). Resp. begin,
middle and end of stenosis
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Chapter 6

Conclusions

In the last 100 days there are made a lot of simulation of arteries with stenoses.
Most of the di�erent cases for a straight artery are handled, 2D as well as 3D. The
RNS method of the university here in Paris is validated and shows in most cases
really good results for large Reh in comparison with the complete NS-solver COM-
FLO. This is not strange because in the RNS method a large Reh is supposed, see
section 2.3. In examples with constant inow, the results are almost the same. For
pulsatile inow, the results for the pressure is di�erent between COMFLO and RNS,
especially in the accelarating and decelerating phase, see �gure 3.11 and 3.13.

We have focued in this study on the entry e�ect on the ow further in and after
the stenosis and we have observed that in most cases the �rst pro�le is very impor-
tant. See �gures 5.11 for Poiseuille, at and 'scheef' pro�le in a axisymmetrical case.

Although we are a step closer to really simulate blood ow through human arteries,
a lot has still to be done. The geometries that are used are still straight, sti� tubes.
Most of the simulations are done for the 2D case because COMFLO needs a lot of
time to handle 3D ows. In real world, only 3D simulations of curved tubes with an
elastic wall are realistic blood vessels. See Berger [2] for examples of stenosis with
realistic dimensions and properties. Further, real human arteries have almost never
a smooth wall nor are axi-symmetrical. COMFLO is able to simulate ow through
3D tubes with another radius in y-direction then in x-direction, but such an ellips
is still a large approximation.

Simulating ows through objects which are designed by nature, such as arteries,
is so complicated that we might never be able to do that with high detailed geome-
tries and high precision results. However, ows through machines that are related
to blood ows and make their own measurements on it, like the Biacore 2000, are
also approximations of the real world and can be very good simulated by COMFLO
as we have seen in Chapter 4.1.
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Appendix A

Womersley analysis

A.1 The direct Womersley solution

If a pulsatile inow is used in a straight rigid tube, the velocity after a long enough
distance will have a Womersley pro�le. This pro�le can be derived from the dimen-
sionless axisymmetrical conservation of momentum:

@u

@t
= �1

�

@p

@x
+ �

�
@2u

@x2
+

1

r

@u

@r
+
@2u

@r2

�
(A.1)

Where � is the viscocity of the uid. We suppose every variable to be proportional
to ei!(t�

x
c
), where c is the complex wave speed and ! the frequency, so � = 2� c

! .
We simplify the equation by making the long-wavelength approximations j!Rc j � 1,

where R is the radius of the tube. The @2

@x2
-term is now negligible because it is of

order ��2. So when we suppose

u = ei!tû and p = ei!tp̂

the equation will reduce to:
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(A.2)

When we introduce y = r
K , the equation will convert to:
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�
û+

�
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y
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If we choose K =
q

�
�i! we derive an equation that looks like the Bessel equation:
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y
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@p̂

@x
K2 (A.3)

The solution of this equation is the sum of an particular solution and the exact
solution from the homogene equation, which is the Bessel equation (Remember that
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the solution of f 00 + f 0=x+ f(x2 � n2)=x2 = 0 is J�nand Y�n, see Abramowitz and
Stegun [1]). The �rst solution is u = cst = 1

�
@p̂
@xK

2. The second is Bessel function
A J0(y). So the total solution will be:

û(y) = A J0(y) +
1

�

@p̂

@x

�

�i! (A.4)

with boundary condition

û(r = R) = 0

Because û(y) = û( rK ), �lling in the boundary condition will lead to:
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So the �nal solution for Uwom(r; t) = ûei!t is:

Uwom(r; t) = ei!t
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A.1.1 Plots of Uwom

In this subsection plots are made of <(Uwom) and =(Uwom) for di�erent values of
�. In each plot to velocity pro�le between ~y = 0 and 1 is given for four di�erent
times: t = 0; 2�5 ; 4

�
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Figure A.1: <(Uwom). From left to right � = 1; 10; 20.
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Figure A.2: =(Uwom). From left to right � = 1; 10; 20.

Notice that the velocity in the middle for larger � don't change anymore, while the
�rst derivative if bigger for larger � near the wall.
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A.1.2 Putting � large in the solution

According to Abramowitz [1], for a large z, the BesselFunction Jk(z) will become:

As z !1 Jk(z) v
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2
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4
) +O

� 1

jzj
��

When we substitute for z = i
3

2 y, k = 0 and use the known equalities:

p
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i+ 1p
2

and cos(t) =
1

2
(eit + e�it) (A.6)

We obtain the equation from Pedley [14] for the BesselFunction J0(z) for large y:
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With this function for J0, Uwom can be written as:

Uwom(r; t) = Uwom(0; t)(1� e�
p

�
2
(1+i)(1� r

R
)) (A.7)

When � ! 1 and r < R it is clear that Uwom(r; t) = Uwom(0; t), so independent
of position from the wall. But when r ! R as 1p

�
the value of the exponential is

of orer one and so we see there is a boundary layer of thickness 1p
�
in which the

velocity goes from Uwom(0; t) to 0.

A.2 Asymptotical point of view � large

A.2.1 Perfect uid

We look at the same problem, but with the point of view of asymptotic analysis.
First we adimensionalise the equations:

û =
1

�!

@p

@x
�u and r = �rR

Equation A.2 will now become:

�i�u+ 1

�
(
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�r

@�u

@�r
+
@2�u

@�r2
) = 1 (A.8)

If �!1, we obtain the "Euler" problem (or perfect uid). The velocity is constant
all over the radius: �u = i. The no slip condition is not full �t. We have to introduce a
boundary layer of unknown thickness " in order to have the good boundary condition.
The idea is to change the tranversal scale because the viscosity acts in a very thin
layer near the wall. In this layer we want to have the viscous terms that where
neglected before.
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A.2.2 Boundary layer

Close to the wall the following changement of variables is made for r and û in A.2.

r = R(1� "~y) "� 1 and û =
1

�!
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@x
~u (A.9)

It can be done because @p
@x is independent of the y or r-direction. With this change-

ment the @u
@r -term in A.2 vanishes because it is of order ". The equation will then

become:

�iu+ 1

�

� 1

"2
@2u

@~y2
+O("�1)

�
= 1

Again we look at the case of large �: because here by the choice of scale @2u
@~y2 v O(1)

we have to make sure that 1
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1
"2 v O(1) so we choose �"2 = 1 ) " =

q
1
� . The

thickness of the boundary layer is then ��1=2. The equation is now:
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with only order one coeÆcients. There are two possible solutions: ~u = A(1� e�~y
p
i)

and ~u = A(1� e ~y
p
i), with A un up to now undetermined constant. From these two

we obviously choose the �rst one because the last one will tend to �1 for y !1.
Notice that ~u(0) = 0 in both cases! That is what we wanted: the no-slip condition.
In order to determine A we have to match the perfect uid layer and the boundary
layer:

�u(�r ! 1�) = ~u(~y !1)

so the �nal solution is:

A = i =) ~u = i(1� e�~y
p
i) (A.10)

A.3 Remarks

In general, the uid mech. problems have no analitycal solution. Here we have one,
and we observe that the asymptotic solution, A.10, is the analitical one, A.7, when
�!1. When you substitute ~y = 1

" (1� r
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p
�(1 � r

R) and û = 1
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@p
@x ~u in A.10,

we re�nd the solution A.7 because J0(i
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p
�)!1 for �!1, so Uwom(0; t) = ei!ti

A.3.1 The wall shear stress

If y ! 0, because
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We can conclude that the wall shear stress @u
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p
�.
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A.4 Small �

A.4.1 Analytical solution for small �

The analytical solution Uwom from A.5 can we write as:

Uwom(r; t) = f(t)
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If z ! 0, Pedley [14] says that J0(z) v 1� 1
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2. So if �! 0 we can write Uwom as:
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which has a parabolic form and is 0 for r = R at a �xed time. So here we re�nd the
Poiseuille pro�le. This is not strange because � = 0 implies ! = 0 because both R
and � 2 R

+ . ! was the frequency, and frequency of 0 means an in�nit long period
thus a constant (i.e. time-independent) ow. Notice that the amplitude is also small
for small � as we have already seen in �gures A.1 and A.2.

A.4.2 Asymptotic solution for small �

With � as in A.5 we can write equation A.2 as :
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As in section A.2.1 we adimensionalize the equations using:
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The �rst term will disappear when we let �! 0, so we get:
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This solution is again a Poiseuille ow.
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Appendix B

Explanatory vocabulary

accelerating phase time range in which a pulse goes to higher veloctities
aneurysm widthening of an artery
bifurcation an artery that splits in two smaller arteries
boundary layer a very thin layer between an object and the uid in

which the longitudinal velocity will vary from 0 at
the object wall to the outer velocity at the other
side of the layer

carotid artery the main artery that is going to the head
COMFLO program designed in Groningen that solves

the complete NS-equations
decelerating phase time range in which a pulse goes to lower velocities
discretization way of approximating a continuous problem

with a discrete problem
femoral artery the main artery that is going to the leg,

so there are two of them
longitudinal velocity velocity in the direction of the length of the tube
iteration (repetition of a) calculation
iteration process process with repeated calculations
NS method designed in Groningen that solves the

Navier-Stokes equations numerically
or the equations on which this method is based

RNS / RNSP method desinged in Paris that solves the
Reduced Navier-Stokes equations numerically
or the equations on which this method is based

RuG University of Groningen;
Dutch: Rijksuniversiteit Groningen

stenosis narrowing or stricture of an artery
tranversal velocity velocity in the cross-section of an artery
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