Simulation de la migration d'une dune sous un vent cisaillé constant

Sébastien PEARRON

Laboratoire de Modélisation en Mécanique, UMR CNRS 7607, Boîte 162, Université Paris 6, 75252 Paris France

Introduction

- Introduction
- Théorie
 - Calcul de l'écoulement autour d'une bosse fixe
 - Linéarisation des équations
 - Évolution de la dune

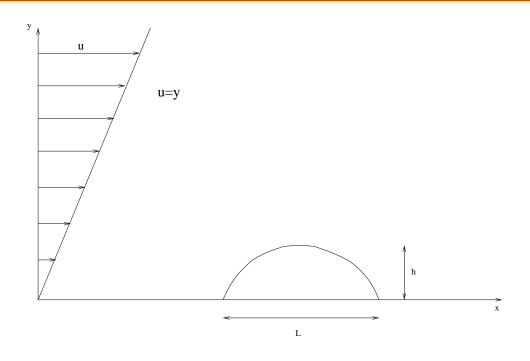
- Introduction
- Théorie
 - Calcul de l'écoulement autour d'une bosse fixe
 - Linéarisation des équations
 - Évolution de la dune
- Résultats numériques
 - Équations linéarisées et un sol dur
 - Équations linéarisées et un sol érodable
 - Équations non linéarisées et un sol dur
 - Équation linéarisées avec V très grand

- Introduction
- Théorie
 - Calcul de l'écoulement autour d'une bosse fixe
 - Linéarisation des équations
 - Évolution de la dune
- Résultats numériques
 - Équations linéarisées et un sol dur
 - Équations linéarisées et un sol érodable
 - Équations non linéarisées et un sol dur
 - Équation linéarisées avec V très grand
- Ouvertures
 - Comparaison avec le code Castem
 - Ouverture sur la résolution en trois dimensions

- Introduction
- Théorie
 - Calcul de l'écoulement autour d'une bosse fixe
 - Linéarisation des équations
 - Évolution de la dune
- Résultats numériques
 - Équations linéarisées et un sol dur
 - Équations linéarisées et un sol érodable
 - Équations non linéarisées et un sol dur
 - Équation linéarisées avec V très grand
- Ouvertures
 - Comparaison avec le code Castem
 - Ouverture sur la résolution en trois dimensions

Conclusion

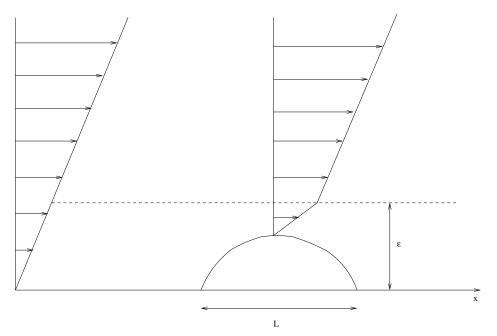
Introduction



- Écoulement cisaillé
- Hypothèses
 - Écoulement laminaire
 - Fluide visqueux à Reynolds infini
 - Écoulement stationnaire

Calcul de l'écoulement autour d'une bosse fixe

On utilise les équations de Navier-Stokes stationnaires que l'on adimensionne.



Calcul de l'écoulement autour d'une bosse fixe

On obtient alors le système:

$$\frac{\partial \tilde{u}}{\partial \tilde{x}} + \frac{\partial \tilde{v}}{\partial \tilde{y}} = 0$$

$$\tilde{u}\frac{\partial \tilde{u}}{\partial \tilde{x}} + \tilde{v}\frac{\partial \tilde{u}}{\partial \tilde{y}} = -\frac{\partial \tilde{p}}{\partial \tilde{x}} + \frac{\partial^2 \tilde{u}}{\partial \tilde{y}^2}$$

$$0 = -\frac{\partial \tilde{p}}{\partial \tilde{y}}$$

Calcul de l'écoulement autour d'une bosse fixe

Les conditions limites sont:

À la paroi, il y a adhérence.

$$\tilde{u}(\tilde{x}, \tilde{y} = f(\tilde{x})) = 0, \qquad \tilde{v}(\tilde{x}, \tilde{y} = f(\tilde{x})) = 0,$$

En amont de la bosse, l'écoulement est cisaillé:

$$\tilde{u}(\tilde{x} \to -\infty, \tilde{y}) = \tilde{y}, \qquad \tilde{v}(\tilde{x} \to -\infty, \tilde{y}) = 0.$$

Loin en haut de la bosse, on a: $\tilde{u} = \tilde{y}$ donc

$$\tilde{u}(\tilde{x}, \tilde{y} \to \infty) \to \tilde{y}$$

Linéarisation des équations

Sur une petite hauteur la vitesse est considérée linéaire. On considère une bosse de hauteur faible η ($\eta << \varepsilon$).

$$\tilde{u} = \tilde{y} + \eta \tilde{u_1}$$

$$\tilde{v} = \eta \tilde{v_1}$$

Le frottement pariétal τ vaut alors:

$$\tilde{\tau} = \frac{\partial \tilde{u}}{\partial \tilde{y}} = 1 + \eta \tilde{\tau_1}$$

On aboutit à:

$$FT[\tau] = (3Ai(0))(-(ik))^{1/3}FT[f]$$

Conservation de la masse de la dune:

$$\frac{\partial f}{\partial t} = -\frac{\partial q}{\partial x}$$

Conservation de la masse de la dune:

$$\frac{\partial f}{\partial t} = -\frac{\partial q}{\partial x}$$

Relation entre q et τ

$$q = \varpi(\tau - \tau_s - \lambda \frac{\partial f}{\partial x})$$

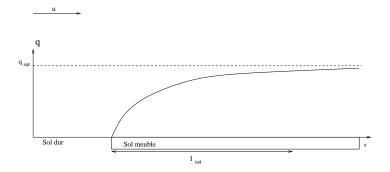
Conservation de la masse de la dune:

Relation entre q et τ

$$\frac{\partial f}{\partial t} = -\frac{\partial q}{\partial x}$$

$$q = \varpi(\tau - \tau_s - \lambda \frac{\partial f}{\partial x})$$

$$\frac{\partial q}{\partial x} = \frac{q_{sat} - q}{l_{sat}}$$



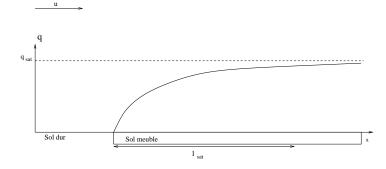
Conservation de la masse de la dune:

Relation entre q et τ

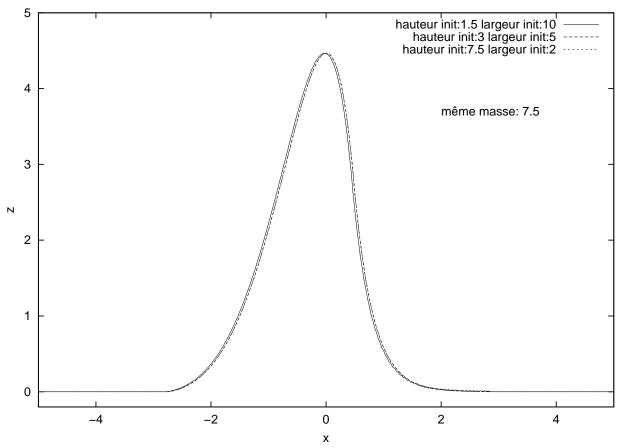
$$\frac{\partial f}{\partial t} = -\frac{\partial q}{\partial x}$$

$$q = \varpi(\tau - \tau_s - \lambda \frac{\partial f}{\partial x})$$

$$\frac{\partial q}{\partial x} = \frac{q_{sat} - q}{l_{sat}}$$



$$\frac{\partial q}{\partial x} + Vq = V\varpi(\tau - \tau_s - \lambda \frac{\partial f}{\partial x}).$$



Pour une même masse initiale, même forme finale.

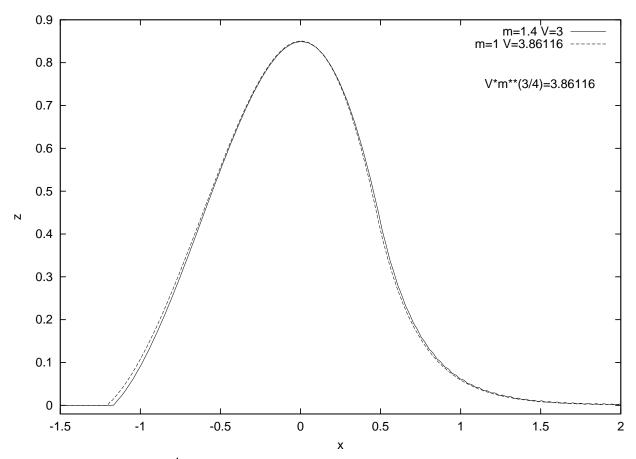
On considère l'équation

$$\frac{\partial q}{\partial x} + Vq = V\varpi(\tau - \tau_s).$$

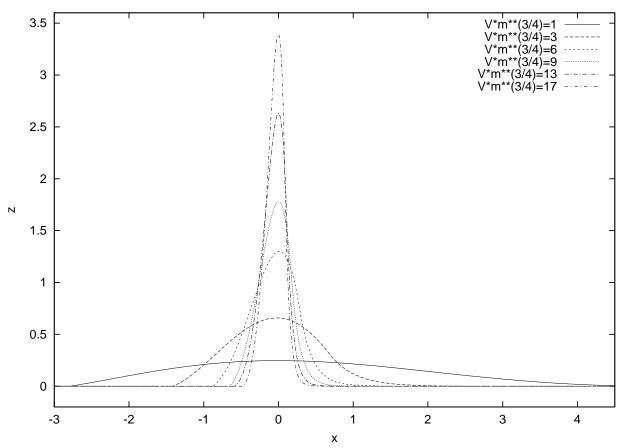
On pose $x=Lx^*,\,f=Ff^*,\,\tau=T\tau^*,\,q=Qq^*,\,t=Et^*,m=Mm^*$ et on aboutit à:

$$\frac{1}{Vm^{3/4}}\frac{\partial q^*}{\partial x^*} + q^* = \varpi(\tau^* - \tau_s).$$

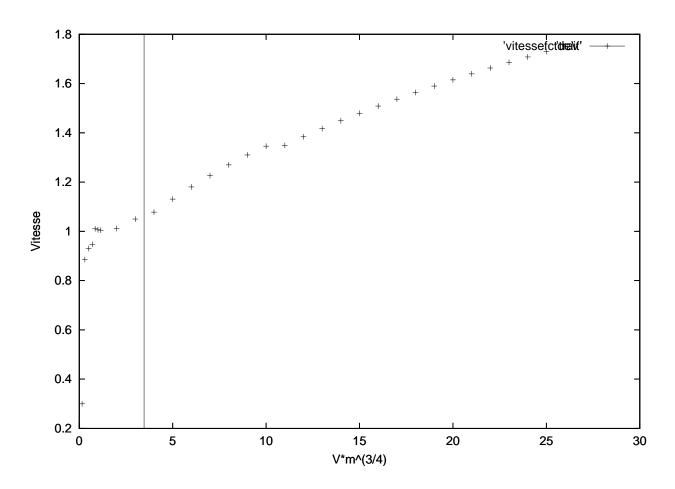
• $Vm^{3/4}$ est un paramètre d'autosimilarité



Pour un même $Vm^{3/4}$, même forme finale.

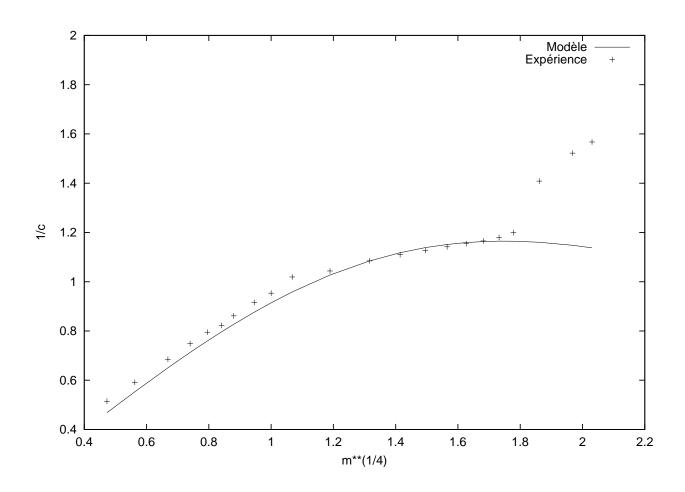


Évolution de la forme de la dune en fonction de la valeur de $Vm^{3/4}$

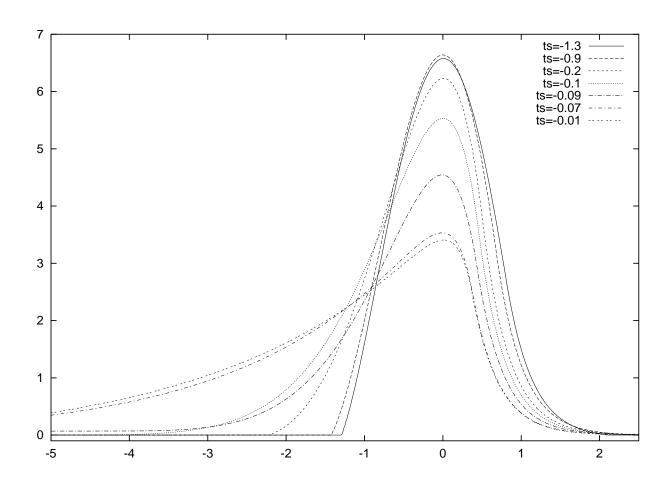


L'approximation de la courbe en une droite $c^* = 1 + V^*/32$.

$$c = c^* m^{-1/4}$$
 et $c = m^{1/4} (1 + \frac{V m^{3/4}}{32})$

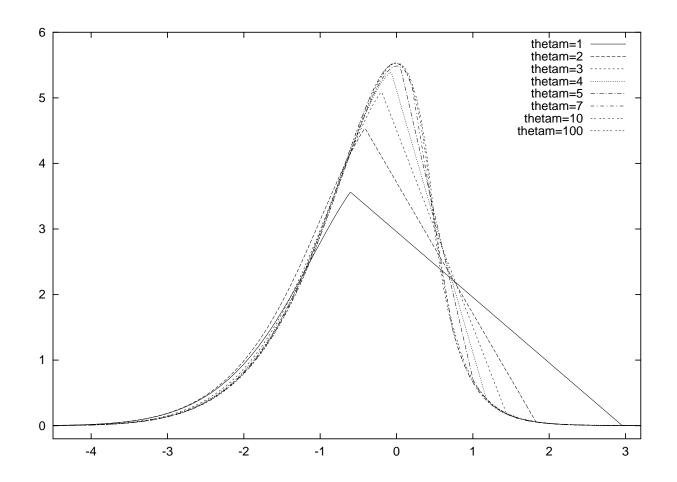


Variation de la valeur de au_{seuil}

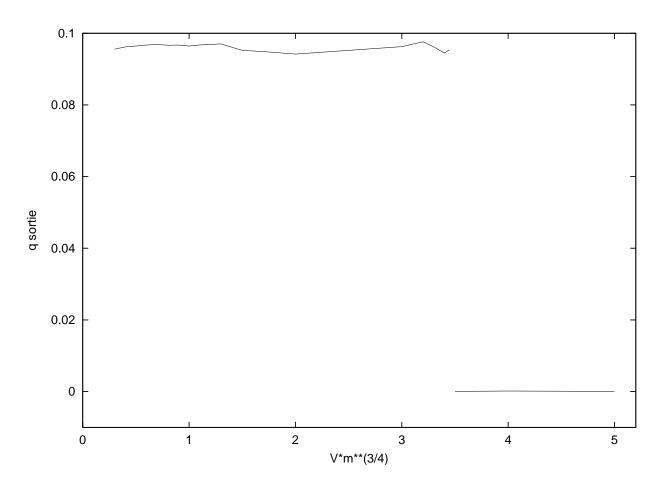


$$\frac{\partial q}{\partial x} + Vq = V\varpi(\tau - \tau_s).$$

Variation de la valeur de l'angle d'avalanche

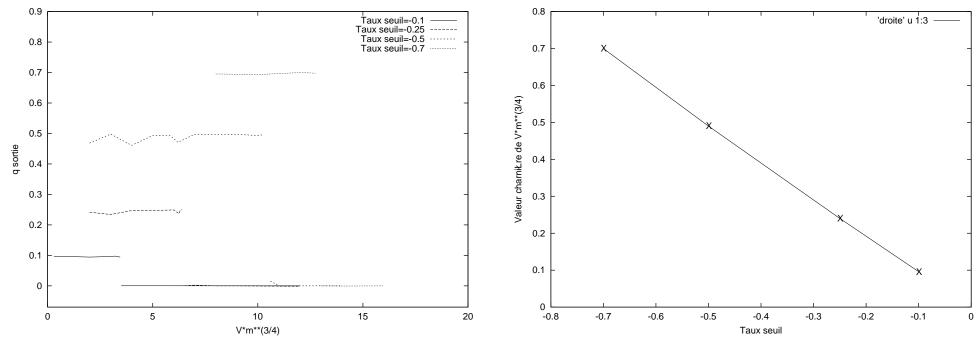


Flux de sortie



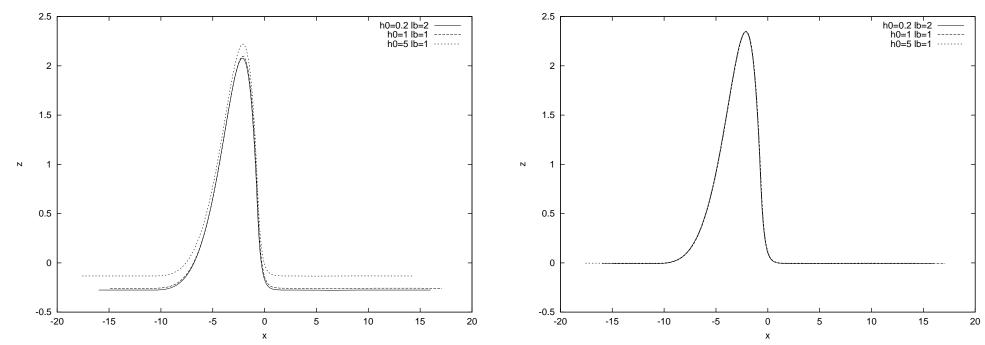
Flux de sortie non nul: la dune perd de la masse. Résultats non pertinents pour $Vm^{3/4} < 3.5$

Flux de sortie



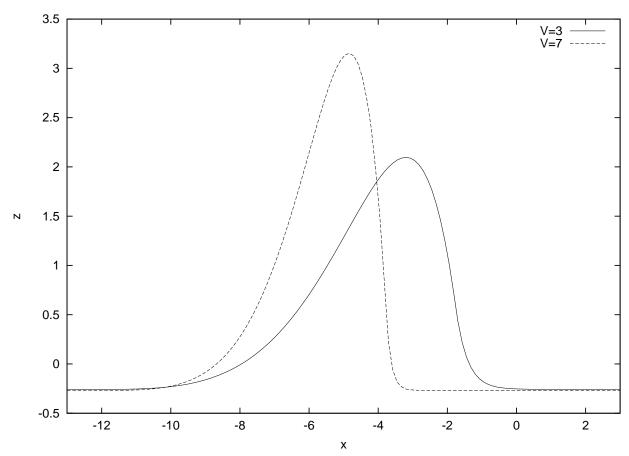
Flux de sortie en fonction de $Vm^{3/4}$ pour différentes valeurs de τ_{senil}

Équations linéarisées et un sol érodable



Dunes finales pour différentes formes initiales.

Équations linéarisées et un sol érodable



Dunes finales pour des valeurs différentes de V.

Équations non linéarisées et un sol dur



Résultats en non linéaire assez proches du linéaire.

Équation avec V très grand

$$q = \varpi(\tau - \tau_s - \lambda \frac{\partial f}{\partial x}).$$

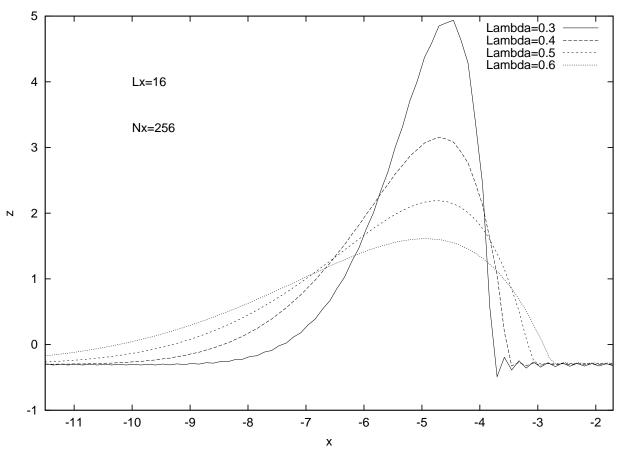
$$q^* = \varpi(\tau^* - \tau_s - \frac{\lambda}{m^{1/2}} \frac{\partial f^*}{\partial x^*}).$$

 $\lambda^* = \frac{\lambda}{m^{1/2}}$ est un nouveau paramètre d'autosimilarité.

Èvolution d'un bruit

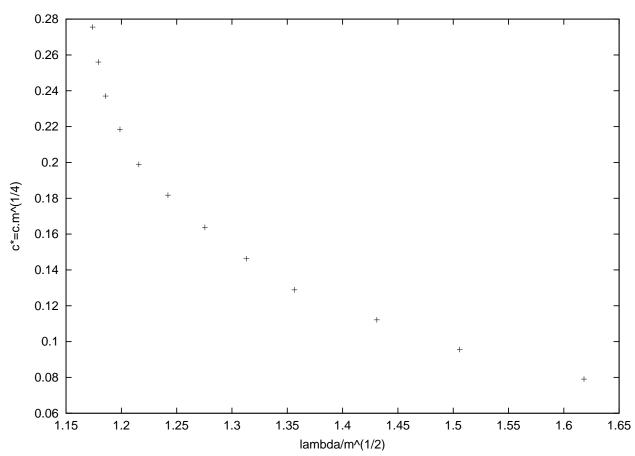
D'un bruit on arrive à une seule dune. animation

Ínfluence de λ



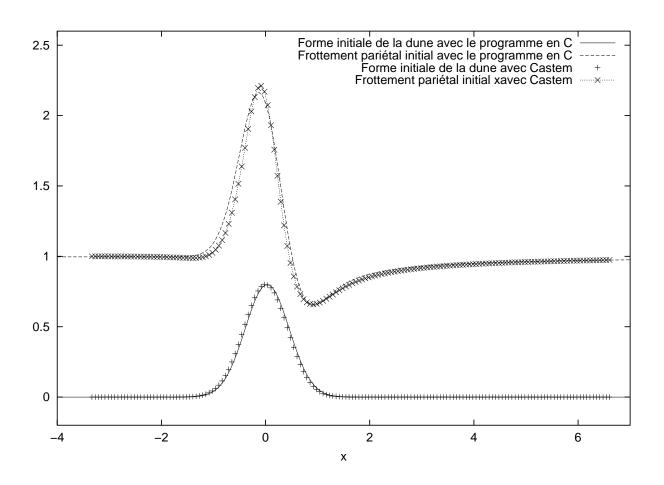
Dunes finales en fonction pour λ variant.

Ínfluence de λ



Vitesse en fonction de $\frac{\lambda}{m^{1/2}}$

Comparaison avec le code Castem



Frottements au temps initial comparables. Calculs très longs avec Castem.

Équations des dunes en trois dimensions

 équations de Navier-Stokes en trois dimensions linéarisées

.

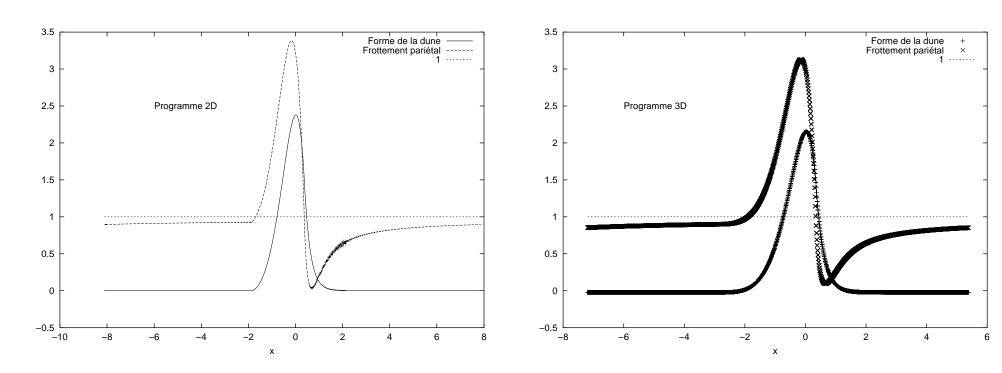
$$\frac{\partial q_x}{\partial x} + Vq_x = V\varpi(\tau_x - \tau_s).$$

$$\frac{\partial q_y}{\partial x} + Vq_y = V\varpi(\tau_y - \tau_s).$$

$$\frac{\partial f}{\partial t} = -\frac{\partial q_x}{\partial x} - \frac{\partial q_y}{\partial y} + D(\frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial y^2})$$

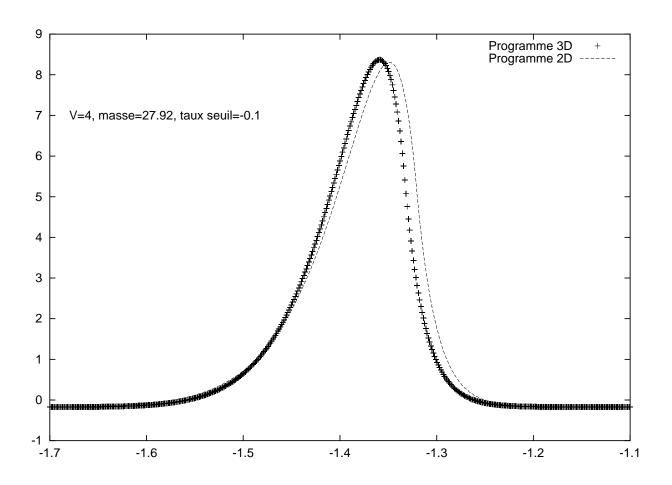
Comparaison 2D 3D

On restreint le programme 3D à deux dimensions.



Observation du frottement pour un domaine trop petit avec les programmes 2D et 3D

Comparaison 2D 3D



Les programmes 2D et 3D coïncident dans des conditions similaires.

Conclusion

- Validation de la théorie en deux dimensions
- La linéarisation est importante.
- Nombreuses erreurs numériques
- Dunes en trois dimensions