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The early stages of drop impact onto a solid surface are considered. Detailed
numerical simulations and detailed asymptotic analysis of the process reveal a
self-similar structure both for the velocity field and the pressure field. The latter
is shown to exhibit a maximum not near the impact point, but rather at the contact
line. The motion of the contact line is furthermore shown to exhibit a ‘tank-treading’
motion. These observations are apprehended with the help of a variant of Wagner
theory for liquid impact. This framework offers a simple analogy where the fluid
motion within the impacting drop may be viewed as the flow induced by a flat
rising expanding disk. The theoretical predictions are found to be in very close
agreement both qualitatively and quantitatively with the numerical observations for
approximately three decades in time. Interestingly, the inviscid self-similar impact
pressure and velocities are shown to depend solely on the self-similar variables
(r/
√

t, z/
√

t). The structure of the boundary layer developing along the wet substrate
is investigated as well. It is found to be in first approximation analogous to the
boundary layer growing in the trail of a shockwave. Interestingly, the corresponding
boundary layer structure only depends on the impact self-similar variables. This
allows us to construct a seamless uniform analytical approximation encompassing
both impact and viscous effects. The depiction of the different dynamical fields
enables to quantitatively predict observables of interest, such as the evolution of the
integral viscous shearing force and of the net normal force.
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1. Introduction
The impact of a liquid drop onto a rigid surface results in a rapid sequence of

events ending, in the inertial limit, in spreading (Eggers et al. 2010) or splashing
(Stow & Hadfield 1981), interface tearing (Villermaux & Bossa 2011) and ultimate
fragmentation (Stow & Stainer 1977). A large number of studies have investigated
the many facets of drop impact, with special attention to the description of its late
stages (Rein 1993; Yarin & Weiss 1995). The literature on the early stages of impact
is however scarce in comparison. Detailed experimental data depicting the instants
following impact can nonetheless be found in the work of Rioboo, Marengo &
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Tropea (2002), that evidenced a ‘kinematic phase’ where the drop merely resembles
a truncated sphere and spreads as the square-root of time. This phase precedes the
apparition of the liquid lamella.

Probably one of the first depictions of the very first instants of drop impact dates
back to Engel (1955). With the help of high-speed cinematography, Engel captured the
chronology of events triggered by drop impact. He noted in particular the unvarying
shape of the drop apex during the earliest moments of impact, which might be
surprising due to the incompressible character of the liquid. Engel put forward the
possible roles of inertia, viscosity or surface tension to explain this observation.
Actually, the physical mechanism underpinning this behaviour is best illustrated with
figure 1. There, the numerically computed pressure field within an impacting drop is
represented shortly after impact (details to follow in the paper). It is readily seen that
the structure of the pressure field is extremely concentrated near the contact zone, as
in Hertz’ classic elastic contact problem. Conversely, the outer region is essentially
pressureless. This strong inhomogeneity in the pressure distribution therefore explains
why, in the absence of any pressure hindrance, the upper part of the drop freely falls
even after impact while remaining undeformed.

The pressure concentration in the early stages of impact was first identified by
Josserand & Zaleski (2003). From the key remark that the extent of the pressure
concentration zone scales with the contact radius, these authors conjectured a
self-similar structure for the pressure field and evolution with time as 1/

√
t – an

hypothesis confirmed by numerical results. Though sufficient to detect hints of
self-similarity, numerical simulations were nonetheless unable to reveal the inner
structure of the contact zone until recently, essentially because of the very large scale
ratio between this zone and the drop size. The increase of computational performance,
along with the development of adaptive numerical techniques for two-phase flows
(Popinet 2009), now allow us to unravel the intimate structure of the contact zone,
see figures 1 and 2. These snapshots reveal a quite complex structure for the pressure,
which counterintuitively exhibits sharp maxima near the contact line, and not on the
axis as in steady stagnation point flows. Interestingly, this structure is reminiscent
of typical pressure field structures observed in the water entry of solid objects, and
evidenced by Wagner in the context of alighting seaplanes (Wagner 1932). In such
problems a solid object impacts a flat liquid surface at a given velocity. As suggested
by Cointe (1989), drop impact may be viewed as water entry’s opposite, for here
a liquid object impacts a rigid flat surface at a given velocity (see figure 3). It is
therefore likely that the analytical techniques developed since the thirties to describe
with great precision the flow generated with the impact of an object, and proven to
be in close agreement with experimental data (Cointe & Armand 1987; Howison,
Ockendon & Wilson 1991), could be transposed for the drop impact problem. And
indeed, building upon the analogy between water entry and drop impact, Howison
et al. (2005) proposed a theoretical investigation of inviscid two-dimensional drop
impact on a thin fluid layer and described the different regions and scalings of
importance for the flow dynamics. In particular, they reveal the radius of contact
between the two liquids as a key length scaling of the problem, analogously to the
problem of water entry where the wet length of the solid is also crucial (which is
consistent with the observations of Josserand & Zaleski (2003)).

The central motivation of the present study is to revisit the problem of a single
spherical drop impacting a smooth flat solid surface at early times at the light of
Wagner’s theory of impact, understand the dynamic fields structure and elucidate
the short-time self-similar behaviour discerned in earlier studies. To develop a
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FIGURE 1. (Colour online) Close-ups of increasing magnitude on the pressure field
developing inside an impacting drop in the inertial limit. The pressure field is extracted
from Navier–Stokes Gerris computations of a drop impacting a solid surface at early times
(note that the surrounding gas dynamics is computed as well, but not represented here).
Noticeably the motion is essentially pressureless (and therefore corresponds to a free fall)
except in a concentrated region in the contact zone. The successive close-ups of pressure
field structure in the contact region reveal a pressure peak near the contact line (the
physical parameters are here Re= 5000, We= 250, tU/R= 4× 10−4. The total size of the
numerical axisymmetric domain is 2R × 2R, and the adaptive mesh has locally a mesh
density corresponding to 32 768× 32 768 grid points).

consistent theory, the approach followed throughout the manuscript will be to confront
and cross-test systematically the theoretical predictions with detailed and accurate
numerical simulations performed with a Navier–Stokes multiphase flow solver. As
a side note, we attempt to make the paper self-contained whenever possible. In
§ 2 we formulate the hypotheses and theoretical framework of the problem, and
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(a) (b) (c)

FIGURE 2. (Colour online) Top: time sequence of the pressure field developing inside
an impacting drop (Navier–Stokes Gerris computation, fixed spatial magnification). Bottom:
Corresponding trace of the pressure exerted by the drop on the solid substrate. The
physical parameters for this simulation are Re = 5000 and We = 250. The snapshots
correspond respectively to times tU/R= 10−4, 10−3 and 10−2.

R
(a) (b) (c)

U

FIGURE 3. (Colour online) Sketch of the impacting drop before contact (a), and shortly
after impact (b). The shape the drop would assume in absence of the wall is outlined with
a dashed line, and the contact-line position is marked with red dots. This problem may
be viewed as the dual of the classic water entry of a solid object (c).

describe the short-time drop impact dynamics in the context of Wagner’s theory.
We put forward in particular a so-called ‘Lamb analogy’ mirroring the flow within
the impacting drop with the one induced with a flat rising expanding disk. In § 3
we demonstrate that the Wagner flow can be recast as a self-similar solution for
the drop impact problem. The nature of the near-axis stagnation flow and of the
near-contact-line flow and pressure maxima are also discussed. Numerical results
obtained with Gerris (Navier–Stokes solver, volume of fluid, adaptive mesh) taking
into account surface tension, surrounding gas and viscous effects are compared with
the theoretical prediction. The structure of the boundary layer is examined in § 4
and is found to be reminiscent of the viscous boundary layer leaved in the trail of
a shockwave (Mirels analogy). The inviscid Wagner flow and this viscous boundary
layer approximation are found to depend on the same self-similar variable. This
allows us to build a uniform, seamless approximation encompassing both impact and
viscous effects. We conclude in § 5 by discussing the obtained results and the limits
of the present investigation (such as the role of air) and recount the observables of
interest, such as the net impacting force of the total viscous shearing force exerted
by an impacting drop.

2. Model
2.1. Theoretical framework & hypotheses

We consider throughout this study an idealized drop impact where a perfectly spherical
liquid drop collides with a flat rigid surface. Though classic, this model situation
relies on a number of physical hypotheses detailed in the following. Starting with
the initial perfect spherical shape assumption, we may identify several typical causes
for deviations from sphericity such as capillary drop oscillations during free fall
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(Engel 1955; Thoroddsen et al. 2005) or flowing air shaping (Pruppacher & Beard
1970). Such effects will be disregarded in the following even though they merely
result in a local curvature radius modification in the contact region and hence could
easily be incorporated in the discussion. The impact flow evolution will be considered
incompressible. However, the question of the role of compressible effects within the
liquid should not be eluded when considering impact phenomena. A large body of
literature has been devoted to acoustic effects within (typically fast) impacting drops.
Typically, such effects are considered to play a significant role over length scales
of order UR/c during time scales of order UR/c2, where U stands for the impact
velocity, R for the drop radius and c for the celerity of compressive sound waves
in the liquid ((U/c)2� (Ut/R)� 1). Considering a millimetric drop impacting at a
velocity of the order of 10 m s−1 representative of e.g. a raindrop falling at terminal
velocity, we estimate that acoustic effects matter only in a micron-sized region over
a few nanoseconds (see Weiss & Yarin (1999), for a discussion and references). The
following discussion will therefore be limited to those cases where the impact velocity
is much lower than the speed of sound, as the falling raindrop, where acoustic effects
can harmlessly be neglected and an incompressible description remains accurate. The
high pressure and stresses generated upon impact can result in marked erosion or
yielding (Rein 1993). Furthermore substrate deformation has recently been shown to
significantly alter drop impact in the limit of very soft (Mangili et al. 2012) or very
flexible substrates (Antkowiak et al. 2011). None of these effects will be considered
in the following, yet an estimation of the net force exerted by the impacting drop
on the underlying substrate will be provided in § 3. Another phenomenon potentially
responsible for the cushioning of the impact is the thin air layer between the drop and
the substrate just before impact. Due to lubrication effects, this air layer pressurizes
and dimples the drop, eventually yielding a tiny entrapped gas bubble in the drop
(Thoroddsen et al. 2005). This phenomenon along with other roles of surrounding
gas in impact dynamics will be disregarded in the forthcoming analysis (except where
explicitly specified, the starting state for each of the simulations is a drop already
touching the ground – see appendix A for details) and discussed in the last section.
Finally the core hypothesis of the present study is the inertia-dominated character
of impact. In particular, we assume that gravity, capillary and viscous effects are
small with respect to inertial ones, i.e. Froude Fr = U2/gR, Weber We = ρU2R/σ
and Reynolds Re = ρUR/µ numbers are all large with respect to unity. Here g
denotes the gravity, σ the liquid–gas surface tension, ρ the liquid density and µ its
viscosity. These assumptions underpin the choice a purely inertial description free
of these effects in the following. However, locally, these phenomena might become
more important or even dominant, examples being viscosity near the boundaries
or capillarity in high-curvature regions. In § 4 we will address viscous effects and
develop a boundary layer correction to the inviscid solution, and capillary effects will
eventually be discussed in § 5.

2.2. Governing equations and analogy with the water entry problem
2.2.1. Problem statement

We consider a perfectly spherical liquid drop of radius R and density ρ impacting
normally a flat rigid ground with velocity U, see figure 3. Neglecting for now
the development of viscous rotational boundary layers, we assume that the fluid
motion following impact is irrotational, axisymmetric and can be described with
the scalar potential φ(r, z), i.e. the fluid velocity u(r, z) satisfies u(r, z) = ∇φ(r, z).
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Incompressibility requires φ to be a harmonic potential satisfying Laplace’s equation,
here written in cylindrical coordinates:

1
r
∂

∂r

(
r
∂φ

∂r

)
+ ∂

2φ

∂z2
= 0. (2.1)

The liquid dynamics obeys the unsteady form of Bernoulli’s conservation equation:

∂φ

∂t
+ 1

2
|∇φ|2 + p

ρ
= const. (2.2)

This set of equations is completed by appropriate boundary equations. At the wall
z= 0, the condition of impermeability reads

∂φ

∂z
= 0 for 0 6 r 6 d(t), (2.3)

where d(t) stands for the contact-line position, an unknown of the problem. The
position of the free surface is tracked with the kinematic condition:

dS
dt
= 0, (2.4)

where S(r, z, t) is a function vanishing on the free surface. Expressing normal stress
continuity at this interface yields the following dynamic boundary condition:

p= 0 at the free surface. (2.5)

Note that atmospheric pressure as here been taken as the reference pressure.
Anticipating the forthcoming analysis of the contact region, we further note that the

free fall behaviour outside the contact region can be recast into the following far-field
condition:

φ→−Uz far from the contact region. (2.6)

This condition allows us to identify the constant in (2.2) as U2/2.
Now non-dimensionalising the problem using the inertial scales R, ρ and U, we

introduce the following quantities:

r= Rr̄, z= Rz̄, t= R
U

t̄, φ =URφ̄, p= ρU2p̄, (2.7a−e)

and rewrite the equations into their dimensionless counterparts:

1
r̄
∂

∂ r̄

(
r̄
∂φ̄

∂ r̄

)
+ ∂

2φ̄

∂ z̄2
= 0 in the liquid, (2.8)

∂φ̄

∂ t̄
+ 1

2
|∇̄φ̄|2 + p̄= 1

2
in the liquid, (2.9)

∂φ̄

∂ z̄
(r̄, z̄= 0, t̄)= 0 over the wet area r̄< d̄(t̄), (2.10)

p̄= 0 on the free surface, (2.11)
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FIGURE 4. (Colour online) Flow in an impacting drop in the fixed frame and in the drop
frame computed with Gerris. (a,c,e): Streamlines and pressure map within an impacting
drop for Re= 5000 and We= 250 in the laboratory frame at different post-impact times
(t̄ = 5 × 10−4, 5 × 10−3 and 10−2). The overall velocity field resembles a stagnation
point flow in a near-wall region whose extent is scaling with the wet area, and a
uniform downwards flow outside. (b,d, f ): Same velocity field in a reference frame moving
with the drop initial velocity, evidencing a bypass motion near the contact line and an
overacceleration of the free surface towards the wall.

dS̄
dt̄
= 0 on the free surface. (2.12)

Finally the non-dimensional far-field condition reads:

φ̄ =−z̄ far from the contact region. (2.13)

As posed, the problem entirely depends on the wet area extent d̄(t̄), whose dynamics
has still to be determined. In the following, we investigate the near-contact-line flow
to clarify this wetting dynamics.

2.2.2. Contact-line motion: numerical observations
To shed light on the contact-line dynamics, detailed numerical simulations of

impacting drops were carried out with Gerris (see appendix A). Figure 4 represents
typical streamlines extracted from the simulations, shortly after impact. On the left
panel it can be seen that the motion within the impacting drop far from the contact
zone is vertical, uniform and pointing downwards, corresponding merely to the
free-flight behaviour −Uez. Near the wall however, the flow is deflected and exhibits
a stagnation point-like structure, in a region whose extent scales with the wet area.
To investigate further the nature of this corrective flow, we represent on the right
panel of figure 4 the streamlines in a reference frame moving with the initial velocity
of the drop. There it appears that the flow winds around the contact line, revealing
that (i) the liquid near the contact line falls faster than free flight and (ii) rather than
being pushed by a sweeping motion, the contact line progresses via a tank-treading
movement, analogous to the rolling motion evidenced in previous studies of advancing
contact lines (Dussan & Davis 1974; Chen, Ramé & Garoff 1997; Reznik & Yarin
2002).
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(a) (b)

FIGURE 5. (Colour online) Advancing contact line shortly after impact. In the earliest
moments following impact, the motion of the free surface near the contact zone is
essentially directed downwards. The sketches show the position of the contact line for two
successive instants, and illustrate the fact that the horizontal extension of the wet area is
governed by the vertical movement of the interface.

These observations therefore suggest that the kinematics of horizontal extension
for the wet radius is controlled by the vertical motion of the free surface. Figure 5
illustrates this process, and indicates that the law of motion of the contact line d(t)
can be obtained from the knowledge of velocity field at the free surface. Such a
kinematic condition expressing the contact between a liquid surface and a solid
object has actually been used in the context of the water entry of solid objects for
approximately 80 years, and is currently referred to as the Wagner condition. In the
following we depict the analogies between these two liquid impact problems, and use
them to derive a simple fluid mechanical model for the drop impact.

2.2.3. Analogy with the water entry problem
The modern understanding of the liquid motion and forces generated by an

impacting object in water originates in the pioneering work of Wagner in the early
thirties (Wagner 1932). The primary motivation of Wagner was to provide a detailed
characterization of the impulsive forces generated with impact – already known to
be of sufficient amplitude to induce bouncing (ricochet), and even possibly structural
failure of alighting seaplanes or slammed ships (Nethercote, Mackay & Menon 1986).
The foremost issue in this problem evidently stems from its highly unsteady and
nonlinear nature. The central idea of Wagner was to model the flow induced by the
impact of a float or a keel by the one induced by a flat ‘plate’, propelling the fluid
particles downwards at the float or keel velocity, and having an extent growing with
time as the waterline length. The corresponding flow (‘gleiche Tragflügelbewegung’ –
equivalent aerofoil motion) is typically found to wind around the plate and therefore
to promote jetting or splashing. The knowledge of this flow field then allows Wagner
to determine the motion of the free surface, and finally provides the needed condition
in the determination of the wet length d(t).

Analogously, for the drop impact problem, our numerical simulations evidence
similar flow features and winding motion. These observations advocate for the use
of a water entry analogue description, where the flow induced by drop impact would
correspond to the one induced by a flat expanding disk in normal incidence, which
extent is given by the wet area (see figure 6). Following this vision of drop impact as
a dual version of the water entry problem, we adopt from now on the corresponding
formalism to describe the fluid mechanics of impact.
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FIGURE 6. (Colour online) In the reference frame of the falling drop, the flow induced
by impact may be seen as the one induced by a flat rising disk (Lamb disk analogy). The
winding motion is here represented with orange arrows, and the radial expansion of the
disk with the wet area is indicated with purple arrows. The motion of the disk itself is
given by the red arrow.

FIGURE 7. (Colour online) Scalings in the contact zone. At the earliest times only a very
small portion (of order ε) of the drop touches the wall. The fluid sets into motion with
impact is in a region of extent ε in every direction. The air wedge confined between
the wall and the drop presents an angle of order ε as well. The colour map illustrates
the pressure distribution. The physical parameters for this simulation are Re= 5000 and
We= 250. This snapshot corresponds to a non-dimensional time t̄= 10−3. The position of
the contact line is here d̄= 1.73× 10−3/2.

2.3. Leading-order description for the drop impact problem
Interested in the early time behaviour of the impact-induced flow, we set out
by examining time-dependent solutions of system (2.8)–(2.12) in the vicinity of
the contact zone. To this end, we introduce ε as a measure of the wet region:
d(t)/R = O(ε) (see figure 7). This ε is the fundamental small parameter of our
problem.

As typical in two-phase phenomena, the length scales for the dynamical fields and
for the geometry of the free surface differ in this problem. Starting by considering the
space variables r̄ and z̄ on which depend the dynamical fields (such as the velocity
potential φ or the pressure p), we introduce the following rescaling: r̄= εr r̃ and z̄=
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εzz̃, where r̃ and z̃ are O(1) quantities and εr and εz are gauge functions. From the
structure of the Laplace operator, we expect the dynamical fields to display identical
length scales in each direction, so that εr = εz = ε.

Insights into the relevant length scales for the description of the free surface
geometry can be gained by decomposing the position of the surface into that of a
translating sphere z̄S(r̄, t̄) plus a surface disturbance h̄(r̄, t̄) (see figure 3b). Assuming
the drop falls with constant velocity, the shape of the unperturbed translating sphere
obeys r̄2 + (z̄S − (1 − t̄))2 = 1. Sufficiently close to the contact area, we introduce
gauge functions for the vertical position of the moving sphere z̄S and the time t̄:
εzs z̃s = ε2r̃2/2 − εt t̃. The equation for the sphere surface can be approximated by
εzS z̃S = (ε2r̃2 − εt t̃)/2. As previously, the determination of these scaling functions
is obtained by dominant balance arguments: εzS = εt = ε2. Note that at short times
the intersection radius between the sphere and the impacting plane is given by
r̃intersect =

√
2t̃.

We remark that as in the original study of Wagner, a scale separation between
z̄S and z̄ exists (small deadrise angle hypothesis, see e.g. Oliver 2002). This scale
separation arises because the drop typical radius of curvature (O(1)) is very large in
comparison with the other length scales of the problem, see figure 7.

We now turn to the surface perturbation h̄(r̄, t̄), that embodies the impact-induced
flow. Recalling that h̄ represents a perturbation around a falling sphere, we can express
the position of the free surface with the following implicit equation: S̄(r̄, z̄, t̄)= z̄−
(z̄S− h̄(r̄, t̄)). Introducing an appropriate gauge function εh such that h̄= εhh̃ we obtain
by dominant balance analysis that εh = ε2. It follows that:

S̃(r̃, z̃, t̃) = z̃− 1
2 r̃2 + t̃+ h̃(r̃, t̃)

= 0 on the free surface. (2.14)

The kinematic boundary condition derives from the previous equation. At the free
surface, we have:

dS̄
dt̄
= 1+ ∂ h̃

∂ t̃︸︷︷︸
O(1)

− εφ r̃
∂φ̃

∂ r̃︸ ︷︷ ︸
O(εφ)

+ εφ ∂ h̃
∂ r̃
∂φ̃

∂ r̃︸ ︷︷ ︸
O(εφ)

+ εφ
ε

∂φ̃

∂ z̃︸ ︷︷ ︸
O(εφ/ε)

= 0, (2.15)

where φ̄ = εφφ̃. It is impossible here to keep all terms at the same order; the
dominant balance between the vertical velocities ∂ h̃/∂ t̃ and ∂φ̃/∂ z̃ implies that εφ = ε.
At leading order, the kinematic boundary condition is therefore reduced to:

1+ ∂φ̃
∂ z̃
+ ∂ h̃
∂ t̃
= 0 on the free surface. (2.16)

It proves convenient to introduce a translation of the velocity potential such that φ̃ =
−z̃+ φ̌. This translation merely allows us to analyse the problem in the falling-drop
reference frame. The kinematic boundary condition is then simply rewritten as:

∂ h̃
∂ t̃
=−∂φ̌

∂ z̃
on the free surface. (2.17)
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r̄= εr̃ z̄= εz̃ t̄= ε2 t̃
p̄= ε−1p̃ φ̄ = εφ̃ (ū, v̄)= (ũ, ṽ).

TABLE 1. Résumé of the most important asymptotic scales of the problem.

Inserting these different scaled variables into Bernoulli’s equation, we obtain:

εpp̃+ 1
ε

∂φ̌

∂ t̃
+ 1

2



(
∂φ̌

∂ r̃

)2

+
(
−1+ ∂φ̌

∂ z̃

)2

= 1

2
in the liquid, (2.18)

where p̄ = εpp̃. The scale of the pressure, εp = 1/ε, is here seen to be as large as
the contact zone is small – as expected in an impact problem. At leading order,
Bernoulli’s equation is therefore reduced to:

p̃=−∂φ̌
∂ t̃

in the liquid. (2.19)

It follows from this equation that the constant pressure Dirichlet boundary condition
at the free surface p = 0 can be recast as a condition for the potential at the free
surface: φ = const., where the constant is arbitrary. Without loss of generality, we set
from now on this constant to zero.

Finally, as is classic in water wave theory, we exploit the shallowness of the gap
between the free surface and the plane to transfer the boundary condition at the free
surface onto the plane (see e.g. Van Dyke 1975, § 3.8).

Summarizing, using table 1 scalings, the near-field model problem takes the
following expression:

1
r̃
∂

∂ r̃

(
r̃
∂φ̌

∂ r̃

)
+ ∂

2φ̌

∂ z̃2
= 0 in the liquid, (2.20)

−∂φ̌
∂ t̃
= p̃ in the liquid, (2.21)

the locus d̃(t̃) of the contact line is determined with the Wagner condition:

h̃(r̃, t̃)= 1
2 r̃2 − t̃ for r̃= d̃(t̃), (2.22)

so that the boundary conditions at z̃= 0 read:

φ̌ = 0 for r̃> d̃(t), (2.23)

∂ h̃
∂ t̃
=−∂φ̌

∂ z̃
for r̃> d̃(t), (2.24)

∂φ̌

∂ z̃
= 1 for r̃< d̃(t̃), (2.25)

and the far-field behaviour is given by:

φ̌→ 0 as r̃, z̃→∞ (2.26)
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FIGURE 8. (Colour online) Leading-order outer problem for times of order ε2.

h̃→ 0 as r̃→∞. (2.27)

Finally, the corresponding model geometry is sketched figure 8. We remark that the
previous set of equations resembles that of the classic water entry problem, and can
be solved using the methodology described in e.g. Oliver (2002). In the next section
however, we will present an alternative method based on self-similar solutions.

3. Self-similar solutions and numerical simulations
3.1. A self-similar problem

To reveal the self-similar nature of our problem, we classically seek scale invariance
in the following (Darrozès & François 1982). We start by expressing the fact that
any variable q̃ in (r̃, z̃, t̃, φ̌, h̃, d̃, p̃) can be rewritten as q̃= λqq̂, where q̂ is a rescaled
variable and λq a numerical stretching coefficient embodying the change of scale.
Inserting these variables into the governing equations, it is straightforward to see
that invariance of Laplace equation through this stretching requires λr = λz. Similarly,
expressing the invariance of Wagner condition yields λh = λt, λr =√λt and λd =√λt.
The same operation performed on the additional boundary conditions finally imposes
λφ =√λt and λp = 1/

√
λt. Note that λt remains here as the sole stretching parameter.

The pressure field can be written as an implicit function of time and space as
follows: F(p̃, r̃, z̃, t̃) = 0. Upon using the previous scale invariance arguments, this
relation may be rewritten as F(p̂/

√
λt,
√
λtr̂,
√
λtẑ, λt t̂) = 0. A simple algebraic

manipulation allows us to remove the λt dependence for all but one variable, so that
finally G(

√
t̂p̂, r̂/

√
t̂, ẑ/
√

t̂, λt t̂) = 0, for any λt. Remarking that for a given t̂, this
function has to cancel whatever the choice of the scale λt, it readily appears that the
last variable is superfluous. In other words, a relation linking

√
t̂p̂ to r̂/

√
t̂ and ẑ/

√
t̂

only must exist.
The pressure field may therefore be rewritten explicitly as:

p̃= 1√
t̃
P
(

r̃√
t̃
,

z̃√
t̃

)
. (3.1)

With a similar reasoning, and upon introducing the self-similar variables ξ = r̃/
√

t̃ and
η= z̃/

√
t̃, we readily obtain:

φ̌(r̃, z̃, t̃)=
√

t̃Φ(ξ, η), h̃(r̃, t̃)= t̃H(ξ) and d̃(x̃, t̃)=
√

t̃δ, (3.2a−c)
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where Φ and H are unknown functions of the self-similar variables and δ a constant
representing the (fixed) position of the contact line in self-similar space. This allows
us to formulate the self-similar version of the drop impact problem:

1
ξ

∂

∂ξ

(
ξ
∂Φ

∂ξ

)
+ ∂

2Φ

∂η2
= 0 in the liquid, (3.3)

P(ξ , η)= 1
2

(
−Φ(ξ, η)+ ξ ∂Φ

∂ξ
+ η∂Φ

∂η

)
in the liquid, (3.4)

the boundary conditions at η= 0 take the following form:

H− 1
2
ξ
∂H
∂ξ
=−∂Φ

∂η
for ξ > δ, (3.5)

∂Φ

∂η
= 1 for ξ < δ, (3.6)

Φ = 0 for ξ > δ, (3.7)

the far-field behaviour is:

Φ→ 0 as ξ, η→∞ (3.8)
H→ 0 as ξ→∞, (3.9)

and the self-similar version of Wagner condition is finally given by:

H(ξ)= 1
2ξ

2 − 1 for ξ = δ. (3.10)

This problem can now be solved in several steps.

3.2. Self-similar potential
In this geometry, the Laplace equation can be solved with variable separation, leading
to a family of elementary cylindrical harmonic solutions with an exponential behaviour
in η and an oscillatory one in ξ . We recompose by summation and obtain:

Φ(ξ, η)=
∫ ∞

0
C(k)J0(kξ)e−kη dk. (3.11)

The weight function C(k) is determined with boundary conditions (3.6) and (3.7),
leading to the following pair of dual integral equations:

∫ ∞

0
kC(k)J0(kξ) dk=−1 for ξ < δ, (3.12a)

∫ ∞

0
C(k)J0(kξ) dk= 0 for ξ > δ. (3.12b)

Solving these dual integral equations using the technique described in Sneddon (1960),
we obtain a closed-form expression for the weight function:

C(k)= 2
π

δk cos(kδ)− sin(kδ)
k2

= 2
π

d
dk

(
sin(kδ)

k

)
. (3.13)
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Anticipating the description of the contact-line dynamics, we now derive ∂Φ/∂η at
the substrate level η= 0:

∂Φ

∂η
=− 2

π

∫ ∞

0

kδ cos(kδ)− sin(kδ)
k2

J0(kξ)k dk, (3.14)

where we recognize the sum of two Hankel transforms (see e.g. Sneddon 1995,
table IV, p. 528). This allows us to obtain the following explicit expression for
∂Φ/∂η for η= 0:

∂Φ

∂η
=





1 for ξ < δ

− 2
π

(
δ√

ξ 2 − δ2
− arcsin

(
δ

ξ

))
for ξ > δ.

(3.15)

This result was originally obtained by Schmieden (1953) in the water entry framework.

3.3. Wagner condition and contact-line dynamics
With the help of the vertical velocity expression in the near-wall region just derived,
we can rewrite the kinematic boundary condition (3.5) as:

H(ξ)− 1
2
ξ
∂H
∂ξ
(ξ)= 2

π

(
δ√

ξ 2 − δ2
− arcsin

(
δ

ξ

))
for ξ > δ. (3.16)

This inhomogeneous differential equation can be solved using variation of parameters,
i.e. looking for a solution of the form H(ξ)= ξ 2f (ξ). This gives:

[ f (ξ)]+∞δ =−
2
π

∫ ∞

δ

2
ξ 3

(
δ√

ξ 2 − δ2
− arcsin

(
δ

ξ

))
dξ . (3.17)

Upon using the far-field decaying behaviour of H (see (3.9)), this last equation
reduces to f (δ)= δ−2/2 so that at the contact line the drop deformation is:

H(δ)= δ2f (δ)= 1
2 . (3.18)

In the self-similar space, the Wagner condition therefore takes the following
remarkably simple form:

1
2 = 1

2δ
2 − 1, (3.19)

from which we finally derive the position of the contact line:

δ =√3. (3.20)

We note that this result was found in a non-self-similar setting in the recent
paper of Riboux & Gordillo (2014), which also presents experimental data in
excellent agreement with this theoretical prediction. It is interesting to remark that the
contact-line motion d̃(t̃)=√3t̃ just predicted within the framework of Wagner theory
is quite close to the rough truncated sphere approximation r̃intersect =

√
2t̃ (Rioboo

et al. 2002). Indeed figure 9 reports early post-impact successive positions of the
contact line extracted from numerical simulations performed with Gerris along with
our theoretical prediction. Noticeably the superposition between theory and numerical
results is excellent, at least until the moment of formation of a liquid corolla (here
indicated with a red dot).
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FIGURE 9. (Colour online) Comparison between the theoretical position of the contact
line as a function of time deduced from Wagner theory d̃(t̃)=√3t̃ (dashed line) and the
position of the contact line extracted from Gerris computations of an impacting drop at
Re= 5000 and We= 250 (grey dots). The red dot marks the birth of the corolla.

3.4. Analogy with the normal motion of an expanding disk in an infinite mass of
liquid

In § 2.2.3 we proposed to visualize the flow in an impacting drop as analogous to
the one induced by a flat rising disk expanding radially as the wet area (see also
figure 6). We are now in a position to formally justify this water entry analogy. The
axisymmetric flow induced by ‘the motion of a thin circular disk with velocity U
normal to its plane, in a infinite mass of liquid’ is for example analysed in Lamb’s
classic textbook § 101 (Lamb 1932). After deriving some elementary axisymmetric
solutions of the Laplace equation of the form exp(±kz)J0(kr) in § 100, Lamb
examined a variety of axisymmetric potential flows. Among these was the one
(later connected to the flow around a flat circular disk in normal incidence) where
at the symmetry plane z = 0 the potential takes the value φ = C

√
a2 − r2 for r < a

and φ = 0 for r> a, with a the disk radius. The solution for this problem was stated
under the following integral representation:

φ(r, z)=−C
∫ ∞

0
e−kzJ0(kr)

d
dk

(
sin ka

k

)
dk. (3.21)

And from ‘a known theorem in Electrostatics’, Lamb obtained the expression for the
vertical velocity in the symmetry plane:

−
(
∂φ

∂z

)

z=0

=





1
2
πC for r< a,

C
(

arcsin
(a

r

)
− a√

r2 − a2

)
for r> a.

(3.22)

This corresponds precisely to the flow within the impacting drop, after posing C =
−2/π and a= δ, thereby justifying formally our initial analogy between the impact-
induced flow with the one associated with a flat rising disk rapidly expanding with the
wet area. Setting C= 2U/π, Lamb remarked that the above potential indeed describes
the flow winding around a flat disk moving at velocity U. He further noted that a
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simple expression for the fluid half-space kinetic energy could be derived from the
previous relation:

Tdisk = 4
3ρa3U2. (3.23)

This expression can immediately be transposed into the (non-dimensional) kinetic
energy of the impact-induced flow within the drop:

T̃ = 4
√

3t̃3/2, (3.24)

or, equivalently, into its dimensioned counterpart:

T = 4
√

3ρU7/2R3/2t3/2. (3.25)

We emphasize that this expression is derived within the frame of the falling drop
and, as such, represents the kinetic energy of the defect flow associated with impact.
Although a direct physical interpretation of this quantity is not straightforward, we will
see in § 3.7 that the knowledge of this defect kinetic energy will allow for a direct
determination of the impacting force.

3.5. Structure of the velocity field
We now investigate the structure of the velocity field in the contact region and search
for exact closed-form expressions and convenient approximations for this field.

3.5.1. Integral representation of the velocity field
In the fixed frame, the velocity field ũ(r̃, z̃, t̃) inside the impacting drop can

formally be derived from the (untranslated) potential −η+Φ. Following the arguments
developed in § 3.1, this velocity field is simply related to the self-similar velocity
field U(ξ , η) via the relation:

ũ(r̃, z̃, t̃)=U(ξ , η), (3.26)

where the components of the self-similar vector field U = (Uξ , Uη) are:

Uξ (ξ , η)= ∂Φ
∂ξ
, (3.27a)

Uη(ξ , η)=−1+ ∂Φ
∂η
. (3.27b)

Inserting the expression for the self-similar potential determined previously yields the
following integral representation for the vector field components:

Uξ (ξ , η)=− 2
π

∫ ∞

0

√
3k cos(

√
3k)− sin(

√
3k)

k
e−kηJ1(kξ) dk, (3.28a)

Uη(ξ , η)=−1− 2
π

∫ ∞

0

√
3k cos(

√
3k)− sin(

√
3k)

k
e−kηJ0(kξ) dk. (3.28b)

A closed-form expression is unfortunately not accessible in the general case. In the
following however we calculate the value of these integrals at some particular places.
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FIGURE 10. (Colour online) (a) Axial velocity profiles along the axis extracted from
Gerris computations at times t̄ = 3 × 10−3, 5 × 10−3, 10−2, 5 × 10−2 and 10−1.
(b) Comparison between the analytical prediction for the axial velocity given by (3.29)
(red dashed line) and numerical solutions obtained with Gerris, rescaled in the self-similar
space (blue solid lines). The physical parameters for this simulation are Re = 5000 and
We= 250.

3.5.2. Closed-form expressions for the velocity field along the axis and the substrate
Simple analytical solutions for the velocity field can be obtained from (3.28) at

precise locations. Along the symmetry axis for example, where ξ = 0, the properties
of integrals of exponentials allow us to write:

Uη(ξ = 0, η)=−1+ 2
π

(
arctan

(√
3
η

)
−
√

3η
3+ η2

)
for η> 0. (3.29)

This last result is confronted with numerical velocity profiles extracted from
Gerris computations in figure 10. The nice agreement between the theoretical solution
and the numerical profiles seen in the self-similar space (figure 10b) here holds over
more than a decade in time.

Analogously, analytical forms for (3.28) can also be obtained along the substrate
plane η = 0 by exploiting the properties of Hankel transforms (Sneddon 1995). An
expression for the vertical velocity is already provided by (3.15), after inserting
δ = √3. We remark that this analytical solution elucidates the faster-than-free-flight
motion of the free surface near the contact line discerned in § 2.2.2. Likewise the
radial velocity distribution across the wet area is found to be:

Uξ (ξ , η= 0)= 2
π

ξ√
3− ξ 2

for 0 6 ξ <
√

3. (3.30)

This unphysical inviscid slip velocity ũe(ξ)= Uξ (ξ , η= 0) cannot be observed in our
simulations encompassing viscous effects. But this quantity is nonetheless relevant for
it corresponds to the edge velocity of the viscous boundary layer (studied in detail in
§ 4).

3.5.3. An unusual stagnation point flow
In the very vicinity of the origin, the first-order power series of the velocity

field (3.28) reads:

Uξ (ξ , η)' 2

π
√

3
ξ, (3.31a)
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Uη(ξ , η)'− 4

π
√

3
η, (3.31b)

or, equivalently, in dimensioned variables:

ur(r, z, t)' 2

π
√

3

√
U
R

r√
t
, (3.32a)

uz(r, z, t)'− 4

π
√

3

√
U
R

z√
t
. (3.32b)

Though simple, this peculiar structure for the impact-induced unsteady stagnation
point flow is nonetheless counterintuitive and could not have been inferred from
simple dimensional analysis. Noteworthy enough, this result is at variance with
the typical structure of the later intermediate flow associated with spreading
ū ' (r̄/t̄, −2z̄/t̄) (see e.g. Eggers et al. 2010; Lagubeau et al. 2012; Yarin & Weiss
1995).

3.5.4. Beyond the stagnation point: a remark on the overall velocity field structure
The previous approximation for the impact flow is valid in a small region near the

origin. To further investigate the limits of this representation we show in figure 11
different radial velocity profiles corresponding to various locations ξ . The collapse of
the numerical profiles taken at various r̄ and t̄ (but such that r̄/

√
t̄= r̃/

√
t̃ is constant

in each figure) onto the theoretical profiles is again an illustration of the relevance
of the self-similar representation. But it is also to be noted that while the stagnation
point ansatz disregards any radial velocity variation in η, the profiles exhibit a sensible
variation along the vertical coordinate η. This variation is best depicted with figure 12
where theoretical radial velocity profiles divided by ũe(ξ) taken at different values ξ
have been represented. Noteworthy enough, profiles corresponding to ξ . 1 collapse
to a single curve. We therefore speculate that in this region the radial velocity can
be approximated by a separated-variable solution such that Uξ (ξ , η) = ue(ξ)f (η) for
ξ . 1, where f is a function capturing the whole dependence of the profile with the
height. For larger values of ξ though, significant deviations from this behaviour arise
and variable separation ceases to hold: Uξ (ξ , η)= ũe(ξ)g(ξ , η) for ξ & 1 where g is
a function satisfying g(ξ , η = 0)= 1, in order to recover the slip velocity for η = 0.
We remark that the latter prediction remains particularly accurate across the contact
region, even close to the contact-line position ξ =√3.

3.5.5. Flow pattern, contact-line bypass and Lamb analogy
We now define the self-similar stream function Ψ (ξ, η) in the drop reference frame

from the potential:

1
ξ

∂Ψ

∂η
= ∂Φ
∂ξ
, (3.33a)

−1
ξ

∂Ψ

∂ξ
= ∂Φ
∂η
. (3.33b)

By integration of the previous relations we deduce the following expression for
Ψ (ξ, η):

Ψ (ξ, η)= 2
π

∫ ∞

0

√
3k cos(

√
3k)− sin(

√
3k)

k2
e−kηξJ1(kξ) dk, (3.34)
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FIGURE 11. (Colour online) Self-similar radial velocity as a function of η for ξ = 0.125,
0.25, 0.5, 1 and 1.5. These velocities are rescaled by the outer solution of the boundary
layer ũe(ξ) given by (3.30). Blue solid lines represent the numerical solutions extracted
from Gerris computations in the self-similar space for t̄= 5× 10−3, 10−2, 5× 10−2 and 10−1

(Re= 5000 and We= 250). The red dashed line represents the theoretical solution Uξ (ξ , η)
given by (3.28a). Note that the boundary layer is so thin that it is almost indistinguishable
(see also figure 19).

up to a constant. Formally, Ψ (ξ, η) is the stream function describing the winding flow
around a flat rising disk (Lamb 1932, § 108). Figure 13 offers a comparison between
the streamlines of this Lamb analogy and the ones computed with Gerris for the drop
impact problem in the self-similar space. A good qualitative agreement between the
analytical and the numerical streamlines is noticeable, confirming the expanding disk
analogy followed here. Interestingly, the winding motion around the contact line, as
well as the falling velocity overshoot near this region, are both captured with this
analogy and can be correlated with the peculiarities of the winding flow near the edge
of a rising disk.
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FIGURE 12. Evolution of the analytical self-similar radial velocity given by (3.28a) as a
function of η for ξ = 0.125, 0.25, 0.5, 1 and 1.5. These velocities are rescaled by the
outer solution of the boundary layer Uξ (ξ , η= 0)= ũe(ξ), equation (3.30).

FIGURE 13. (Colour online) Comparison between the flow pattern within an impacting
drop (left) and around a rapidly expanding disk (Lamb analogy, right) in the self-similar
space. In both cases, the streamlines are represented in the moving frame. The red dots
represent the theoretical position of the contact line ξ = √3. The numerical streamlines
represented on the left are derived from the velocity field computed with Gerris at t̄= 10−3

(Re = 5000 and We = 250). The theoretical streamlines shown on the right correspond
to isovalues of Ψ (ξ, η) defined in (3.34) (note the correspondence with Lamb’s figure
page 145).

3.6. Self-similar pressure
From the knowledge of the velocity potential we are now in a position to derive
the pressure field as the time derivative of the potential. In the self-similar space,
the pressure field is given by (3.4). Figure 14 proposes a comparison between the
structure of the self-similar pressure extracted from numerical computations performed
with Gerris and the theoretical prediction. There it can be seen that the overall structure
of the pressure field developing in the impacting drop, and in particular the pressure
peak in the vicinity of the contact line already pinpointed out in figure 1, nicely
matches with the theory. Interestingly, the structure just described is at variance
with the pressure distribution around a flat disk rising steadily (Lamb’s original
problem). Indeed, in such a configuration the pressure is expected to be maximal in
the stagnation point area, whereas in our model problem the pressure peaks near the
contact line/disk edge. This is a consequence of motion unsteadiness: the pressure is
here dominated by the ∂φ̌/∂ t̃ contribution rather than the steady (∇̃φ̌2)/2 term.

As in § 3.5.2, closed-form expressions for the pressure can be obtained along the
axis and the substrate plane. The radial structure of the self-similar pressure across
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FIGURE 14. (Colour online) Comparison between the pressure field developing inside an
impacting drop (left) and around a rapidly expanding disk (Lamb analogy, right). The
pressure field represented on the left is extracted from Gerris computations and represented
in the self-similar space (t̄ = 10−3, Re = 5000, We = 250; The isovalues are: 0.12, 0.24,
0.36, 0.48, 0.6, 0.72, 0.84). The self-similar theoretical pressure field represented on the
right is given by (3.4) (isovalues: 0.13, 0.28, 0.445, 0.57, 0.73, 0.9, 1.2). Though isovalues
have been slightly changed between the two panels, theoretical and numerical results are
in a good overall agreement.

the wet area reads P(ξ , η = 0) = 3/(π
√

3− ξ 2) for 0 6 ξ <
√

3. This analytical
prediction is confronted with Gerris numerical results in figure 15. After a transient
numerical initialization phase (corresponding to the red curves), the pressure profiles
collapse on the self-similar analytical solutions (blue curves). In accordance with the
overall pressure field structure depicted earlier, the pressure radial profile presents a
local minimum at ξ = 0 and a maximum in the vicinity of the contact line, that is for
ξ =√3 – where the analytical solution exhibits an inverse square-root singularity, as in
water entry problems (e.g. Cointe 1989; Howison et al. 1991). We note that for later
times the pressure peak is smoothed out in the numerical simulations (grey curves). As
this regularization coincides with the birth of the ejecta sheet, we conjecture that this
fall-off can appropriately be described with a second-order Wagner theory (Korobkin
2007; Oliver 2007).

Similarly the expression for the self-similar pressure along the symmetry axis can
also be obtained analytically: P(ξ = 0, η)= (3√3)/(π(3+ η2)) for η > 0. Figure 16
compares this last result with rescaled axial pressure profiles extracted from numerical
simulations. There again the agreement between the computations and the theory is
seen to hold for a large time span.

The structure of the pressure field in the vicinity of the origin can be inferred from
these last results. Re-expressing the pressure cuts determined in terms of r̃, z̃ and t̃,
we obtain:

p̃(r̃, z̃= 0, t̃)= 3

π
√

3t̃− r̃2
, (3.35a)

p̃(r̃= 0, z̃, t̃)= 3
√

3t̃
π(3t̃+ z̃2)

. (3.35b)
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FIGURE 15. (Colour online) (a) Pressure trace on the substrate z̄= 0 obtained from the
numerical simulations between t̄ = 5× 10−4 and 10−1 for Re= 5000 and We= 250. The
colour code for each decade is the same as in figure 17. Note that the curves are equally
distributed within each decade. (b) Same as in the left but in the self-similar space. The
black dashed curve represent the analytical solution for P(ξ , η= 0).
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FIGURE 16. (Colour online) Pressure along the axis r̄ = 0 obtained with Gerris for t̄ =
5× 10−3, 10−2, 5× 10−2 and 10−1 (same as in figure 10b) represented in the self-similar
space (Re= 5000 and We= 250). The red dashed line is the analytical solution for P(ξ =
0, η). Fluctuations of the pressure around the theoretical prediction is to be related with
numerical projections errors.

From these two relations, we deduce the following expansion for the pressure near
the origin:

p̃(r̃, z̃, t̃)=
√

3
π

t̃−1/2

(
1+ r̃2

6t̃
− z̃2

3t̃

)
+ · · · . (3.36)

This expression provides with a local approximation for ∂φ̌/∂ t̃ from which, after
time integration and space differentiation, we readily recover the stagnation point
flow structure found earlier: (ũr̃, ũz̃) = 2/(π

√
3)(r̃/
√

t̃, −2z̃/
√

t̃). This near-axis
behaviour emphasizes again that simple intuitive dimensional analysis suggestion r/t
and −z/t is here not relevant.

The leading-order term for the pressure at the origin follows:

p̃(0, 0, t̃)=
√

3
π

t̃−1/2, or, with dimensions p(0, 0, t)= ρU3/2

π

√
3R
t
. (3.37a,b)
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FIGURE 17. (Colour online) Time evolution of the pressure p̄(0, 0, t̄) measured at the
origin in the numerical simulations with Gerris (Re = 5000 and We = 250). Note that
each decade is represented with a different colour. The theoretical prediction p̄(0, 0, t̄)=
(
√

3/π)t̄−1/2 is superimposed with a black dashed line.

This result extends the t−1/2 scaling law proposed by Josserand & Zaleski (2003) on
the basis of scaling arguments. A comparison between this theoretical prediction and
Gerris numerical simulations is proposed figure 17, using the colour code of figure 15.
After a numerical transient phase, the pressure rapidly reaches the self-similar regime.
Remarkably, this short-time similarity regime is nicely captured with Wagner theory
up to times as large as t̄ = 0.5. At this point, a sharp departure from similarity is
observed and the pressure promptly drops to zero. The physical mechanisms involved
in this transition regime are still to be elucidated.

3.7. Normal force induced by drop impact
Building on the last set of results, we deduce the total net normal force imparted by
an impacting drop on the underlying substrate at early times. Integrating the pressure
on the wet surface, we have:

F̃(t̃)= 1√
t̃

∫∫

S
P(ξ , η= 0) dS= 2π

√
t̃
∫ √3

0

3ξ

π
√

3− ξ 2
dξ = 6

√
3t̃. (3.38)

The dimensional counterpart of this net total force induced by the drop on the
substrate therefore reads:

F(t)= 6
√

3ρU5/2R3/2
√

t, (3.39)

where the force is seen to increase as t1/2 for short times. Interestingly, F(t) could
have been inferred directly from energy arguments, with no knowledge of the pressure
distribution. Indeed, writing the global kinetic energy conservation for the upper semi-
infinite space, we have:

d
dt

T =−
∮

pu · n dS, where T =
(∫∫∫

ρu2

2
dV
)
. (3.40)

In the context of a flat rising disk, the kinetic energy reduces to Tdisk = (4/3)ρa3U2

(Lamb § 102). This expression can immediately be transposed to the impacting drop
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problem so that T = 4
√

3ρU7/2R3/2t3/2 (see (3.25) in § 3.4). The power of pressure
forces then follows as (d/dt)T = 6

√
3ρU3R2(Ut/R)1/2. Dividing this power by U, we

recover exactly the previously obtained result for the net normal total force. This
alternate derivation of the normal force provides us with yet another illustration of
the relevance of Lamb’s analogy for the drop impact problem.

4. Matching with the viscous solution
The inertial limit (large Reynolds number hypothesis) investigated so far has

allowed us to model the flow within an impacting drop as the winding motion
of an inviscid fluid around an expanding disk, appropriately described by an
harmonic potential obeying the unsteady Bernoulli equation (§ 2.2). Actually the
agreement between the corresponding theoretical results and numerical Navier–Stokes
computations carried out with Gerris (encompassing viscous effects) consolidate this
approximation, see e.g. figures 10 for velocity, 16 for pressure or 9 for contact-line
motion comparisons. Presumably, viscous effects are here dominating only in very
thin boundary layers developing along the wet substrate. And indeed, even if the
overall agreement between the radial velocity profiles and the inviscid solution is
evident, a careful examination of figure 11 reveals the presence of these thin layers
in the very vicinity of the solid wall. Even if spatially confined, these boundary
layers nonetheless play a key role in e.g. the question of the erosion potential of an
impacting drop. Consequently we now describe the inner structure of these viscous
layers and match it to the previously determined outer inviscid solution. Viscous
shear stresses and total erosion potential are eventually briefly discussed.

4.1. A simple boundary layer problem?

Typically, the (inviscid) slip velocity ũe(r̃, t̃)= (2/π)r̃/√3t̃− r̃2, here first introduced
(3.30), and the no-slip condition at the substrate, trademark of real fluids, are
reconciled through the introduction of a viscous boundary layer. According to the
classic boundary layer theory (e.g. Schlichting 1968), the transverse scale of this layer
is Re−1/2, so that an appropriate inner coordinate Z̃ can be defined via z̃ = Re−1/2Z̃.
The most simple idea at this point is to think that the outer variable scales defined
in § 2.3 imply that the nonlinear terms of the boundary layer equation are negligible
when compared to unsteady and viscous terms, so that this equation would simply
read:

∂Ũr

∂ t̃
=−∂ p̃

∂ r̃
+ ∂

2Ũr

∂Z̃2
, (4.1)

where capitalized variables refer to boundary layer quantities. Considering that the
Euler equation in the inviscid outer domain reduces to ∂ ũe/∂ t̃ = −(∂ p̃/∂ r̃), the
boundary layer equation can be recast as the following diffusion equation for the
defect velocity:

∂

∂ t̃
(Ũr − ũe)= ∂2

∂Z̃2
(Ũr − ũe). (4.2)

The corresponding solution can then be expressed as a convolution between the
forcing term and the Green function of the heat equation:

Ũr = ũe(r̃, t̃)− Z̃
2
√

π

∫ t̃

0
exp

(
− Z̃2

4(t̃− τ)

)
ũe(r̃, τ )
(t̃− τ)3/2 dτ . (4.3)
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(a) (b)

FIGURE 18. (Colour online) (a) Sketch of the contact line during its motion and of the
growing boundary layer in its trail, analogous to that developing behind a shockwave.
(b) Shockwave-induced boundary layer, reproduced from the German edition of Schlichting
textbook (Schlichting 1968). Notations are from Schlichting, with a correspondence
between x and r̃. Note that in the shockwave case, U∞ and Us are both constant.

Unfortunately, this solution leads to a paradoxical cancelling of shear stresses at
the wall. We conjecture that this unreasonable result stems from the fact that the
sharp longitudinal variations associated with the contact-line motion have here been
disregarded. Specifically nonlinear terms do balance unsteady terms, at least near
the contact-line location r̃ = √3t̃. As a result, the boundary layer actually grows
from this moving point both in space and time. While a comprehensive analysis of
this problem demands a careful balance of each term, likely resulting in a nonlinear
boundary layer problem, beyond the scope of the present study, we nonetheless
propose in the following an approximation based on an analogy with boundary layers
developing behind shockwaves.

4.2. Approximation of the drop impact boundary layer via an analogy with
shock-induced boundary layers

We now depict qualitatively the inner viscous structure of the velocity field by using
a simple analogy. First remembering the tank-treading movement in the vicinity of
the contact line observed and discussed in § 2.2.2, we point out the violent change in
radial velocity when passing through the contact line. In other words, the contact line
embodies a neat discontinuity where the slip velocity sees its value suddenly change
from 0 to ũe. Building on this observation, we consider in the following the contact
line as a kind of shockwave sweeping the substrate, and seeding a boundary layer
in its trail (see figure 18). This problem is classic in compressible flows and was
solved by Mirels (1955) in the context of a shock tube (see Schlichting 1968, for
more details). In this study, a fluid initially at rest is swept by a shockwave travelling
at celerity Us in the direction x and instantly acquires an impulse of velocity U∞ in
the process. Behind the normal shockwave is left a growing viscous boundary layer.

The ansatz for Mirel’s solution is to introduce ηm= z/
√

t− x/Us as the self-similar
variable. This variable not only takes into account time variations but also longitudinal
effects from the shock backwards in x. Disregarding any pressure gradient but
considering both unsteady and nonlinear effects, the momentum equation may be
rewritten in terms of ηm and of the velocity U∞ f ′(ηm):

f ′′′(ηm)+ 1
2

(
ηm − U∞

Us
f (ηm)

)
f ′′(ηm)= 0, with f (0)= f ′(0)= 0, and f ′(∞)= 1.

(4.4)
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Note that compressible effects have here been absorbed via an appropriate Lees-
Dorodnitsyn’s transformation (see Stewartson 1964). Two limiting cases clearly
emerge from the picture. For large U∞/Us (and after a rescaling and a change of
sign due to the choice of origin), the velocity profile tends to a Blasius profile.
Conversely, for small values of the velocity ratio, the velocity rather adopts an error
function profile. Note that profiles corresponding to intermediate values of this ratio
can be found in Schlichting’s textbook.

From this sound result we may by analogy transpose this approach to the drop
impact problem (see figure 18). Obviously the outer solution for the drop impact
problem is more complex as neither Us nor U∞ are constant. The core idea consists in
drawing a parallel between the shock (at position Ust) and the contact line (at position√

3t̃) on the one hand, and between the steady slip velocity U∞ and ũe(r̃, t̃) on the
other hand. Following this simple analogy the longitudinal velocity is approximated
with:

Ũr(r̃, z̃, t̃)= 2r̃

π
√

3t̃− r̃2
f ′
(

z̃

2
√

t̃− r̃2/3

√
Re

)
. (4.5)

where f ′ is solution of an equation which is analogous to (4.4). The so-called
composite solution (Van Dyke 1975), which is an expansion valid in the ideal fluid
and in the boundary layer, then follows:

ũcomp
r = − 2

π

∫ ∞

0

√
3k cos(

√
3k)− sin(

√
3k)

k
exp

(
−k

z̃√
t̃

)
J1

(
kr̃√

t̃

)
dk

+ 2r̃

π
√

3t̃− r̃2

(
f ′
(

z̃

2
√

t̃− r̃2/3

√
Re

)
− 1

)
. (4.6)

In practice we approximated f ′ with the erf function. Figure 19 proposes a comparison
between the numerical velocity profiles extracted from Gerris computations and this
approximation, which proves to provide a fairly good description for the flow. We also
tested this prediction for different values of the Reynolds number in the range 250
to 5000. The actual velocity profiles extracted from the simulations are confronted
figure 20 with the theoretical prediction. Interestingly, we note that this asymptotic
result remains accurate even for the lowest values of the Reynolds number. As a side
note, we remark that replacing the error function with Blasius profile yields a slightly
more marked deviation between theory and numerical results. That said, we chose not
to tune the velocity ratio appearing in (4.4) as (i) this is too speculative and (ii) such
adjustment is certainly beyond the limits of our analogy.

It is interesting to note that for ξ smaller than
√

3, Mirel’s self-similar variable ηm

tends to Re1/2η = Z̃/
√

t̃, so that the vertical structure for solution (4.5) now simply
involves erf(Re1/2η/2). Actually, this solution is merely the purely diffusive solution
of (4.2) for constant forcing (ũe constant in time).

From the previous results we may extract several quantities, such as the displacement
thickness or the locus of isovelocities. The displacement thickness δ1 can readily be
estimated with f ′ = erf as:

δ1 = 1√
Re

∫ +∞

0

(
1− Ũr

ũe

)
dZ̃ = 2√

π
√

Re

√
t̃− r̃2/3. (4.7)
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FIGURE 19. (Colour online) Inner boundary layer radial velocity profiles at different
locations ξ : 0.125, 0.25, 0.5, 1 and 1.5. Blue solid lines correspond to numerical solutions
obtained with Gerris at t̄ = 5 × 10−3, 10−2, 5 × 10−2 and 10−1 for Re = 5000 and We =
250 and represented in the self-similar space. Note that velocities are rescaled by their
maximum value. The red dashed lines stand for the theoretical composite solution (4.6)
blending the self-similar viscous boundary layer solution with the self-similar Wagner
inviscid solution for impact. The composite solution is also rescaled by the edge velocity
ũe(ξ) given by (3.30).

Similarly, isolines for the velocity can be extracted both for Gerris computations and
for boundary layer theory. Figure 21 provides with a qualitative comparison between
theory and numerical results, and it can be remarked that the overall prediction is
more than just qualitative.

Though the velocity ratio (2r/π/
√

3t̃− r̃2)/(
√

3t̃/2/t̃) (counterpart of U∞/Us

in (4.4)) is infinite near the shock, we note that the agreement between numerical
and theoretical solutions is actually surprisingly good. We conjecture that whenever
this ratio decreases to a value lower than one, i.e. near the centre and for large
times where this ratio behaves as (4r̃)/(3π) so tends to zero, the error function
approximation emerges as the solution of (4.4). We remark that an in-depth analysis
of these phenomena demands a more involved description for the boundary layer.
The Interactive Boundary Layer theory (see e.g. Lagrée 2010), may be a candidate.
Another promising approach might be the careful boundary layer analysis of Elliott
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FIGURE 20. (Colour online) Same as figure 19, but for different Reynolds number Re :
250, 500, 1250, 2500 and 5000 and at the fixed location in self-similar space ξ = 1.5.

FIGURE 21. (Colour online) Left: isolines for the radial velocity ũr extracted from the
numerical simulations. Right: theoretical isolines for the radial velocity given by the
composite expansion ũcomp

r . Note that the transverse scale has here been stretched to
visualize the boundary layer.

& Smith (2015) with intricate multiple structures. Nonetheless, a deeper analysis of
the Wagner region (Cointe 1989; Oliver 2002; Korobkin 2007; Oliver 2007) has to
be performed.

4.3. Estimation of the shear stress and the total drag
With this boundary layer solution, we are now in a position to provide an estimation
of the wall shear stress τ̃ = (1/Re)∂Ũr/∂Z̃|Z̃=0, i.e. the viscous component of the
stress which has been disregarded so far. And indeed this quantity is of paramount
importance as far as raindrop-induced erosion of erodible beds is concerned (Ellison
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FIGURE 22. (Colour online) (a) Numerical and theoretical shear stress distribution
underneath the drop, represented in the self-similar space (the numerical data are taken at
times t̄= 5× 10−3, 10−2, 5× 10−2 and 10−1). (b) Same data represented as a function of
the distance from the contact line (log plot). This representation reveals a cutoff distance
∆ from which the 1/x singularity is screened. Importantly, the numerical mesh size has
been chosen to be small enough (1x= 5× 10−4) to ensure the resolution of the fine-scale
motion in the vicinity of the contact line.

1945; Rein 1993; Lagrée 2003; Leguédois et al. 2005). Upon using (4.5) (with the
same erf approximation for function f ′ as before), we readily obtain:

τ̃ (r̃, t̃)= 2
√

3r̃
π3/2Re1/2(3t̃− r̃2)

. (4.8)

This theoretical prediction is confronted figure 22 with numerical profiles for the
shear stress extracted from Gerris computations, and is shown to nicely agree with
observations. From this local distribution for the stress we may infer the total drag
induced by a drop impact, by integration over the wet area:

D̃(t̃)=
∫ 2π

0

∫ √3t

0
τ̃ (t̃)r̃ dr̃ dθ. (4.9)

Unfortunately this integral diverges due to the 1/x singularity developing in the
near-contact-line region, and is visible in figure 22 on the left. Such singularities
are usually a signature of additional physics in the diverging region which have not
taken into account in the model. And indeed, figure 22 on the right reveals that the
calculated shear stress significantly deviates from the theoretical prediction at some
small distance ∆ from the contact-line position to reach a maximum value. Now
integrating the local shear stress up to r̃ = √3t̃ − ∆, where ∆ is this small cutoff
length, we can provide an estimation for the drag at leading order in log(∆):

D̃(t̃)= 3

√
t̃

πRe

(
−2 log

(
∆√

t̃

)
− 4+ log(12)

)
. (4.10)

Upon noting that this quantity can be dimensionalised with ρU2R2, the expression for
the total drag in dimensional variables follows:

D(t)= 3√
π
µ1/2ρ1/2U2R

√
t


−2 log




∆√
Ut
R


− 4+ log(12)


 . (4.11)
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Re 250 500 1250 2500 5000

∆/
√

t̃ 0.03–0.05 0.03–0.06 0.03–0.05 0.03 0.03

TABLE 2. Cutoff length ∆ (illustrated figure 22b) estimated for different Reynolds
numbers Re : 250, 500, 1250, 2500 and 5000. Although Re varies over more than a decade,
the value of ∆/

√
t̃ is quite insensitive to this variation. This suggests that the physical

nature of this cutoff length does not rely on viscosity.

Noticeably, the departure from the theoretical prediction pinpointed out in figure 22
on the right seems to occur at a precise location in self-similar variables, therefore
suggesting a

√
t̃ time dependence for ∆. From the numerical computations the value

of ∆/
√

t̃ can be estimated to be around 0.03. Note that this is obviously a crude
estimation, which nonetheless allows us to propose the following estimate for the
impact-induced drag:

D(t)' 10.7µ1/2ρ1/2U2R
√

t. (4.12)

To further refine this prediction, the true nature of the cutoff length ∆ needs to be
clearly identified. Several candidates for governing this quantity naturally emerge, with
for example the viscous 1/Re regularisation length in the vicinity of the contact-line
region or the inertial matching with the Wagner inner layer of typical size (d(t)/R)2.
To probe the nature of the cutoff length ∆ we performed extra simulations for
Reynolds number varying over more than a decade. Indeed, should ∆ arise from
viscous effects it should vary appreciably with the Reynolds number. However an
analysis of these various simulations revealed that ∆ hardly changed with varying
viscosities, as shown in table 2. These preliminary results advocate for an inviscid
nature of the cutoff length which could be revealed with the next order in the ideal
fluid expansion. This requires further investigation.

5. Further comments and conclusion
Capillary phenomena, as well as possible aerodynamic effects from the surrounding

gas, have been disregarded so far. In this last part we shall estimate their influence
on impact and discuss natural extensions to the present work. A summary and general
conclusion then follow in § 5.5.

5.1. Influence of capillary phenomena
The Weber number provides us with a global measure of the ratio of available
kinetic energy to surface energy. For low values of this number (with respect to
unity), drops typically bounce (Richard & Quéré 2000) while preserving their shape
or gently spread (Pasandideh-Fard et al. 1996) according to the wetting properties
of the underlying substrate. Note that even in this regime of droplet deposition, fast
phenomena associated with the imbalance of surface stresses can set in (Stebnovskii
1979). When the initial kinetic energy of the drop is comparable with the surface
energy (We ∼ 1), a surface wave field starts to develop on the drop, shaping it
into a characteristic liquid pyramid or torus (Renardy et al. 2003). For even higher
values of the Weber number, such as the inertial limit We � 1 investigated in the
present paper, we do not expect capillary phenomena to have a significant influence
on a global scale, but locally surface tension can still play a dominant role. For
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example, the high-curvature turnaround region at the lamella root is typically a place
where capillarity presumably plays an important role. But due to scale separation, this
region is invisible at our level of description. Indeed, in classic impact analyses see
e.g. Oliver (2002), the typical extent of this intermediate Wagner region associated
with highly curved interfaces is found to be O(ε2), to be compared both with the
O(ε) size of the main impact region considered throughout this paper (see § 2.3) and
with the O(ε3) thickness of the lamella. In the framework of our first-order theory,
we therefore do not anticipate appreciable deviations stemming from this zone.
Conversely, for a correct description of the ejected liquid sheet feeding conditions
and of the pressure fall-off near the lamella root reported figure 15, an accurate
representation of this matching region appears mandatory.

The contact line is another region where marked effects from capillarity are to
be expected. Drop impact is characterized with fast motions near the contact line.
This violent dynamic wetting phenomenon can arguably bring about issues in our
description of impact. Actually Blake, Bracke & Shikhmurzaev (1999) demonstrated
that non-local hydrodynamics could play a significant role in the dynamic contact
angle selection. Based on experimental data, Blake et al. further put forward the
possible ‘mutual interdependence’ between the phenomena in the near contact-line
region and the far-field hydrodynamics. This complex interplay was further confirmed
in the context of drop impact by Šikalo et al. (2005), especially for the late receding
phase. Interestingly, these authors demonstrated that the early evolution of the
dynamic contact angle was quite insensitive to the experimental conditions and
fairly well captured by the contact angle of a truncated sphere. This nice agreement
certainly advocates for a predominance of inertial effects over capillary corrections
emanating from the dynamic contact line, at least in the early stage of impact. And
indeed, remembering that shortly after impact the fluid motion in the contact area is
essentially vertical, it appears likely that the point of contact can be determined with
mere inertial arguments. In our simulations, dynamic effects have been disregarded
in the description of the contact angle, which has been set to the constant value π/2.
The agreement between our simulations and the purely inertial theory is again an
indication of the unimportance of dynamic wetting. It might further be interesting to
note that the surface energy gained by wetting the solid is of the order of 1/We when
rescaled by the initial kinetic energy. Again this heuristically rules out any leading
effect from wetting in the short-term dynamics. This ratio evolves with time though,
and ultimately wetting phenomena become dominant, as evidenced by the late t1/10

spreading behaviour consistent with Tanner’s law in the experiments of Rioboo et al.
(2002) performed with purely wetting liquids.

5.2. Influence of ambient air
For approximately a decade or so, there has been an increasing realization of the role
played by surrounding air in liquid impact in general, and drop impact in particular
(Josserand & Thoroddsen 2016). Following key experiments performed by Xu, Zhang
& Nagel (2005) on air-induced splash triggering, a number of studies have focused on
the events preluding liquid sheet ejection. The first significant effect of surrounding
air is to impart a dimple-like deformation in the bottom most region of the drop (see
experimental observations of the dimple obtained by Thoroddsen et al. 2005 and X-
ray ultra-fast imagery of the complex dynamics of this air pocket by Lee, Weon, Je
& Fezzaa 2012). Smith, Li & Wu (2003) first depicted theoretically this process by
coupling lubrication in the squeezed air film and potential flow inside the drop. These
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FIGURE 23. (Colour online) (a) Time evolution of the pressure as measured under an
impacting drop with air-induced dimple formation (i.e. bubble entrapment) taken into
account. The red trace monitors the pressure at the origin. The physical parameters of
this Gerris simulation are Re= 5000 and We= 250. The superimposed black dashed line
corresponds to the theoretical solution p̄(0, 0, t̄) = (√3/π)(t̄ − t̄impact)

−1/2 delayed from
t̄impact, where t̄impact is the real impact time (in the numerical simulations, t̄impact corresponds
to the time at which liquid and solid are just one grid cell away). (b) Close-up of the
bottommost point of the drop in the numerical simulation (at t̄ = 1.54 × 10−1). The
position of the interface is materialised with a blue line. The colour map illustrates
the distribution of the pressure field within the drop and in the gas layer. Noteworthy
enough the isopressure lines seamlessly cross the interface, revealing the transparency of
the dimple to pressure. Note that for the sake of clarity, the vertical scale has here been
magnified by a factor 22.

authors notably evidenced the presence of off-axis pressure peaks. While more recent
studies raised doubt about the link between this dimple formation and splash triggering
per se – that might merely be a secondary independent consequence of the presence of
surrounding gas (Duchemin & Josserand 2011), this gas pocket is nonetheless formed
over time scales and length scales overlapping that of the phenomenon reported in the
present paper (Mani, Mandre & Brenner 2010). It is therefore legitimate to question
the impact of this air entrapment phenomenon on our results.

In order to investigate these effects, we performed a simulation of a liquid drop
approaching a solid substrate, deforming as a result of lubrication pressure rise in the
film, and finally impacting the substrate. Figure 23 represents the time evolution of the
pressure exerted on the support at the axis. Considering that air delays the moment
of impact (Mani et al. 2010), we introduce a time shift timpact corresponding to the
moment where the drop and the solid are only a grid cell apart. Interestingly, our
results reveal that the pressure at the origin (measuring now the entrapped bubble
pressure) is fairly well captured by relation (3.37) after replacing t̃ with the true time
from impact t̃− t̃impact, that is:

p̃(0, 0, t̃)=
√

3
π
(t̃− t̃impact)

−1/2. (5.1)

This agreement between our prediction and a simulation incorporating air entrapment
effects not only validates and extends our results beyond the initial scope of Wagner
impact theory (disregarding air effects), but also suggests that the results of the present
manuscript correspond to the far-field behaviour of an impacting drop in presence of
surrounding gas. This observation outlines the appealing prospect of describing both
the dimple geometry and associated dynamical fields by analytical means.
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5.3. Main results
In this paper, the short-term dynamics of a drop impacting a rigid substrate has
been elucidated. A self-similar solution for the impact-induced flow has in particular
been unravelled and matched to a self-similar viscous boundary layer. This solution
has been intensively validated with numerical Gerris computations, and this constant
cross-testing between asymptotic theory and multiphase adaptive flow simulations is
one of the key features of the present approach. In the course of this investigation,
several important results have been substantiated. These results allow both for a
simple yet accurate qualitative depiction of drop impact along with an in-depth
quantitative understanding of this phenomenon. These key results are summarised in
the following:

(i) A fundamental analogy between the water entry of a solid object (Wagner’s
original problem) and drop impact exists.

(ii) During the earliest moments post impact, the contact line follows a tank-treading
motion. There is in particular no contact-line sweeping motion.

(iii) The impact-induced flow is concentrated in the contact zone, and the far field
merely corresponds to an undisturbed rigid-body motion reducing to a global
free flight at velocity U. There is no global or large-scale drop deformation
during impact.

(iv) The position of the contact line is given by the simple relation d(t)=√3RUt.
Though simple, this locus does not correspond to the cut radius of a truncated
sphere.

(v) The wet footprint extent of the drop dictates the size of the impact-induced
perturbed flow.

(vi) There is a consistent analogy between the impact-induced flow within the drop
and the flow induced by a flat rising expanding disk (Lamb’s analogy).

(vii) The impact pressure is to be associated with the unsteady Bernoulli contribution
−∂tφ. It cannot be inferred from usual inertial steady contribution −ρU2.

(viii) As a corollary to the previous point, the impact pressure is extremal at the
contact line. It is not maximal at the stagnation point.

(ix) A full three-dimensional self-similar solution for the impact-induced flow of an
inviscid drop exists and matches quantitatively realistic numerical data on drop
impact.

(x) Analytical solutions for this flow have been presented in integral forms (with
some explicit closed-form expressions along some particular locations), see
table 3 (in dimensional form).

(xi) An original inviscid stagnation point structure with an unexpected r/
√

t slip
velocity develops in the vicinity of the origin. The velocity field structure
markedly differs from the classic r/t prediction occurring for later times.

(xii) An approximate self-similar solution for the viscous boundary layer seamlessly
matches with the inviscid impact flow (analogy with Mirels shockwave
problem).

(xiii) Self-similar variables have the same structure z/
√

t both in the outer region and
in the boundary layer.

(xiv) From the knowledge of the distribution of the dynamical fields across the wet
area, the expressions for the normal and tangential total force on the substrate
are provided.
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(r= 0, z=O(d(t)) > 0+) (0 6 r< d(t)=√3RUt, z= 0+)

p(0, z, t)= 3
√

3ρU5/2R3/2

π

√
t

3URt+ z2
p(r, 0+, t)= 3ρU2R

π
√

3URt− r2
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TABLE 3. Summary of the main results of the paper in dimensioned form. The top part of
the table refers to ideal fluid results (left: closed-form results along the axis of symmetry,
right: along the substrate). The left middle part sums up inviscid stagnation point results,
and the right middle part summarises the viscous boundary layer results. Observables such
as the net normal force F(t) and tangential force D(t) are also given in the bottom part
of the table.

(xv) The asymptotic solution is found to be numerically valid over several decades in
time up to t= 0.5R/U. This solution was found to be insensitive to air-induced
dimple formation.

(xvi) For times of order one, the present results remain at least qualitative.

5.4. Perspectives

The results obtained in the present manuscript offer several appealing prospects.
On the role of surrounding air first, the last results of § 5.2 support the idea that
the dimple geometry and characteristics could be derived analytically, with a far-field
corresponding to the here presented flow. The question of the role of air in suppressing
the pressure divergence (Josserand, Ray & Zaleski 2015), or in altering the shear
stress distribution, is also a central point for a correct description of a single drop
impact action. Similarly, the question of the scope of the present results for impact on
a liquid film or on a soft/erodible substrate is also of interest. Indeed, the analytical
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and numerical toolboxes developed here might well be transposed to other rheologies
(such as Bingham, see Staron et al. (2013) or granular media, (Lagrée, Staron &
Popinet 2011)). While the inverse-square-root singularity of the pressure is integrable
and yields a finite normal force, the sharper singularity observed in the viscous shear
stress distribution leads to a divergence for the total drag. From the simulations, it
appears that the singularity is screened over a length scale ∆. As discussed in § 4
this cutoff length proves to be quite insensitive to variations of the Reynolds number.
This result suggests that the nature of ∆ would be purely inertial. A second-order
correction of the ideal fluid solution is therefore probably necessary to explain this
regularisation.

While the rudimentary description for the viscous boundary layer proposed in the
manuscript certainly necessitates a refined analysis, the question of inertial effects at
the Wagner region scale is also worth studying. Not only an in-depth investigation of
such effects might provide an explanation for the regularisation of the shear stress, but
it shall shed light over the onset of lamella formation, which still conceals mysteries.
Finally the process responsible for the loss of self-similarity observed at intermediate
times is still uncertain: confinement effects arising when the impact-flow length scale
overlaps with the drop extent, eventual deceleration in the far-field region or contact-
line geometrical departures from the square-root law are all a priori legitimate to
explain the final pressure fall-off, and certainly needs further investigation.

5.5. To conclude

Within the numerous limits carefully drawn along this paper, a consistent asymptotic
description of the dynamics and geometry of a drop impacting a solid surface has been
proposed. The results may simply be summarised through three analogies: Wagner
water entry (drop impact being the dual of this problem), Lamb’s disk winding flow
(that accurately represents the flow induced with the impact) and Mirels shockwave-
induced boundary layer (remarkably capturing the boundary layer developing in the
contact-line’s trail). The original strategy developed throughout this paper has been
to validate these three analogies through a constant confrontation between numerical
simulations and asymptotic analysis. Our study revealed that very powerful state-of-
the-art adaptive codes now allow us to probe all the dynamic features of realistic
violent events such as drop impact, but in the meantime, it also emphasised how
powerful and useful asymptotic analysis is in providing an in-depth understanding of
such phenomena and in uncloaking the raw data delivered by the code. Finally, our
study brought to light some interesting features and observables (such as the particular
stagnation point structure, pressure distribution, contact-line motion, viscous total drag
force) never observed to date in simulations or experiments. This certainly arouses the
exciting prospect of their unveiling in future experimental studies.
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FIGURE 24. Typical mesh structure refined adaptively by Gerris flow solver during a
simulation.

Appendix A
A.1. Gerris flow solver

All the numerical simulations were performed with the open-source code Gerris (freely
downloadable at http://gfs.sourceforge.net – see also Popinet 2003, 2009; Lagrée et al.
2011, for details). Gerris is a solver of the incompressible Navier–Stokes equations
taking into account multiple phases and surface tension. The code makes use of a
finite-volume approach and of a volume-of-fluid method for an accurate description of
the transport of the interfaces between two-phase flows. It also features an adaptive
mesh refinement procedure allowing for both a precise description of flows with large
scale separation and a reduction of computational costs. Typically in our simulations
the finest grid is chosen to be concentrated along free surfaces and within the contact
zone to fully capture the features of the pressure field and of the boundary layers
(see figure 24). In these areas the corresponding local resolution usually corresponds
to 4096 × 4096 but can reach local density as high as 32 768 × 32 768 if needed
(examples being figure 1 or figure 2).

The simulations carried out in this study all correspond to the impact of a water
drop in air with a Reynolds number of 5000 and a Weber number of 250. The
computations were performed in an axisymmetric configuration. We emphasize that
both liquid and air motions were computed with Gerris, but to be consistent with the
post-impact theory developed in this paper, the simulations disregarded air cushioning
and dimple formation (except where explicitly specified, see § 5.2). To avoid dimple
formation in this multiphase flow simulation, the initial configuration was set to a
slightly truncated liquid sphere already touching the solid surface. The liquid was
initialised with a constant downward velocity. The initial sphere penetration r̄0= 10−4

was at most one grid cell deep (for example the grid spacing is 1x ' 5 × 10−4

for 4096 × 4096 simulations). Finally a no-slip boundary condition was enforced at
the substrate level and the contact angle was fixed at π/2. The reliability of the
results has been thoroughly checked with a convergence study on the refinement
level, and with particular attention paid to the pressure field and the position of the
contact line convergence. Figure 25 proposes a comparison between the evolution of
the pressure field measured at the origin for two levels of resolution (2048 × 2048
and 4096 × 4096). For both cases the numerical solution quickly converges to the

http://gfs.sourceforge.net
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FIGURE 25. (Colour online) Comparison between the pressure measured in the
Gerris simulations at the origin for two different maximum level of mesh refinement (red
dots) and the theoretical prediction (black dashed line). The left panel corresponds to
a simulation where the maximal grid density is 2048 × 2048, and the right panel to
a simulation where the maximal density is 4096 × 4096 (in both cases the physical
parameters are Re= 5000 and We= 250). The analytical solution of the pressure is given
by p̄(0, 0, t̄) = (√3/π)t̄−1/2, see (3.37). After a short transient, both simulations quickly
reach the same self-similar asymptotic regime.
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FIGURE 26. (Colour online) Close-up of figure 25(b). Note that the numerical evolution
for the pressure is slightly above (about 7 %) the analytical solution.

theoretical solution p̄(0, 0, t̄) = (√3/π)t̄−1/2 (see (3.37)) approximately t̄ = 5 × 10−3

and leaves the self-similar regime at approximately t̄= 6× 10−1. We remark that after
a transient period, both numerical solutions give consistent information and collapse
onto the theoretical solution over almost three decades. Note that the occurrence of
sporadic glitches in the numerical solution (see e.g. figures 17 and 25 or 26) are to
be related with the classic difficulty of computing the pressure in projection methods,
such as the one implemented in Gerris (Brown, Cortez & Minion 2001; Popinet 2003).
We finally remark that an error of ca. 7 % between the numerical prediction for the
pressure at the origin and the theoretical prediction was consistently noted in our
simulations (see figure 26). The nature of this discrepancy is uncertain however, and
might either be related to the aforementioned numerical difficulties in computing the
pressure or to the limits of our first-order asymptotic description for drop impact.
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