
ZAMM · Z. Angew. Math. Mech. 87, No. 7, 486 – 498 (2007) / DOI 10.1002/zamm.200610331

Interactive boundary layer in a Hele Shaw cell
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The steady laminar flow in a rectangular Hele Shaw cell is considered at high Reynolds number. The lower thin wall
layer is perturbed by a small bump. Averaged equations obtained in averaging the Navier Stokes equations across the
thin direction are used. This procedure allows to recover the nonlinear convective term in the equations. First a classical
Boundary Layer theory is constructed, the weak coupling leads to a singularity. An Interacting Boundary Layer theory is
then constructed in order to compute the strong coupling of the “Averaged ideal fluid” and the “Averaged boundary layer”.
The “triple deck” counter part is presented as well.An asymptotic nonlinear approximation of the flow can be computed with
short computation time. Positive comparisons of computation of the full Averaged Navier Stokes equation and Interacting
Boundary Layer theory are shown. For instance, the boundary layer separation over a bump is obtained when either the
bump height or the Reynolds number is increased.
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1 Introduction

The Hele cell is known for its analogy with ideal fluids. It is used as an experimental setup for various experiments. When used
in the classical way (Batchelor [1]), only pressure gradients and viscous forces are present in the flow description. But some
experiments can only be explained if the nonlinear convective terms are reintroduced. For example Gondret and Rabaud [8],
Gondret et al. [9] reintroduced the convective terms to model a Kelvin-Helmholtz instability (see also Plouraboué et al. [19],
Hinch and Plouraboué [12]). The basic flow is computed in Gondret et al. [10], showing the boundary layers at the walls.
The key point is to inject, thanks to some strong approximation, the nonlinear convective derivative term in the equations.
This approximation assumes that the transverse shape of the velocity is always a Poiseuille shape. Thus, Gondret et al. used
a simplified bidimensional equation obtained by integrating the three-dimensional Navier-Stokes equations across the width
of the cell. They obtained good agreement between experiments and theory for a Kelvin-Helmholtz instability. Because the
process of averaging is crude, the equations were revisited by Ruyer-Quil [21] who presented an improved averaging. His
overall system is the same, but his coefficients are slightly different.

Here, we take those equations as granted and will not discuss them. Having in mind the flow over a bumpy wall (in fact
thin ripples or thin dunes, Loiseleux et al. [16]) we wish to compute how the flow is pertubed by this indentation and to
evaluate the skin friction on this wall (or at least the mean value of it over the width of the cell). A direct numerical resolution
can be time consuming, because there are lot of scales of various small or large ratio in this problem (e.g. the ratio of the
width to length of the cell is small). Therefore we use asymptotic expansions to solve the flow. We decompose it in layers:
an ideal fluid layer, and a viscous boundary layer.

Starting from this special system (Sect. 2), we develop the standard method of Boundary Layer theory following the
classical textbooks (Schlichting [22]). First we compute the external velocity from the “Averaged Euler Equations” (Sect. 2.2),
next we settle the associated boundary layer equations (Sect. 2.3). We then present the “standard problem” or “direct problem”
of boundary layer (Sect. 3.1). We compute some examples and show that we can compute the flow up to the point of vanishing
shear. With this method boundary layer separation is singular. So we present next the Interacting Boundary Layer theory
for this special flow (Sect. 3.3). This theory allows boundary layer separation (we present as well a Triple Deck description,
Sect. 3.2). We compare in Sect. 4 the full Averaged Navier Stokes numerical resolution to the Averaged Interacting Boundary
Layer (IBL). In the Appendix we present a simplified von Kármán resolution and some explanations on the resolution of the
inverse boundary layer equations with strong coupling.
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Fig. 1 Left: the 3D Hele Shaw cell, of size Lc, Hc, b (b ! Lc and b ! Hc). The bump is of length Lb. The relative
height of the bump is α ! 1. Right top: the transverse profiles are supposed Poiseuille ones. Right bottom: the equivalent
2D domain where the averaged systems have to be solved. The lower boundary is pertubed by the small bump.

2 Averaged equations

2.1 Averaged Navier Stokes equations

We consider a steady incompressible viscous flow in a Hele Shaw cell which satisfies the Navier Stokes equations. The cell
is of very small width b. All the walls are flat, except the lower one where there is a small bump, see Fig. 1. This bump
is of height smaller than its length (of order α ! 1 say), and of width b (in the z direction). The position of the bump is
the reference point of the co-ordinates. The entrance is at the left, the exit at the right. The mainstream direction is x, the
vertical direction is y. The order of magnitude of the fluid flow velocity is U0. For a thin Hele Shaw cell, it is classical
to consider that the z dependance of the velocity is of Poiseuille type. So, supposing that the velocity profiles remain of
parabolic shape in z (Fig. 1 right top), we define the prime velocities u(x, y, z) = 3

2 (1 − ( z
b/2 )2)u′(x, y), w = 0, and

v(x, y, z) = 3
2 (1 − ( z

b/2 )2)v′(x, y), and the prime pressure: p(x, y, z) = p′(x, y).
The method developed by Gondret et al. [8,9] is to integrate the three-dimensional equations along z, and to assume that

the velocity in this direction can be neglected: w = 0. Gravity effects are neglected too, but may be introduced. With the
chosen Poiseuille velocity profiles, the integrated system of incompressibility and of momentum balance is twodimensional:

(
∂u′

∂x
+

∂v′

∂y

)
= 0 , (1)

γ2

(
u′ ∂

∂x
+ v′ ∂

∂y

)
u′ = − ∂

ρ∂x
p′ + νγ1

(
∂2

∂x2 +
∂2

∂y2

)
u′ − 12ν

b2 u′ , (2)

γ2

(
u′ ∂

∂x
+ v′ ∂

∂y

)
v′ = − ∂

ρ∂y
p′ + νγ1

(
∂2

∂x2 +
∂2

∂y2

)
v′ − 12ν

b2 v′ , (3)

with γ2 = 6
5 and γ1 = 1. These coefficients come from the transverse integration. Ruyer-Quil [21] developed the method of

“weightened residual” which gives a better approximation of these coefficients: γ2 = 54
35 and γ1 = 6

5 . The additional term
to classical 2D Navier Stokes equations is the Darcy one. We obtain Brinkman equations with the nonlinear term.

Writing x = γ2Lx̄, y = γ2Lȳ (same spatial scales), u′ = U0ū, v′ = U0v̄, p′ = γ2ρU2
0 p̄ (same velocity scales), and

choosing L = b
12

(
U0b
ν

)
(by a van Dyke [27], Darrozès [5] “least degeneracy” principle) we write the non-dimensional final

system as:

(
∂ū

∂x̄
+

∂v̄

∂ȳ

)
= 0, (4)

(
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= − ∂p̄

∂x̄
− ū +

1
Re

(
∂2ū

∂x̄2 +
∂2ū

∂ȳ2

)
, (5)

(
ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= − ∂p̄

∂ȳ
− v̄ +

1
Re

(
∂2v̄

∂x̄2 +
∂2v̄

∂ȳ2

)
, (6)
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where we have defined a gap Reynolds number Rb =
(

U0b
ν

)
and a “L” based Reynolds Re =

( U0Lγ2
2

γ1ν

)
. We note the

following relation between the two Reynolds numbers: Re = R2
bγ2

2
12γ1

, and that γ1 and γ2 have disappeared from the equations.
This L corresponds to the entry length of the cell. It is analogous to the problem of entry in a pipe (Schlichting [22]).

Hence, the entrance effect is located at the left of the cell on scale L. The bump is located at a distance larger than L. In
order to be self consistent, the order of magnitude of the length bump is L.

In experiments from Gondret et al. [10] or Loiseleux [16] the values are: b = 0.002m, as 500 < (Rb = U0b
ν ) < 1200,

we have 8 cm< L < 20cm and 0.002 < Re−1/2 < 0.006 (or 3 · 104 < Re < 1.7 · 105).
Finally, the boundary condition is the no slip condition at the lower and upper boundaries (see Fig. 1 right bottom). A

pressure drop between the entrance and the output is imposed to drive the flow; alternatively the first velocity profile is given
at entrance and the pressure is set to 0 at output.

2.2 Averaged Euler equations

We now use an asymptotic expansion to deal with this system in a classical ideal fluid/boundary layer framework. We show
that with this approach we cannot compute boundary layer separation. If Re is large, then the second order derivatives
disappear, and from (5), (6), and (4) we have the “Averaged Euler” system (Gondret and Rabaud [8]):

(
∂ū

∂x̄
+

∂v̄

∂ȳ

)
= 0 , (7)

(
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= − ∂p̄

∂x̄
− ū , (8)

(
ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= − ∂p̄

∂ȳ
− v̄ . (9)

These are Darcy equations with nonlinear convection. The boundary condition is now the slip condition at the lower and
upper boundary for the velocity. So ū = 1, v̄ = 0, and p̄ = −x̄ is the basic solution of (8), (9), and (7) in a rectangular cell.

We introduce a small bump of length Lb and of height αLb. For consistency the scale of the bump is Lb = L. As the
bump is small (with α ! 1), we seek a linearized solution (small perturbation theory and transfer of boundary conditions
van Dyke [27]): ū = 1 + αū1 + . . ., v̄ = αv̄1 + . . ., and p̄ = −x̄ + αp̄1 + . . .. We linearize the slip condition at the lower
boundary as:

v̄

ū
= α

df̄

dx̄
i.e.αv̄1 (x̄, 0) + O(α2) = α

df̄

dx̄
. (10)

Hence, the system (8), (9), and (7) now reads :

∂2p̄1

∂x̄2 +
∂2p̄1

∂ȳ2 = 0,
∂p̄1 (x̄, 0)

∂ȳ
= − df̄ (x̄)

dx̄
− d2f̄ (x̄)

dx̄2 . (11)

We solve (11) with no perturbation far from the lower boundary (the cell is high enough) in Fourier space. This gives the
values of pressure and velocity perturbations at the boundary itself as:

FT [p̄1] = −(1 + (−ik))
ik

|k| FT [f̄ ] , FT [ū1] = |k|FT [f̄ ] . (12)

Coming back in physical space (here fp denotes the finite part of the integral):

ū1 =
1
π

fp

∫ ∞

−∞

df̄/dx̄

x̄ − ξ
dξ . (13)

A given perturbation of the boundary gives the slip velocity Ūe = 1+αū1 +O(α2). This is exactly the same formula as for
classical 2D ideal fluid, but the perturbation of pressure will be different. We have to introduce a boundary layer in order to
recover the no slip condition at the boundary.
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2.3 Averaged boundary layer

2.3.1 Averaged boundary layer equations

Writing the non dimensional Eqs. (5), (6), and (4) with again x̄ = x̃, ū = ũ, p̄ = p̃, but now focusing at a very small scale
in the transverse direction: ȳ = (δ/(γ2L))ỹ and v̄ = (δ/(γ2L))ṽ, with (δ/L) ! 1. We choose δ/(γ2L) = Re−1/2, to keep
the transverse derivative term and this gives δ = b/(

√
12/γ1). This is again the van Dyke [27], Darrozès [5] principle, and

also the classical boundary layer point of view (Schlichting [22], Gersten and Herwig [7]). The boundary layer scale is the
scale of the distance between the plates (b). The Averaged Boundary Layer equations read:

(
∂ũ

∂x̄
+

∂ṽ

∂ỹ

)
= 0 , (14)

(
ũ
∂ũ

∂x̄
+ ṽ

∂ũ

∂ỹ

)
= − ∂p̃

∂x̄
+

∂2ũ

∂ỹ2 − ũ , (15)

0 = − ∂p̃

∂ỹ
. (16)

The relative boundary layer thickness δ/L should be smaller than the relative size of the bump α in classical boundary layer
theory. In fact ỹ is taken from the boundary itself in the normal direction. Nevertheless, we will see in the next section that
δ/L and α may be of the same amplitude, so by anticipation f̃ = f̄ . We may do a Prandtl transform (x̄ → x̄, ỹ → ỹ − f̃(x̄),
and ṽ → ṽ − df̃

dx̄
∂ũ
∂x̄ ), so that the transformed boundary is flat with this new variables.

The boundary conditions are first the no slip condition at the lower boundary ũ(x̄, 0) = 0, ṽ(x̄, 0) = 0: the effort has
been done to reobtain this. The matching condition ũ(x̄, ỹ → ∞) = ū(x̄, ȳ → 0) gives ũ(x̄,∞) = Ūe(x̄) and there is no
matching to be done with the transverse velocity at this order. We note that p̃ is function of x̄ only and matches with the
ideal fluid pressure p̄(x̄, 0), and the pressure may be removed from the equation: Ūe

dŪe
dx̄ + Ūe = − dp̄

dx̄ (recall x̄ = x̄, and
see Appendix I).

The two main results of the computation are δ̃1 =
∫ ∞
0 (1 − ũ

Ūe
)dỹ the boundary layer displacement thickness and

τ̃ = ∂ũ
∂ỹ (x̄, 0) the (mean) shear (or skin friction) at the lower wall. The boundary layer displacement δ1 once rescaled by

Re−1/2 represents for the ideal fluid a perturbation at order Re−1/2. This ideal fluid perturbation may be solved, leading to
a boundary layer problem at order two. And so on. This leads to a cascade of developments at successively increasing orders
(van Dyke [27]). This is called weak interaction.

2.3.2 Basic averaged boundary layer

The basic boundary layer flow consists in solving (14) and (15) with ũ(x̄, 0) = 0, ṽ(x̄, 0) = 0, and ũ(x̄,∞) = 1. The ideal
flow is ū = 1 and p̄ = −x̄, so that the solution of

0 = − ∂p

∂x̄
+

∂2ũ

∂ỹ2 − ũ is ũB = 1 − e−ỹ . (17)

The basic Boundary Layer thickness is δ̃1B = 1 and the basic skin friction is τ̃B = 1. The scaled mean shear stress at the

wall is then ∂u
∂y =

√
12/γ1

b U0, with
√

12/γ1 = 3.46 or 3.16 if γ1 = 1 or 6/5. Note that the exact value (which is 3.26)
has been computed by Loiseleux et al [16]. This problem of Basic Averaged Boundary Layer (Eq. (17)) is obtained from the
average of the full Navier Stokes equation (here scaled with b):

0 = 1 +
(

∂2

∂ẑ2 +
∂2

∂ŷ2

)
û, (18)

with no slip boundary conditions û(ŷ, ẑ = ±1/2) = 0, û(ŷ = 0, ẑ) = 0, and ∂û(ŷ, ẑ)/∂ŷ = 0 for ŷ & 1. The solutions
of problem (Eq. (18)) is computed with the free software FreeFem++ [11], the solution is plotted on Fig. 2. The solution
of the problem 17 (note that ỹ =

√
12/γ1ŷ) is plotted on same figure. The agreement is very good for γ1 = 1, if we take

γ1 = 6/5, solutions of the two problems are superposed.

3 Final fluid problem

3.1 Classical “direct” boundary layer resolution

Having the topography αf̄ , we compute the velocity perturbation using (13) and then the boundary layer. Taking α → 0,
the slip velocity is simply Ūe = 1, and the problem in the boundary layer is solved by the exponential profile. So the full
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ŷẑ
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Fig. 2 Basic boundary layer (no bump, α = 0) velocity profiles. On the left, the transverse velocity û(ŷ, ẑ)/û(ŷ, 0) (several
curves depending on the position ŷ) is nearly a parabola (dashed curve, “Pois”). On the right, û(ŷ, 0) (plain) is compared
wih the averaged solution (1 − exp(−

√
12/γ1ŷ)), the dashed curve (“approx”) corresponds to (1 − exp(−

√
12ŷ)), the

γ1 = 6/5 case with (1 − exp(−
√

10ŷ)) is superposed to the computed plain curve.

asymptotic model is of little interest! Next, in making a non-asymptotical approximation, we refine the resolution. We take
α smaller than one (but finite) and we use again (13) to compute the slip velocity. This is the so called “weak” coupling with
direct resolution of the boundary layer.

We see that the ideal fluid is perturbed by the bump upstream before the bump itself (due to the elliptical behaviour of
the Laplacian). The slip velocity is then the velocity at the edge of the boundary layer, and we use it to solve (15), (16), and
(14). Using the numerical method presented in the Appendix, we increase the relative size of a given bump (say the very
smooth bumpαf̄ = α(exp(−πx̄2))). This gives the boundary layer displacement δ̃1 and the skin friction τ̃ , plotted on figure
(3) for various α. For α = 0.1, 0.2, 0.21, 0.22, we observe that the deceleration of longitudinal velocity before the bump
(x̄ < −1) induces a small increase of δ̃1 and a small decrease in τ̃ . In the wind side of the bump (−1 < x̄ < 0), the flow is
accelerated, the boundary layer is thinner, and there is a large value of the skin friction with a maximum before the crest. In
the lee side of the bump, the flow is decelerated, δ̃1 becomes larger and larger and τ̃ approaches 0. For α = 0.23, we have
incipient separation, which means that there is a point where τ̃ decreases to zero and then increases. For larger values of α
the computation stops at τ̃ = 0. This is the “Goldstein” singularity: when τ̃ goes to 0, then δ̃1 and dδ̃1/dx̄ become infinite.

3.2 Triple deck

As was just seen, there is an abrupt change in the boundary layer near the point of zero friction identified by Goldstein (see
Cebeci and Cousteix [2] or Gersten and Herwig [7]). To solve the boundary layer separation in the classical boundary layer
framework, a “Triple Deck theory” is required (Neiland [17], Stewartson [25], Sychev et al. [26], Smith [23], Sobey [24]).
In the Main Deck, we have the inviscid problem:

u = ūB (ỹ) + Re−1/8 Ǎ (x̌)
dūB (ỹ)

dỹ
, v = − Re−1/4 dǍ (x̌)

dx̌
ūB (ỹ) , p = p̌ (x̌) . (19)

The velocity at the edge of the Main Deck is − Re−1/4 dǍ(x̌)
dx̌ . By asymptotic matching, this is the velocity at the bottom of

the Upper Deck, v̌(x̌, y̌ = 0). So the Upper Deck problem now reads :

∂2p̌1

∂x̌2 +
∂2p̌1

∂y̌2 = 0 ,
∂p̌1 (x̌, 0)

∂y̌
=

dǍ (x̌)
dx̌

+
d2Ǎ (x̌)

dx̌2 . (20)

In the Upper Deck, we recover the ideal fluid problem (11) at different scales, and with the displacement function −Ǎ
instead of the bump shape f̄ .

In the layer near the wall the contribution of −ū is in fact negligible, hence we recover the classical Lower Deck equations.
These equations are (with x̄ = Re−3/8 x̌ , ȳ = Re−5/8 y̌):

(
∂ǔ

∂x̌
+

∂v̌

∂y̌

)
= 0 , (21)
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Fig. 3 Case of direct resolution, flow over αf̄ = αe−πx̄2
. Boundary layer displacement δ̃1 and skin friction τ̃ are displayed

for various α. The arrows are in the direction of increasing α, for α = 0.1, 0.2, 0.21, 0.22 no separation occurs. For α = 0.23
we have incipient separation. For α = 0.24, 0.25, 0.3 there is a singularity: when τ̃ goes to 0, δ̃1 becomes infinite.

(
ǔ
∂ǔ

∂x̌
+ v̌

∂ǔ

∂y̌

)
= − ∂p̌

∂x̌
+

∂2ǔ

∂y̌2 , (22)

0 = − ∂p̌

∂y̌
, (23)

with no slip condition at the wall, no perturbation upstream ǔ = y̌, v̌ = 0 and the asymptotic matching of the top of the
Lower Deck and the bottom of the Main Deck:

ǔ (x̌, y̌ → ∞) → y̌ + Ǎ(x̌) and p̌ (x̌, y̌) = p̌1 (x̌, 0) .

An example of comparison is plotted on Fig. 11 right.

3.3 Interactive boundary layer

A simpler way to deal with boundary layer separation is to use the idea of “Interactive Boundary Layer” (Smith [23], Sychev
et al. [26], Cebeci and Cousteix [2], Le Balleur [15]). The idea of this theory lies in the fact that, as one reaches separation,
δ̃1 becomes larger and larger. So, as the Reynolds number is large but finite in practice, the boundary layer will perturbate
the ideal fluid. That is to say, displacement thickness becomes of the same size as the size of the bump itself.

This is what happens in the Triple Deck.
Hence, we take into account the perturbation due to the boundary layer in adding to the lower boundary the quantity:

δ̃1 Re−1/2, so that (13) becomes now:

Ūe = 1 +
1
π

fp

∫ ∞

−∞

d
dx̄

(
αf̄ + δ̃1 Re−1/2

)

x̄ − ξ
dξ . (24)

As was said before this term is in fact the next order term. It is not relevant at the considered order. In other words, we
consider that the Reynolds is large but finite. So we break the asymptotic sequence of the “weak” coupling. We do a “strong”
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Fig. 4 A typical case of interacting resolution, flow over the arch of sine αf̄ = 0.2(1 + cos(2πx))/2 (for |x| < 1/2) at
Reynolds Number Re = 103. The velocity Ũe, the skin friction τ̃ , the bump αf̄ , and the equivalent bump αf̄ + Re−1/2 δ̃1

are plotted.

coupling: the final system is then to solve the strongly coupled set of equations which is the set of boundary layer equations
(14)–(16) and the ideal fluid solution (24). They are solved together. One problem of the method was that a small parameter
Re−1/2 is still present in the equations.

Dechaume et al. [6] (and Cousteix and Mauss [3] and [4]) established on rational basis the Interactive Boundary Layer
equations. They used a “modified van Dyke” principle and “successive complementary expansion method”. The existence
of a small parameter in the equation is then no more a problem. The link with “Triple Deck” theory is done as well. They
show that with this technique the IBL equations are fully justified.

Details of the numerical resolution are given in the Appendix II: the boundary layer must be solved in inverse way, and
a coupling semi-inverse procedure is performed.

As an example of resolution we take a given bump which is the arch of sine αf̄ = 0.2(1+cos(2πx))/2 for |x| < 1/2 and
zero for |x| > 1/2. We show on Fig. 4 typical distributions of the outer edge velocity, the skin friction and the displacement
thickness. The interaction result is that the ideal fluid flow “feels” a new bump which is no longer αf̄ but αf̄ + δ̃1 Re−1/2.
The effect is to smooth the deflection of stream lines after the bump. This deflection may be associated with a separation
bulb because the skin friction is negative there.

On Fig. 5 we plot the velocity field (ũ, Re−1/2 ṽ, in the Prandtl coordinates) and the displacement thickness (corresponding
to a stream line). On the lower part of the figure there is an amplified view of the bump and of the equivalent bump. The
perturbation of outer edge velocity is plotted too. It is no longer symmetrical.

Finally on Figs. 6 and 7 we change the parameters Re and α in order to appreciate their influence. On Fig. 6, we increase
Re from a non separated configuration to separated ones at fixed α. Increasing the Reynolds number leads to flow separation
and to an increase of the maximal shear stress. On Fig. 7, we increase Re at fixed α, this leads to flow separation as well.
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Fig. 5 Interacting resolution, flow over αf̄ = 0.2(1 + cos(2πx))/2 at Reynolds Number Re = 103. Top: velocity
profiles (ũ/Ūe, Re−1/2 ṽ/Ūe), and the displacement thickness δ̃1 written in Prandtl transformed coordinates. Bottom: The
perturbation velocity (Ũe − 1), the skin friction τ̃ , the bump αf̄ , and the equivalent bump αf̄ + Re−1/2 δ̃1 are plotted.
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Fig. 6 Case of interacting resolution, flow over αf̄ = 0.2(1 + cos(2πx))/2. Skin friction as function of x̄. Increasing the
Reynolds Number Re from 102 to 105 leads to boundary layer separation in the lee-side (ultimately a secondary recirculation
may appear in the stoss-side). The arrows are in the direction of increasing Re.
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Fig. 7 Case of interacting resolution, flow over αf̄ = α(1 + cos(2πx))/2. Increasing the bump height from α = 0.1 to
0.3 at Re = 103 leads to boundary layer separation. The arrows are in the direction of increasing α.

4 Comparisons with the full Averaged Navier Stokes equations

The Averaged Navier Stokes system (4)–(6) is solved using the finite element method thanks to FreeFem++ [11]. We wrote
the associated variational equation and use the velocity pressure formulation. We solve the problem by the penalty method.
P2 elements are used. A 6 x 6 domain is taken, the number of vertices is adjusted by it self and may be of about 9000 vertices.
At moderate Reynolds number (103) the results are nearly the same for skin friction (Fig. 8). The finite element is very
fast and the automatic remeshing allows to put more points in the boundary layer. The computation on a current standard
computer system takes about three minutes for FreeFem and less than one minute for the boundary layer code. Those times
are only indicative. The computation fails for α > 0.35 with the boundary layer code; it takes a very long time to compute
this value with FreeFem++.

For larger values of Reynolds number (104), the advantage in time of IBL is more obvious (Fig. 9). It takes about one
hour for FreeFem and one minute for the boundary layer code. The problem here is that there seems to be no steady solution.

5 Conclusion

Following classical textbooks, a Boundary Layer theory has been settled to solve a special system obtained from Navier
Stokes equations averaged along the thin direction. This is only for the Hele Shaw flow. We did not discuss the exact
validity of the Averaged Navier Stokes equations, but took them as a starting point. From these equations, we constructed
the Averaged Euler equations, and then the Averaged Boundary Layer equation. We showed that the direct resolution leads
to a kind of Goldstein singularity. In order to remove this singularity we construct the Interacting Boundary Layer (strong
coupling of the ideal and viscous fluid and inverse boundary layer resolution). It means that the boundary layer retroacts on
the ideal fluid thanks to the displacement thickness. We adapted boundary layer codes to make the computation. With this
point of view, we compute the boundary layer separation which occurs if the bump height is increased, or if the Reynolds
number is increased. Furthermore, we favourably compare these computations with a full numerical computation of the
Averaged Navier Stokes equations. The boundary layer approach is far quicker.
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Fig. 8 Wall shear stress. Comparing the Averaged Navier Stokes equations (“ANS”, plain line) and the finite differences
scheme Keller Box (“AIBL”, dashed line) at Re = 103 and for three values α = 0.1, 0.2, and 0.3 (arrow in the increasing
direction). The bump is drawn for α = 0.1.
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Fig. 9 Wall shear stress. Comparing the Averaged Navier Stokes equations (“ANS”, plain line) and the finite differences
scheme Keller Box (“AIBL”, dashed line) at Re = 104 and for three values α = 0.1, 0.2, and 0.3 (arrow in the increasing
direction). The bump is drawn for α = 0.1.
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Fig. 10 Pressure along the wall. Comparing the Averaged Navier Stokes equations (“ANS”, plain line) and the finite
differences scheme Keller Box (“AIBL”, dashed line) at Re = 104 and for three values α = 0.1, 0.2, and 0.3 (arrow in the
increasing direction). The bump is drawn for α = 0.1.

Of course, all the quantities we computed are averaged ones, so that the separation after the bump may be much more
complicated. Especially because of large velocity gradients in this region, the Poiseuille approximation is questionable.
Nevertheless, it may be a first approximation to test in experimental setups.

6 Appendix I: an integral method

As is usual in boundary layer theory, we construct an Integral Method. Substracting from the momentum equation (15) the
value “at infinity” (Ūe

dŪe
dx̄ + Ūe = − dp̃

dx̄ ), we obtain:

(
∂

(
ũ

(
ũ − Ūe

))

∂x̄
+

∂(
(
ũ − Ūe

)
v)

∂ỹ
+

(
ũ − Ūe

) ∂Ūe

∂x̄

)
=

∂2ũ

∂ỹ2 −
(
ũ − Ūe

)
. (25)

Integrating from 0 to ∞ all over the boundary layer, and using the following classical definitions:

δ̃1 =
∫ ∞

0

(
1 − ũ

Ūe

)
dδ̃2 =

∫ ∞

0

(
ũ

Ūe

(
1 − ũ

Ūe

))
dỹ , H =

δ̃1

δ̃2
, f1 =

δ̃1
Ūe

∂ũ

∂ỹ

∣∣∣∣∣
0

, (26)

we obtain the “Averaged von Kármán” integral system:
(

Ū2
e

d

dx̄

(
δ̃1
H

)
+

(
δ̃1 +

2δ̃1
H

)
Ūe

dŪe

dx̄

)
= f1

Ūe

δ̃1
− δ̃1Ūe . (27)

It may be solved together with the coupling relation (24) if H and f1 are known (from δ̃1, Ūe). Taking as closure relation
the exponential profile: uB = 1 − exp(−ỹ), we have H = 2, f1 = 1, so we may say that we look at perturbations around
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Fig. 11 Wall shear stress. Left: comparing the Averaged Navier Stokes equations (“ANS”) and the Keller Box (“KB”) and
the full linearized solution (“fft lin”) at Re = 103 and αf̄ = 0.2(1 + cos(πx))/2. Right: comparing the Averaged Navier
Stokes equations (“ANS”), Averaged IBL, and Triple Deck (“TD”) in triple deck scales at Re = 103 on a shorter bump
αf̄ = 0.01(1 + cos(2πx/0.2))/2.

the basic state. This will give us a functional relation between (Ūe − 1) and (δ̃1 − 1). Working in Fourier space and taking
the perturbation of (24), we may find the relation between the perturbations and finally, the Fourier transform of the skin
friction (with B(k) = − 2(−ik)

(−ik)
2 +2

ratio of FT [(δ̃1 − 1)] by FT [(Ūe − 1)]):

(τ̃ − 1) = FT−1







1 −
B(k)|k|

(
1 − |k| Re−1/2

)

1 − B(k)|k| Re−1/2



 |k|FT
[
αf̄

]


 . (28)

An example of comparison of this simple formula and the full nonlinear numerical resolution of the problem is displayed
on Fig. 11, the over all distribution is not so bad for a so simplified theory up to α = 0.1. To improve this we may settle a
Pohlhausen method to have better values of H and f1.

7 Appendix II: semi inverse coupling

Numerical resolution of boundary layer equations is done with an adaptation of the Keller Box ( [13] and [2]). It is in inverse
way. It means that we give the displacement thickness δ1 and search the associated edge velocity Ue.

A semi inverse coupling (Le Balleur [15]) is then done. It is an iterative resolution: for a same δ̃1
n

distribution two
velocities are computed, one ŪBL

e (δ̃1
n
) from the boundary layer (15–14), the other one Ū IF

e (δ̃n
1 ) from the ideal fluid

solution (24). The new distribution of displacement thickness δ̃1
n+1

is then computed by relaxation:

δ̃n+1
1 = δ̃n

1 + µ
(
ŪBL

e − Ū IF
e

)
.

The iteration is done until convergence. The relaxation parameter µ is chosen to ensure stability of the process (see
Le Balleur [15] for details), for example µ = 0.5 for Re = 103 but µ = 0.25 for Re = 104. For small values of α
the two finite differences schemes give the same skin friction, but for increasing values, there is a small difference in the
extremal values of τ̃ . Nevertheless, the final δ̃1 are superposed. The Fourier resolution of Eq. 28 is done with standard FFT
algorithms (Press et al. [20], and Ooura [18]).
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