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Modeling and simulating overland flow fed by rainfall is a common issue in watershed surface hydrology.
Modelers have to choose among various friction models when defining their simulation framework. The
purpose of this work is to compare the simulation quality for the Manning, Darcy–Weisbach, and
Poiseuille friction models on the simple case of a constant rain on a thin experimental flume. Results
show that the usual friction law of Manning is not suitable for this type of flow. The Poiseuille friction
model gave the best results both on the flux at the outlet and the velocity and depth profile along the
flume. The Darcy–Weisbach model shows good results for laminar flow. Additional testing should be car-
ried out for turbulent cases.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The rain falling on agricultural fields produces overland flows,
which lead to soil erosion (Moss et al., 1979; Morgan et al.,
1999), pollutant transport (Cai et al., 2007; Benkhaldoun et al.,
2007) and flood events downstream (Cea et al., 2010; An et al.,
2015). To prevent and understand these often undesirable effects,
rain-induced flows have to be modeled accurately, thanks in
particular to numerical simulations. As long as the flows have a
horizontal length scale larger than the vertical one, the vertical
velocity profile can be integrated, leading to a 2D system of
equations, called the shallow-water equations (de Saint-Venant,
1871). Such shallow-water equations are commonly used for mod-
eling overland flow (e.g. Smith et al., 2007), tsunamis (e.g. Popinet,
2011), dam breaks and flood events (e.g. An et al., 2015) or river
flooding (e.g. Bates et al., 2010), which are generally flows at high
Reynolds numbers. Because numerical simulations of such systems
play a significant role in government decision-making to prevent
or control inundation risks, it is crucial to properly model the
underlying physical mechanisms as well as develop accurate and
validated numerical schemes.

One of the key points in the shallow-water framework is the
effective friction term which depends on the assumption made
for the vertical velocity profile. This friction term depends on sev-
eral parameters, but principally on the dynamical characteristics of
the flow (i.e. laminar or turbulent). In general, because the flows
are at high Reynolds numbers and also because of complex topog-
raphy and scale effects (see for instance Smith, 2014), empirical
laws are used, in particular the Darcy–Weisbach and the Manning
models (see for instance Chow, 1959; Smith et al., 2007; Viollet
et al., 1998; Chanson, 2004; An et al., 2015). However, it is impor-
tant to notice that for rain-induced flow, the thin liquid films
involved have small Reynolds numbers. Hence, the use of turbulent
modeling is questionable, compared to the classical laminar fric-
tion term deduced from a Poiseuille velocity profile. Moreover,
quantitative experiments are still rare (Esteves et al., 2000), under-
lying the need for systematic quantitative comparisons between
numerical models and experimental measures.

In this paper, we focus on an ‘‘ideal rain” over a rough imperme-
able substrate. Experimental laboratory results are compared with
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numerical results of the shallow-water equations using both
empirical (Darcy–Weisbach and Manning models) and a laminar
(Poiseuille model) friction terms. We will show that in this case,
the laminar version of the shallow-water equations is the suitable
model for overland flows that can be generalized using a Darcy–
Weisbach approach. The configuration studied is presented in the
next section as well as the experimental setup. The numerical
methods are described in Section 3, as well as validating cases.
The numerical results are compared with the experimental mea-
surements in Section 4, and a general discussion is then given.

2. Materials and methods

2.1. The ‘‘ideal rain” case

The numerical simulations of the shallow-water equations are
compared with experimental measurements on an ideal configura-
tion of overland flow produced by rain. Real cases in nature are
complicated to model for various reasons: firstly the topography
is often complex and not always well-known; then rainfall is usu-
ally not measured everywhere; finally many different physical
mechanisms are imbricated in nature (rain, erosion, infiltration,
etc.). Dedicated experiments where these different effects can be
isolated then need to be designed. We focus here on an ideal case
of rain falling on a flat impermeable surface as shown in Fig. 1. The
same experimental setup was used before to evaluate the validity
of numerical schemes in Delestre et al. (2009). The flat topography
is tilted by an angle a and a constant rain intensity equal to I
(mm h�1) is imposed. The flume has a length L ¼ 4:04 m (direction
x) and width l ¼ 11:5 cm (direction y), and is initially dry. The rain
leads to an overland flow which is characterized by h2Dðx; y; tÞ the
water depth and u3Dðx; y; z; tÞ the velocity profile, and finally
S0 ¼ tanðaÞ is the absolute value of the flume slope. We also define
the transverse averaged water depth profile:

hðx; tÞ ¼ 1
l

Z l=2

�l=2
h2Dðx; y; tÞdy;

and the transverse and depth averaged velocity profile:

uðx; tÞ ¼ 1
lhðx; tÞ

Z l=2

�l=2

Z hðx;tÞ

0
u3Dðx; y; z; tÞdydz:

The rain intensity Rðx; tÞ is taken homogenous in space and con-
stant during a duration tstop yielding:

Rðx; tÞ ¼ I if t 2 ½0; tstop�
0 if t > tstop

�
for x 2 ½0; L�: ð1Þ

Three dynamical regimes can thus be identified on the mea-
sured outflow discharge:

� between t ¼ 0 s and a time ts, the water depth in the flume is
increasing as well as the outflow discharge: it is the transient,
or rising stage,
Fig. 1. The ‘‘ideal rain” case: an homogeneous rain is falling on a tilted flume,
producing overland flow.
� between ts and tstop the flow is in its steady stage, and
� for t > tstop the rain event is finished and the outflow discharge
decreases: it is the recessing stage.

This ideal configuration will be studied both experimentally
and numerically in order to investigate and validate an effective
rainflow overland model.

2.2. Experimental setup

2.2.1. Overall design
These experiments were carried out at the Rainfall Simulation

Hall of the French Institute for Agricultural Research (INRA,
Orléans, France). The test bench is a 4.04 m long and 11.5 cm wide
flat flume having a rectangular section (Fig. 2). A sheet of glued
printing paper is added on the flume for its hydrophilic property,
avoiding the formation of threaded flow. The varying parameters
of this experiment are the channel slope S0 and the rainfall inten-
sity. The slope of the panel can be adjusted and is measured using a
spirit level (accuracy: 0:5 mmm�1) and a stainless steel rule. The
rainfall is produced by a nozzle-type rainfall simulator based on
the design of Foster et al. (1979) and located above the channel.
Water pressure is set to 90 kPa. Five oscillating nozzles are uni-
formly distributed over the flume (1:1 m between them). Using a
combination of nozzles with slightly varying openings (Veejet
6540, 6550 and 6560; Spraying System Corp.), a coefficient of vari-
ation limited to 8.5% for the spatial variability of the rain intensity
is obtained. Before each experiment, the channel is pre-wetted. A
frequency of 55 sweeps per minute is used for the prescribed

50 mm h�1 rainfall intensity (half for the 25 mm h�1).
The experimental cases differences are based on the prescribed

rainfall intensity (25 or 50 mm h�1) and slope (2% or 5%). The three
cases considered thereafter are:

� 25 mm h�1 and 2%,
� 25 mm h�1 and 5%,
� 50 mm h�1 and 2%.

2.2.2. Measurements
The data of these measurements can be found in Supplementary

material section.

2.2.2.1. Outflow hydrograph. The outflow discharge is recorded dur-
ing the whole run, including both the rising limb of the hydrograph
(at the beginning of the rainfall) and its recessing limb (after the
Fig. 2. Front picture of the flume in the Rainfall Simulation Hall.
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end of the rainfall). The outflow discharge is collected in a bucket
by a funnel as schematized in Fig. 1. The outlet of the funnel is
custom-made to direct the water flow laterally, avoiding flow pres-
sure to be transmitted to the scale. The cumulative weight of the
bucket was recorded using an electronic scale (30 kg range, with
a 1 g resolution) at a rate of about 10 Hz. The outflow discharge
measurement is replicated six times. The hydrographs (i.e. the
derivative of the cumulative weight) are quite noisy, because of
the high measurement frequency for a small weight increment
(maximum flow rate of about 7 g s�1). To make the outflow hydro-
graph data more readily usable, they are processed by first calcu-
lating a moving average over two seconds on each replicate. This
duration is long enough to reduce the noise while still being much
shorter than the durations of the rising or recessing limbs (which
are of several minutes). Then, the median values over the replicates
are taken and a Kalman filter (see for instance Kalman, 1960) is
applied to smooth the hydrograph.

2.2.2.2. Rain intensity. During the experimental runs, rainfall inten-
sity is measured by two independent methods:

� using a set of fourteen beakers positioned along the channel
sides and weighted before and after the run and

� using the flow discharge at steady-state.

2.2.2.3. Depth and velocity. Flow depths and velocities are mea-
sured at the middle of the flume width at steady state at up to
seven positions along the channel, during one of the replicates.
Flow depths are measured using a dial indicator by taking the dif-
ference between the reading at the bottom and at the surface. Each
flow depth measurement is replicated twice. Flow velocities are
measured with the automated salt-tracing gauge described in
Planchon et al. (2005) using a salt gauge with a 3 cm spacing
between the upstream and downstream electrodes. The measure-
ment is carried out for a few minutes at each location, with one
reading every ten seconds. At each location, for both depth and
velocity, the mean value and the standard deviation of the mea-
surements are calculated. This will allow for the comparison
between measurements and simulation results.

2.3. Numerical method

2.3.1. Governing equations
As stated above overland flows are well-described by the Saint–

Venant equations, introduced in de Saint-Venant (1871), known
also as the non-linear shallow-water equations. These equations
are deduced by averaging the Navier–Stokes equations over the
water depth, assuming horizontal length scales much larger than
the vertical one. In the ‘‘ideal rain” case considered here, the 1D
system of Saint–Venant is strictly equivalent of the 2D one
because:

� the topography is constant over the flume width and
� the friction on the walls are not described by the equations.

Neglecting the influence of drop impacts on the momentum, the
resulting 1D equations of mass and momentum conservation are:

@thðx; tÞ þ @xqðx; tÞ ¼ Rðx; tÞ; ð2Þ

@tqðx; tÞ þ @x
qðx; tÞ2
hðx; tÞ þ g

2
hðx; tÞ2

 !
¼ ghðx; tÞðS0 � Sf Þ; ð3Þ

where hðx; tÞ and qðx; tÞ are respectively the local flow depth and the
local depth-averaged flux, Rðx; tÞ the rainfall intensity, g the acceler-
ation of gravity, S0 ¼ �@xZb the opposite of the slope (with Zb the
topography) and Sf the friction coefficient in its kinematic form.
The derivation of the Saint–Venant equations with rain as the first
numerical simulations using this system can be found in Zhang
and Cundy (1989). We define the maximal Reynolds number Re
with respect to the experimental conditions:

Re ¼ cosðaÞIL
m

; ð4Þ

which characterizes the behavior of the fluid: laminar (resp. turbu-
lent) for Re < 500 (resp. Re > 2000), where m is the kinematic vis-
cosity of the fluid (typically 10�6 m2 s�1 for water) and a is the
angle of the flume with the horizontal. We define the local Reynolds
number with respect to the local value of the numerical 1D fields:

Relðx; tÞ ¼ qðx; tÞ
m

: ð5Þ

We also introduce the Froude number Fr which characterizes
the relative speed of the waves in the flow. The flow is sub-
critical (resp. supercritical) when the liquid velocity is slower (resp.
faster) than the surface waves, for Fr < 1 (resp. Fr > 1). The local
Froude number is:

Fr ¼ uðx; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ghðx; tÞ

p : ð6Þ

Different friction terms have been proposed in the literature
depending on the flow properties. We will consider here the three
main friction models: the Darcy–Weisbach model (e.g. Darcy,
1857), the Manning model (see for instances Gauckler, 1867;
Manning et al., 1890), and the Poiseuille model (e.g. Igawaki,
1955). The Darcy–Weisbach and Manning models were empirically
deduced while the Poiseuille model was obtained analytically.

The Manning model was designed for open channel flows dri-
ven by gravity. The friction coefficient follows:

SMf ¼ n2 qðx; tÞjqðx; tÞj
hðx; tÞ10=3

; ð7Þ

where n is the Manning coefficient. This coefficient is usually found
by a trial and error calibration run.

For a laminar flow, the vertical velocity profile is given by a
Poiseuille flow. Denoting u2Dðx; z; tÞ the 2D local velocity for a 2D
Poiseuille flow and

uðx; tÞ ¼ 1
hðx; tÞ

Z hðx;tÞ

Zb

u2Dðx; z; tÞdz

the local depth-averaged horizontal velocity, we can express the 2D
local velocity as:

u2Dðx; z; tÞ ¼ 3
2

uðx; tÞ
h2ðx; tÞ

zð2hðx; tÞ � zÞ: ð8Þ

A well-known analytical solution of the Poiseuille coefficient SPf ,
without any free parameter, can be then deduced from the Navier–
Stokes equations:

SPf ¼ m
ghðx; tÞ @zu2Dðx; z ¼ 0; tÞ ¼ 3m

g
qðx; tÞ
h3ðx; tÞ

: ð9Þ

Note that in contrast with the Manning models, the Poiseuille
friction model does not contain any empirical/adjustable parame-
ter (other than the fluid viscosity which is set to that of water for
the case of an ideal rain).

The Darcy–Weisbach model was initially designed for turbulent
flows inside pipes, but it is generally used because the coefficient f
can be deduced from the Moody diagram (e.g. Bell et al., 1989). The
friction coefficient for this law can be written in kinematic form as:



Fig. 3. Error norms defined in Eqs. (16)–(18) with respect to the number of cells of
the simulation calculated for the case ‘‘I ¼ 25 mm h�1 and S0 ¼ 5%” for the Darcy–
Weisbach friction term. Results shown in log–log scale. The straight line is a guide
for the eyes of an order 1 curve.
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SDWf ¼ f
8g

qðx; tÞjqðx; tÞj
hðx; tÞ3

; ð10Þ

where f is the Darcy–Weisbach coefficient. We can find in the liter-
ature different laws giving the coefficient f with respect to the local
Reynolds number, see for instance the Henderson version
(Henderson, 1996) of the Colebrook–White formulae (Colebrook
and White, 1937), but such laws are not designed to be used for
such low Reynolds flows. Here, we propose a simple law for the
coefficient f:

f ¼
24
Rel

if Rel < 48;

0:5 if Rel P 48:

(
ð11Þ

In the low Reynolds region (i. e. Rel 6 48), this law mimics the Poi-
seuille Model (Eq. (9)). In the ‘‘high” Reynolds region, the value of
f ¼ 0:5 is chosen to be the highest possible for a smooth surface
(see Paraschivoiu et al. (2003) p. 317 for details), in order to have
an influence in this setup.

2.3.2. Numerical scheme
Numerical simulations are performed using well-known tested

codes that implement the following numerical scheme (i.e.
Popinet, 2013; Delestre et al., 2014). The shallow-water system
of partial derivative equations (PDE) writes under the vectorial
form

@tU þ @xFðUÞ ¼ SðUÞ; ð12Þ
with

U ¼ hðx; tÞ
qðx; tÞ

� �
; FðUÞ ¼

qðx; tÞ
ghðx;tÞ2

2 þ qðx;tÞ2
hðx;tÞ

 !
;

SðUÞ ¼ R

ghðx; tÞðS0 � Sf Þ
� �

: ð13Þ

This is a set of conservation laws, where the first equation repre-
sents the mass conservation and the second one represents the
momentum balance. Thus a finite volume method is used which
is by construction a conservative method. It consists in integrating
the equations on cells ½xi�1=2; xiþ1=2� � ½tn; tnþ1�, where ½xi�1=2; xiþ1=2� is
centered on point xi. We have xiþ1=2 � xi�1=2 ¼ Dx and tnþ1 � tn ¼ Dt.
After calculations on these cells, with the homogeneous system (i.e.
with no rain, no friction and no topography), we get the following
explicit in time finite volume scheme

hnþ1
i �hni
Dt þ

F1n
iþ1=2

�F1n
i�1=2

Dx ¼ 0

qnþ1
i

�qn
i

Dt þ
F2n

iþ1=2
�F2n

i�1=2
Dx ¼ 0

8><
>: ð14Þ

where F1niþ1=2
(resp. F2niþ1=2

) is the approximation of the first compo-

nent (resp. the second component) of the flux function FðUÞ at the
cells interface located at point xiþ1=2. The CFL stability criteria ensure
that the scheme is stable for:

Dt 6 0:5
Dx
a

with a ¼ maxðap;�amÞ ð15Þ

where a is the magnitude of the velocity of waves, ap the maximum
value of ui þ

ffiffiðp G � hjÞ and am the minimum value of

ui �
ffiffiðp G � hjÞ for j 2 fi� 1; i; iþ 1g and 8i (see Courant et al.

(1928) for details). The topographic term is treated inside the flux
term thanks to a well-balanced scheme (i.e. it captures lake at rest
solutions), which is preserving the non-negativity of the water
depth (Audusse and Bristeau, 2005; Kurganov and Petrova, 2007).
The friction source term is treated semi-implicitly (Bristeau and
Coussin, 2001), the accuracy of the scheme is improved in space
with a MUSCL reconstruction (Van Leer, 1979) and in time with a
generic second order method (Williamson, 1980).

2.3.3. Numerical cases
We simulate a one dimension channel with a fixed slope S0, as

presented in Fig. 1. Its horizontal length is Lx ¼ Lþ2ffiffiffiffiffiffiffiffi
1þS20

p with

L ¼ 4:04 m and we shift the origin at X ¼ �1 m to avoid effects of
the rain source term at the left boundary. At the right boundary,
we put a water tank of 1 m width and 1 m depth to reproduce
the experimental setup. We set closed boundary condition at the
left of the slope (X ¼ �1 m) and at the right (X ¼ 5:04 m). The rain
source is equal to zero for X < 0 and equal to (11) for X > 0. We
chose a reasonably small cell size: Dx ¼ Lx

2096 ¼ 0:00288 m. The lar-
gest time step Dtmax verifying the CFL condition is automatically
chosen by the solver, following Eq. (15). We start the simulation
at tstart ¼ 0 and we stop it at tend ¼ 1000 s. The rain is stopped at
tstop ¼ 600 s.

The first stage was to ensure the convergence of simulations.
Simulations using the case ‘‘I ¼ 25 mm h�1 and S0 ¼ 5%” with dif-
ferent numbers of cells were performed to compute the following
error norms at the steady stage (taken at t ¼ 599 s):

ke1ðNÞk ¼
R L
0 jhNðxÞ � hmaxðxÞjdx

L
; ð16Þ

ke2ðNÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR L
0 ðhNðxÞ � hmaxðxÞÞ2

q
dx

L
; ð17Þ

kemaxðNÞk ¼ maxxðhNðxÞ � hmaxðxÞÞ; ð18Þ
with hNðxÞ the water depth profile with N cells and hmaxðxÞ the water
depth profile with the maximum number of cells 2096. We can see
in Fig. 3 that our simulations converge. The rate of convergence of
emax, i.e. the maximum error, is of order one. It is the best conver-
gence rate we can have due to the presence of the shock at the
wet-dry transition upstream (Godunov’s theorem).

The second stage prescribes the parameters of the three friction
terms. For the Poiseuille friction term, the typical kinematic viscos-
ity m ¼ 10�6 m2 s�1 (water) was considered. As described above,
the Poiseuille friction coefficient does not include any calibrated
value and the Darcy–Weisbach coefficient depends mainly on the
Reynolds number. For the Manning coefficient, a calibration was
performed on the experimental case ‘‘I ¼ 50 mm h�1 and



Table 1
Main quantities for each studied case.

Tar. rain
(mm h�1)

Slope
(%)

Num. rain
(mm h�1)

Reynolds Froude Exp. outflow
ðg s�1Þ

25 2 22 24 0.4 2.8
25 5 23.5 26 0.65 3.0
50 2 45.5 54 0.6 5.8
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S0 ¼ 2%”. The best possible fit was assessed by trial-and-error. This
led to a Manning coefficient of n ¼ 0:025 s m�1/3. Thereafter, this
value is used for the two other experimental cases.
3. Results and discussion

The parameters relevant to each case are summarized in the
Table 1. For the numerical cases, the rain intensity (Num: rain)
was chosen to fit the experimental outflow during the steady stage.
We also list the values of the Reynolds number and the Froude
number computed numerically with the Poiseuille friction term
during the steady stage (t ¼ 599 s) at the bottom of the slope
(X ¼ 4:04 m). Note that the Reynolds number depends only on
the experimental conditions. We can see that the flows are always
laminar and subcritical. The ‘‘Exp. Outflow” entry in the table is the
mean of the discharge measured at the end of the slope during the
steady stage for the experimental cases.

3.1. Hydrographs

We compute numerically the flow rates at the bottom of the
slope for the three different friction terms for a channel width of
0.115 m filled with water and we compare them to the experimen-
tal measurements. The resulting hydrographs for each case are
shown in Fig. 4.

To illustrate the dynamics of the rising limb, we define two
times

� tb as the time when the hydrograph reaches 1/10 of the steady
value qs and

� ts as the time when hydrograph reaches its first local maximum,
corresponding to the steady state equilibrium.

We note in Fig. 4b the times tb and ts for the experimental case.
It is clear that tb can be considered as the starting time of the rising
limb of the hydrograph, and ts as the beginning of the steady stage.
We report in Table 2 the values of tb and ts for each friction term in
numerical simulations and for the experimental hydrographs. For
the starting time tb, the simulations using the Manning term leads
to values much smaller than the experimental value in all cases,
while the simulations using the Poiseuille coefficient are much clo-
ser. We can see that the simulations using the Darcy–Weisbach
model gives similar results than the Poiseuille term, since the local
Reynolds number almost never exceeds the critical value (48) of
the model. Only for the case S0 ¼ 2% and I ¼ 50 mm this critical
value is reached leading to a small variation only in the results.
For the time ts it is for instance slightly larger than for the Poi-
seuille model, and no general conclusion can be drawn given such
a small effect. For the beginning of the steady stage ts, the simula-
tions using the Manning term lead to values smaller than expected

for the cases ‘‘I ¼ 25 mm h�1 and S0 ¼ 2%” and ‘‘I ¼ 25 mm h�1 and
S0 ¼ 5%”, and to values slightly too high for the case

‘‘I ¼ 50 mm h�1 and S0 ¼ 2%”. Simulations using the Poiseuille
and Darcy–Weisbach friction terms give the closest estimate of ts
for the three experimental cases. Hence, it is clear that the
Poiseuille friction term is the best to model the dynamic of the ris-
ing stage. Basically, the Manning terms leads to a too early initia-
tion of the rising limb (Fig. 4) while the Darcy–Weisbach term is
mimicking the Poiseuille term in such experiments, except again
for the case S0 ¼ 2% and I ¼ 50 mm where only a small difference
is observed at the end of the rise. For the steady stage
(ts < t < tstop), the experimental data shows small oscillations
around a mean value because of the water movement in the tank
collecting the water flux at the bottom of the slope. The simulated
discharges for the three friction terms are strictly equals, because
at the steady stage the friction terms do not affect the water flux
at the outlet.

Focusing on the decreasing limb (t > 600 s), we observe that, at
first, the outflow for Poiseuille decreases faster than for Manning.
Then the outflow for Poiseuille becomes higher than for Manning.
The Darcy–Weisbach term gives same results as Poiseuille term.
However, due to the noise in the experimental hydrographs, it is
not really clear which friction term is the best at modeling this
stage.

3.2. Velocity and water depth

We now look at the velocity profiles for each case during the
steady stage (t ¼ 599 s). An important methodological difference
is that experimental velocities are measured at the free surface
in the middle of the flume, while the 1D numerical profiles can
be seen as the transverse averaged values of the 3D field. We there-
fore need to perform some transformations on the velocity field
before comparison. Denoting the full 3D local velocity field
u3Dðx; y; z; tÞ, the 1D velocity profile computed numerically can be
expressed

uðx; tÞ ¼ 1
hðx; tÞl

Z þl=2

�l=2

Z hðx;tÞ

0
u3Dðx; y; z; tÞdydz:

For the 3D velocity profile, we chose as hypothesis a
bi-parabolic profile to take into account the influence of walls:

u3Dðx; y; z; tÞ ¼ 9
uðx; tÞ

h2ðx; tÞl2
l2

4
� y2

 !
zð2hðx; tÞ � zÞ: ð19Þ

We can finally express the experimental measurement of the
velocity with respect to the 1D transverse averaged one as:

u3Dðx; y ¼ 0; z ¼ hðx; tÞ; tÞ ¼ 9
4
uðx; tÞ: ð20Þ

We present in Fig. 5 the velocity profiles computed numerically
and the mean and standard deviation of experimental measure-
ments normalized by 9

4. Firstly, we can see that the normalized
velocity profile is in good agreement with our numerical results
independently from the friction law, validating the hypothesis
made on the 3D velocity profiles in (19). However, the Manning
velocities are always too large compared to the experimental val-
ues. In all three cases, the velocities computed using the Poiseuille
term are the closest to the experimental values. To compare the
water depth of the numerical simulations against the experimental
results, we compute the averaged value of the water depth as:
denoting UexpðXbotÞ the closest velocity measurement at the bottom
of the slope (Xbot ¼ 3:72 m), UexpðXbotÞ its transverse averaged value
following (20) and hexpðXbotÞ the measurement of the water depth
at the same coordinates. We compute the flow rates at Xbot as:
qcðXbotÞ ¼ UexpðXbotÞ � hexpðXbotÞ. We can extrapolate the values at
the end of the slope qcðLÞ. During the steady stage, @thðx; tÞ ¼ 0,
then solving Eq. (2) leads to qðxÞ ¼ R� x, so that qcðLÞ is found
using: qcðLÞ ¼ qcðXbotÞ � L

Xbot
. As already said, we measure the dis-

charge at the end of the slope with the balance and we denote
qexp its value during the steady stage. Finally, we normalize the



Fig. 4. Numerical results with different friction terms and experimental discharge at the end of the slope versus time for different slopes and rain intensities. Zoom of the
rising limb in inset.
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field hexp by a factor: qexp
qcðLÞ to find the transverse averaged water

depth. With this method, we can extrapolate directly the water
depth profile as long as the averaged velocity profile is correct.
For the water depth profiles (Fig. 5), the Manning term leads to val-
ues too low. As for the velocities, the graphics comparison shows
that the Poiseuille term gives the best match for all three cases, still
with a D–W correction for the case S0 ¼ 2% and I ¼ 50 mm. In this
case, we can see at X ¼ 3:75 m that both water depth and velocity
profiles stop to follow the Poiseuille model and start following the
Manning model, a trend that is consistent given the experimental
results available.

To make a quantitative assessment of the numerical results, we
define for each friction model a water depth index Indh and a veloc-
ity index Indu as follows:
Indh ¼ 1
N
RN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hnumðXiÞ � hexpðXiÞ
� �2q

hexpðXiÞ ; ð21Þ
Indu ¼ 1
N
RN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
unumðXiÞ � uexpðXiÞ
� �2q

uexpðXiÞ ; ð22Þ

with N ¼ 6 the number of experimental measurements, Xi the posi-
tion on the flume of the experimental measurements, hnum and unum

the numerical results for the water depth and the velocity, respec-
tively, at the position Xi for the corresponding friction model
(Darcy–Weisbach, Manning or Poiseuille) and hexp and uexp the mean
of the water depth and velocity, respectively, measured experimen-



Table 2
Values of tb and ts in each case.

Rain and slope Num. or exp. cases tb (s) ts (s)

25 mm h�1 and 2% Exp. 55 115
Poiseuille 55 120
Darcy–W. 55 120
Manning 30 105

50 mm h�1 and 2% Exp. 30 75
Poiseuille 35 75
Darcy–W. 35 80
Manning 20 80

25 mm h�1 and 5% Exp. 45 85
Poiseuille 40 85
Darcy–W. 40 85
Manning 20 75

Fig. 5. Water depth (top) and velocity (bottom) profiles along the slo
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tally at the position Xi. A zero value for these indexes means that
the numerical result fits perfectly the experimental measurements.

Because the experimental measurements are done at left of
X ¼ 3:75 m, the Poiseuille and Darcy–Weisbach indices are equals.
For the water height, the index is the smallest when the Poiseuille

term is used (Table 3). Only in the case ‘‘I ¼ 50 mm h�1 and
S0 ¼ 2%” the Manning term gives a result as good as the Poiseuille
term. For the velocity, the index is always the lowest with the Poi-
seuille term. Hence, it is clear that the Poiseuille friction term is the
best to model both the water depth and the velocity profiles at
steady state.

Overall, for a smooth surface with a rain-fed, laminar and
subcritical flow, the Poiseuille term leads consistently to the best
match for the water flux at the outlet during the initiation of the
hydrograph, for the water depth profile at steady state and for
pe at the steady stage (t ¼ 599 s). Error bars are standard errors.



Table 3
Values of Indh and Indu in each case. The closer to zero the index is, the closer to the
experimental measurements the simulation is.

Rain and slope Friction model Indh Indu

25 mm h�1 and 2% Poiseuille 0.20 0.09
Darcy–W. 0.20 0.09
Manning 0.28 0.61

50 mm h�1 and 2% Poiseuille 0.17 0.22
Darcy–W. 0.17 0.22
Manning 0.17 0.47

25 mm h�1 and 5% Poiseuille 0.17 0.23
Darcy–W. 0.17 0.23
Manning 0.25 0.37
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the velocity profile at steady state. Hence, the Poiseuille term could
be used for inter-rill overland flow, a condition commonly
encountered in watershed surface hydrology. The adequacy
of this term needs however to be evaluated on field data in the
future.

Compared to the empirical Manning term, the Poiseuille term
has the advantage to be defined analytically and to have no
parameter to be calibrated. In watershed surface hydrology,
issues of over-calibration, i.e. the use of codes requiring the
calibration of numerous parameters based on limited data set,
have been leading to equifinality cases and to a limited confidence
in the simulation quality, as mentioned in Beven (2008). The use of
the Poiseuille term could help in achieving a parsimonious
parametrization, improving the overall quality of hydrologic
simulations.
4. Conclusion

Three different friction terms in the Saint–Venant equations
have been examined: the commonly used Manning and Darcy–
Weisbach models which are empirical and the Poiseuille term,
which is deduced directly from the laminar Navier–Stokes equa-
tions. The Manning model investigated in this study is using a
constant Manning coefficient chosen thanks to a previous trial-
and-error run. The Darcy–Weisbach coefficient is following a
well-known laminar law at low Reynolds number and a constant
value at high Reynolds number, which is set thanks to literature.
The Poiseuille term does not depend on any free parameter (aside
from the fluid viscosity). The ‘‘ideal rain” case has been reproduced
in laboratory and numerical simulations of these events have been
performed for these friction terms. The simulation results have
been compared with the experimental results. For both the
discharge at the end of the flume and for the velocity and water
depth profiles along the flume, we have shown that the Poiseuille
friction term appears to be the most relevant to reproduce such
laboratory experiments. We noted that the Darcy–Weisbach coef-
ficient reproduces the laminar cases investigated here as well as
the Poiseuille model. Only small differences are observed for the
highest local Reynolds situations for which no quantitative
conclusions can be drawn. However, such D–W model offers an
interesting simple approach able to deal with the variation of the
flow structure and should be studied in the future for more turbu-
lent film-flow. On the other hand, the Poiseuille friction term that
has been shown to correctly account for laminar film flow needs to
be investigated on complex 2D bathymetry for which local slope
variations could perturb the laminar approach. Finally, we would
like to emphasize that by investigating firstly a simple laminar
flow for which both experimental and numerical results could be
quantitatively compared, our work paves the road for a systematic
approach of complex rain-driven overland flows.
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