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A B S T R A C T

Blood pulsatility, aneurysms, stenoses and general low shear stress hemodynamics enhance non-Newtonian
blood effects which generate local changes in the space-time evolution of the blood pressure, flow rate and cross-
sectional area of elastic vessels. Even though these local changes are known to cause global unexpected he-
modynamical behaviors, all one-dimensional (1D) blood flow models are built under Newtonian fluid hypoth-
esis.

In this work, we present a time-dependent non-Newtonian extension of a 1D blood flow model, able to
describe local space-time variations of the viscous behavior of blood. The rheological model is based on a
simplified Maxwell viscoelastic equation for the shear stress with structure dependent coefficients. We compare
the numerical predictions of the 1D non-Newtonian model to experimental rheological data available in the
literature. Specifically, we explore four well documented shear stress protocols and we show that the results
predicted by the 1D non-Newtonian model in a single artery accurately compare, both qualitatively and
quantitatively, to the steady and unsteady shear stresses measured experimentally. We then use the 1D non-
Newtonian model to compute the flow in idealized healthy and pathological symmetric and asymmetric net-
works of increasing size. We show that aggregation occurs in such networks occurs, leading to non-Newtonian
blood behaviors especially in the presence of pathologies.

This non-Newtonian extension of a 1D blood flow model will be useful in the future to improve our under-
standing of the large-scale hemodynamics in micro- and macro-circulation networks.

1. Introduction

In recent years, one-dimensional (1D) blood flow models have
greatly helped clinicians understand the complex wave propagation
dynamics occurring in the systemic circulation, which are a combina-
tion of forward waves traveling from the heart and backward waves
reflected at arterial junctions and in the arterioles. Indeed, 1D blood
flow models enable an efficient and accurate description of averaged
blood flow features [1,2]. They are therefore particularly well-suited for
the study of blood flow in large arterial networks [3] and are now being
used as predictive tools for clinical studies [4–6]. In comparison, three-
dimensional (3D) approaches are more accurate but more costly and
time-consuming, especially in deformable elastic vessels. They are
therefore restricted to small networks of only a few arteries [7–10] and
depend on appropriate boundary conditions to reproduce physiological
data [7,11–13].

These 1D blood flow models rely on a series of simplifying as-
sumptions, among which is the hypothesis that blood is a Newtonian
fluid. While mostly valid in high shear regions such as healthy large
arteries (typically the shear rate ≥γ̇ 10 s−1), there are many portions of

the systemic circulation where low shear regimes are reached (typically
the shear rate ≤γ̇ 1 s−1) as a consequence of the pulsatility of blood
flow and of recirculation areas created by stenoses, aneurysms and bi-
furcations. In these low shear regions, blood behaves as a non-
Newtonian fluid and exhibits shear-thinning, viscoelastic and thixo-
tropic behaviors. Indeed, at low shear rates, molecular mechanisms
trigger the aggregation of red blood cells (RBCs) into long column-like
structures called “rouleaux”, whereas, at higher shear rates, these
structures are deformed, disaggregated and the RBCs re-align in the
direction of the flow. This reversible aggregation-disaggregation pro-
cess is responsible for the shear-thinning behavior of blood. The dif-
ferent timescales of the aggregation and disaggregation processes are at
the origin of its thixotropic response. Finally, the viscoelastic properties
of blood stem from the elasticity of RBCs and the change of dissipation
mechanisms at low and high shear rates [14–18].

Taking into account these complex rheological proprieties in car-
diovascular simulations is of critical importance as there exists strong
evidence that the non-Newtonian behavior of blood influences the
evolution of several cardiovascular pathologies such as atherosclerosis
[19]. To that effect, many non-Newtonian constitutive models of blood
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have been developed and can be roughly categorized as (i) time-in-
dependent and (ii) time-dependent models. (i) Time-independent con-
stitutive models describe only the shear-thinning behavior of blood and
are particularly relevant in shear-dominated steady flows [20–22]. Due
to their simplicity, they are the most commonly used non-Newtonian
blood flow models in two-dimensional (2D) and 3D numerical simula-
tions. They have been applied to study blood flow in intracranial an-
eurysms [23,24], stenoses [25,26], coronary arteries [27], idealized
small arterial networks [28–31] and heart valves [32]. (ii) Time-de-
pendent constitutive models account for the viscoelastic and thixotropic
properties of blood as well as its shear-thinning behavior in the steady
flow limit. Historically, they were developed based on an analogy be-
tween blood and a viscoelastic Maxwell material [33]. More recently, a
generalized Maxwell model has been derived in [34,35] using polymer
network theory, and successive improvements have enabled the de-
scription of the Fahraeus and Fahraeus–Lindquist effects, while in
[36–39], a generalized Oldroyd-B model has been proposed and im-
proved following a thermodynamics approach. These time-dependent
models have been successfully incorporated into 3D simulations
[39–43] and good agreement has been found with experimental data in
simple steady and pulsatile flows.

However, neither time-independent nor time-depend models have
been applied to study 3D blood flow in large vascular networks as the
computational and modeling costs of such simulations are prohibitive.
Only in [44,45] have the authors considered the non-Newtonian be-
havior of blood in reduced-order simulations of blood flow in large
arterial networks. However, both studies employ time-independent
non-Newtonian models which are enabled to describe, in the transient
flow conditions often encountered in vivo, the viscoelastic and thixo-
tropic properties of blood.

The goal of this work is therefore to couple an accurate time-de-
pendent non-Newtonian model to a 1D blood flow model in order to
efficiently describe the hemodynamics in large networks of deformable
arteries all the while accounting for the complex rheology of blood. The
rheological model we choose is a 1D simplification of an Oldroyd-B
model [46] and is consistent with the modeling complexity of the 1D
blood flow equations. It involves a viscoelastic Maxwell equation for
the wall shear stress, parametrized by wall shear rate and structure-
dependent coefficients, and a kinetic equation describing the transport
and aggregation-disaggregation of RBCs, which are considered as a
homogeneous single phase.

This article is organized as follows. In Section 2, we present the 1D
blood flow model, the non-Newtonian shear stress model and its in-
tegration into the 1D blood flow model. In Section 3, we describe
analytic solutions of the rheological model in different flow conditions,
allowing us to exhibit the shear-thinning, thixotropic and viscoelastic
behaviors of the model. Then, in Section 4, we compare numerical re-
sults of the model to published steady and unsteady experimental
rheological data. Finally, in Sections 5 and 6, we investigate the in-
fluence of the non-Newtonian model on blood flow in synthetic healthy
and pathological arterial networks.

2. One-dimensional time-dependent non-Newtonian blood flow
model

In this section, we carefully explicit the constitutive equation de-
scribing the behavior of the arterial wall, the 1D equations for blood
and the time-dependent non-Newtonian rheological model. We then
combine each of these equations to form a closed 1D time-dependent
non-Newtonian blood flow model.

2.1. One-dimensional solid model

Following ideas exposed in [47,48], we employ a simplified model
to describe the mechanical response of the arterial wall. This model is
constructed under the hypotheses that arteries are represented as thin,

long and straight axisymmetric cylinder (see Fig. 1). Additionally, the
arterial wall is described as a homogeneous, isotropic, isothermal and
linear elastic material. In this simplified framework, thin-cylinder linear
elastic theory provides the following relationship between the trans-
mural pressure variations and the deformation of the arterial wall,
describing the spring-like response of the artery [49,50]:

= + −p p K A A[ ].ext 0 (1)

The variables p and pext are respectfully the internal and external fluid
pressures, A and A0 are respectfully the instantaneous and the neutral
cross-sectional areas and K is the rigidity of the arterial wall.

In the following subsection, we derive 1D equations for the fluid
compatible with the constitutive Eq. (1).

2.2. One-dimensional fluid model

Assuming that blood is an incompressible fluid, blood flow in the
idealized artery presented in Section 2.1 is described by the 3D in-
compressible Navier–Stokes equations:
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where ρ is the constant fluid density, p is the fluid pressure,
= ⊺u u u u[ , , ]x r θ is the velocity vector written in cylindrical coordinates,

 is the identity tensor and τ is the stress tensor.
Two physiologically valid hypotheses enable the simplification of

the Navier–Stokes Eq. (2). Firstly, in accordance with the geometrical
hypotheses made in Section 2.1, the flow is assumed axisymmetric,
implying that both the inlet and outlet boundary conditions are also
axisymmetric. Secondly, the radius R of the artery is considered small
with respect to the wavelength λpulse of the cardiac pulse wave, which is
the characteristic axial length-scale. This assumption is referred to as
the long-wave hypothesis and is valid in physiological conditions as

=R 1 cm and =λ 100pulse cm. Combining both hypotheses, the Na-
vier–Stokes Eq. (2) simplify into the reduced Navier–Stokes–Prandtl
(RNSP) Eqs. [51], describing the conservation of mass and the balance
of axial momentum at time t in the axial and radial positions x and r:
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As a consequence of the long-wave hypothesis, the pressure p depends
only on the axial position x and τrx is the leading-order shear stress
component of τ in the axial momentum Eq. (3b).

Q

A

R

L

Fig. 1. One-dimensional representation of the fluid domain contained in an axisymmetric
cylindric artery. For clarity, only one-fourth of the artery of length L is represented. The
variable Q is the flow rate and =A πR2 is the instantaneous cross-sectional area of the
artery.
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The RNSP Eq. (3) are a rich dynamical system [51,52]. They contain
all necessary physical ingredients to describe blood flow in large and
small arteries, including the well-known pulsatile Womersley [53] and
steady Poiseuille [54,55] flow regimes. However, they remain a com-
plex system of partial differential equations, especially when coupled to
equations describing the elastic deformation of the arterial wall [56].

To simplify the coupling between the constitutive Eq. (1) and the
fluid equations, we integrate the RNSP Eq. (3) over the cross-sectional
area A of the idealized artery described in Section 2.1. Through this
exact integration process, we obtain 1D fluid equations describing the
conservation of mass and the balance of axial momentum in an ax-
isymmetric artery, expressed at time t in the axial position x:
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The variables A and Q are respectively the instantaneous cross-sectional
area and the axial flow rate (see Fig. 1) and are defined as:
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where R is the instantaneous radius of the artery. The nonlinear shape
factor ψ is defined as:
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and =τrx r R is the wall shear stress (WSS). The expression for the WSS
=τrx r R is provided in the following subsection.

2.3. One-dimensional Newtonian and non-Newtonian rheological models

In this subsection, we propose both a Newtonian and a non-
Newtonian interpretation of the relation between the WSS =τrx r R and
the wall shear rate (WSR) =γ ,r R

.
tailored to the time-dependent rheo-

logical properties of blood flow and compatible with the 1D fluid Eqs.
(4).

2.3.1. Wall shear rate
The local WSR =γ̇ r R is defined as:
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However, the long-wave approximation, valid in physiological condi-
tions, allows us to simplify expression (7):
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In the following, we drop the subscript =r R and write the WSS as τrx and
the WSR as γ̇ .

2.3.2. Newtonian wall shear stress model
If blood is described as a Newtonian fluid, the WSS τrx is simply a

linear function of the constant blood viscosity μ∞ and the WSR γ̇ :

= ∞τ μ γ̇.rx (9)

Eq. (9) is the most commonly used rheological model in 1D blood flow
simulations. However, results presented in [3] indicate that non-New-
tonian blood properties have a significant impact on the hemodynamics
in large arterial networks and must therefore be taken into account.

2.3.3. Non-Newtonian wall shear stress model
Following ideas proposed in [57], we construct a time-dependent

non-Newtonian blood rheological model compatible with the 1D fra-
mework presented previously and able to describe the viscoelastic,

thixotropic and shear-thinning properties of blood.
As the non-Newtonian properties of blood are intrinsically linked to

the presence of RBCs in blood plasma, we first describe the transport of
RBCs in the systemic network through a simplified 1D transport equa-
tion for the average hematocrit H (volume occupied by RBCs in a unit
volume of blood) [58,59]:
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In Eq. (10), we implicitly assume that RBCs are uniformly distributed in
the cross-sectional area of the artery, such that ∂ =H 0r . More complex
transport equations can be considered, taking into account the radial
distribution of RBCs, but are out of the scope of the 1D approach de-
scribed here.

Secondly, we adopt a binary representation of the aggregation state
of RBCs, which are either aggregated or disaggregated, and describe the
local fraction of aggregated RBCs using a single structure parameter f
varying between 0 and 1. Therefore, at any point in the arterial net-
work, the average concentration of aggregated RBCs is H f and the
average concentration of disaggregated RBCs is −H f(1 ). We represent
the time and space evolution of the concentration of aggregated RBCs
through a simple phenomenological kinetic equation for H f , allowing
us to account for the thixotropic response of blood [57,60,61]:
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The coefficients λa and λd are respectfully characteristic aggregation
and disaggregation time scales and are defined as:
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δ γ

cst and 1
˙

,a d
(12)

with δ a scaling coefficient. The left-hand side of Eq. (11) describes the
transport of aggregated RBCs, whereas the right-hand side of Eq. (11)
characterizes the local competition between the natural aggregation of
RBCs in the absence of shear and their shear-induced disaggregation. If
the hematocrit H is constant, Eq. (11) simplifies to:
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Thirdly, using a classic viscoelastic hypothesis [62], we assume that
the WSS τrx is a linear superposition of a structure (or polymeric) shear
stress τst and a Newtonian (or solvent) shear stress:

= + ∞τ τ μ γ̇,rx st (14)

where μ∞ is the viscosity of blood in the high WSR asymptotic limit.
Following [38,39,57], we then use a viscoelastic Oldroyd-B model [46],
involving an upper-convected time derivative, to describe the time and
space evolution of τst. However, in the 1D framework, the advection
effects taken into account by the upper-convected time derivative are
negligible as the shear stress is maximum at the wall, where the velocity
is small. The Oldroyd-B model therefore simplifies into a 1D viscoelastic
Maxwell equation, representing the combined contributions of an
elastic spring and a viscous dashpot:

∂
∂

+ =λ τ
t

τ μ γ̇.st
st

st st (15)

The coefficients λst and μst are respectfully the characteristic elastic
relaxation time and the structure viscosity, simply defined as:

= = − ∞λ λ f μ μ μ fand [ ] ,st a st 0 (16)

with μ0 the viscosity of blood in the low WSR asymptotic limit. Eq. (16)
expresses the simplest possible relation between the structure para-
meter f and blood parameters.
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2.4. Velocity profile closure

In the previous subsections, we have provided equations that de-
scribe the 1D time-dependent non-Newtonian blood flow in elastic ar-
teries. However, two unknowns remain, namely the nonlinear advec-
tion coefficient ψ and the WSR γ̇ . Both variables dependent on the axial
velocity profile ux, which we have left undefined.

Using classical 1D closure hypotheses [2,63], we express the axial
velocity ux as:

=u x r t ϕ r t U x t( , , ) ( , ) ( , ),x (17)

where =U Q A/ is the average axial velocity, =r r R x t/ ( , ) is the di-
mensionless radial position and ϕ is the dimensionless shape of the
velocity profile. Using Eq. (17), we then rewrite the nonlinear shape
factor ψ and the WSR γ̇ as:

∫= =
∂
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ψ rϕ r γ U
R

ϕ
r

2 d and ˙ .
r0

1 2

1 (18)

The average velocity U can be computed using the 1D model (4).
However, the shape of the axial velocity profile ϕ is lost in the 1D in-
tegration process and remains an unknown of the problem. To compute
the variables ψ and γ̇ and close the 1D blood flow equations, we must
therefore assume an a priori shape of the velocity profile, and this
choice significantly affects the computed numerical results [64–66].

To gain insights on the physiological values of ψ and γ̇, we consider
the linear flow of Newtonian blood in a straight elastic artery, for which
the shape of the velocity profile is given by the linear Newtonian
Womersley solution [53,67]:
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and J0 and J1 are the first and second Bessel functions. These expres-
sions are parametrized by the Womersley number α, defined as:

=α R ω
ν

,0 (21)

where ν is the Newtonian kinematic viscosity of blood and ω is the
characteristic frequency of blood flow oscillations. From Eq. (19), we

obtain using the software Mathematica the following expressions for ψ
and ∂ =ϕr r 1:
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where 0F1(a, z) is the confluent hypergeometric function, Γ(x) is the
Gamma function and In(z) is the modified Bessel function of the first
kind.

In Fig. 2, we plot the variations with the Womersley number α of the
coefficients ψ and ∂ =ϕr r 1 given by Eq. (22). We notice that the coeffi-
cients ψ and ∂ =ϕr r 1 vary between the following bounds:

⎧
⎨⎩

≤ ≤
∂ ≤ −=

ψ a
ϕ b

1 4/3 ( )
4 ( ).r r 1 (23)

We therefore assume that =ψ 1, which is a reasonable assumption
considering the inequality (23a), especially since nonlinear effects are
small in physiological conditions. However, this approximation is valid
only in the Newtonian case as we are enable to predict the influence of
non-Newtonian effects on the shape of the velocity profile. Never-
theless, if we assume that non-Newtonian behavior of blood has a
flattening effect on the velocity profile, much like with a Bingham fluid,
then the approximation =ψ 1 remains valid.

Contrary to the nonlinear advection coefficient ψ, we set the value
of ∂ =ϕr r 1 on a case-by-case basis, as no clear approximations of ∂ =ϕr r 1
can be extracted from Eq. (23b). For example, for a Couette flow
∂ = −=ϕ 1,r r 1 for a Poiseuille flow ∂ = −=ϕ 4r r 1 and it is common in
large arteries to use ∂ = −=ϕ 11r r 1 [1,65] (see Fig. 2).

2.5. One-dimensional time-dependent non-Newtonian blood flow model

Replacing the pressure p by its expression (1) in the axial mo-
mentum Eq. (4b) and setting the nonlinear advection coefficient =ψ 1,
we obtain the following 1D system of equations describing the con-
servation of mass and the balance of momentum in an elastic artery:

Flat, ψ=1

Poiseuille, ψ=4/3

Smith 2002, ψ=1.1

0 30
α

11

1.1

1.33

1.4

ψ

Womersley

Poiseuille, ∂r̄φ|r̄=1=−4

Smith 2002, ∂r̄φ|r̄=1=−11

0 30
α

-31

-11

-4

0

∂
r̄φ
| r̄=

1

Womersley

Fig. 2. Evolution of the nonlinear shape factor ψ (left) and the dimensionless WSR ∂ =ϕr r 1 (right) computed with the linear Newtonian Womersley velocity profile closure (22) ( ). The
straight lines correspond to the coefficients obtained by Smith in [68] ( , =ψ 1.1, ∂ = −=ϕ 11r r 1 ), with a Poiseuille profile closure ( , =ψ 4/3, ∂ = −=ϕ 4r r 1 ) and with a flat profile
closure ( , =ψ 1, ∂ = −∞=ϕr r 1 ).
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The WSS τrx is obtained by solving the combination of Eq. (10) and
Eq. (11), respectively describing the transport of RBCs and aggregated
RBCs, and of the time-dependent non-Newtonian rheological model
described by Eqs. (14) and (15). The parameters μ0, μ∞, λa, δ and ∂ =ϕr r 1
are constants to be determined using available rheological data.

2.6. Numerical scheme

From a mathematical point of view, system (24) is dominantly hy-
perbolic. In this hyperbolic framework, the flow is subcritical and
shock-like phenomena do not occur as the flow speed is smaller than the
wave speed in physiological conditions. To capture the propagation of
pulse waves, we solve system (24) using a second-order Adam–Bash-
forth time-integration scheme coupled to a finite-volume kinetic nu-
merical scheme [5,69]. The transport Eqs. (10) and (11) are solved
using a classical upwind scheme, where the velocity is provided by the
kinetic numerical flux [70]. The rheological system (Eqs. (14) and (15))
is explicitly updated using the same time integration scheme as the
hyperbolic system (24). Finally, the treatment of inlet and outlet
boundary conditions as well as bifurcations is classical and we refer the
readers to [49,69,71] for more details.

3. Analysis of the non-Newtonian stress model

We analyze here the time-dependent behavior of the 1D non-
Newtonian stress model (Eqs. (10), (11), (14) and (15)) derived in
Section 2.3. To simplify the analysis, we consider idealized flow con-
ditions where we assume that all quantities are independent of the axial
position x and that the average hematocrit is constant (typically

=H 0.45), allowing us to decouple the rheological model from the 1D
blood flow Eq. (24).

3.1. Steady flow: analogy with the simplified Cross model

We consider a steady flow under a constant WSR γ̇, for which
Eqs. (13) and (15) simplify to:

⎧

⎨
⎪

⎩⎪

=
+

= − ∞

f a

τ μ μ f γ b

1
1

( )

[ ] ˙ ( ),

s λ
λ

s s0

a
d

(25)

where fs and τs are respectively the steady structure parameter and the
steady structure shear stress.

This steady state results from the balance between aggregation and
disaggregation processes, and the equilibrium value of the structure
parameter (25a) explicitly depends on the aggregation time scales λa
and λd:

• if λa≫ λd then f≈ 0 and shear-induced RBC disaggregation is the
dominant mechanism;

• if λa≪ λd then f≈ 1 and natural RBC aggregation is the dominant
mechanism.

Additionally, we can explicitly define the apparent viscosity =μ τ
γ̇
rx

using Eqs. (14), (25a) and (25b):

= +
−

+∞
∞μ μ

μ μ

1
.λ

λ

0
a
d (26)

The apparent viscosity (26) exhibits the expected shear-thinning be-
havior and is formally identical to the simplified Cross constitutive
model [72]:

= +
−

+∞
∞μ μ

μ μ
λ γ1 ˙

.
Cr

0

(27)

In Table 1, we summarize the values of the parameters of the simplified
Cross constitutive model taken from [20]. Thanks to the analogy be-
tween the apparent viscosity (26) and the Cross viscosity (27), we use
the values of μ0 and μ∞ presented in Table 1 and determine the re-
maining unknown parameters λa and δ using the value of the constant
λCr and experimental data presented in [18]. The complete set of
parameters of the rheological model is presented in Table 2.

3.2. Constant wall shear rate

We now study the disaggregation under a constant WSR γ̇ of blood
initially at rest. At =t 0, we assume that =f 1 and =τ 0st . The kinetic
equation for the structure parameter is:

=
−

−
f
t

f
λ

f
λ

d
d

1
,

a d (28)

and its solution is:

= + − −f f f[1 ]e ,s s

t
λc (29)

where = +λ λ λ1/ 1/ 1/c a d. Injecting expression (29) in Eq. (15), we
obtain the following expression for the structure shear stress τst:

=
− + ⎡
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− ⎤
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⎣
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τ τ
f f
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[1 ] e 1

e 1
.st s

s
t
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2
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t
λc

t
λc (30)

The analysis of Eqs. (29) and (30) allows us to highlight two dif-
ferent temporal dynamics described by the rheological model:

• an asymptotic viscoelastic dynamic when t→∞. Indeed, at very
long times, the structure parameter f and the structure shear stress
τst converge towards the steady values presented in Section 3.1:

⎧
⎨⎩

=
=

→∞

→∞

f f a
τ τ b

( )
. ( )

t s

st t s, (31)

This asymptotic behavior highlights the viscoelastic transition from
an initially aggregated state = =f τ( 1, 0)st towards a steady equi-
librium state (system (31)) where aggregation and disaggregation
are perfectly balanced.

• a thixotropic temporal dynamic at intermediate times 0< t<∞.
Indeed, for given values of λa and λd, it is possible to find the ana-
lytic expression for the time tτ max,st at which the maximum value of
τst (30) is reached:

Table 1
Values of the parameters of the simplified Cross constitutive model taken for [20]

μ∞ [poise] μ0 [poise] λCr [s]

0.05 1.3 8

Table 2
Parameters of the time-dependent non-Newtonian blood constitutive model, given in cgs
units and based on an analogy with the simplified Cross constitutive model [72] and
experimental data from [18].

ρ [ −g·cm 3] μ∞ [poise] μ0 [poise] λa [s] δ

1 0.05 1.3 5 1.5
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with:
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The function W is the Lambert-W function, which is the inverse
function of =f w we( ) w. Using expressions (32) and (33), simple
calculations allow us to show that < < ∞t0 τst max, and that τst,
max≥ τs. We can therefore conclude that in this configuration, the
structure shear stress τst exhibits a thixotropic behavior at finite
times, represented by an overshoot with respect to the asymptotic
steady value τs. The magnitude of the overshoot depends on the
value of the characteristic aggregation timescales λa and λd:
⋆ if λa≫ λd (equivalently ≫γ̇ 1 −s 1), then λc≈ λd and we have:

≫τ τ .st max s, (34)

In this case, disaggregation occurs at a much smaller timescale
than aggregation due to the high WSR value. This results in large
variations of the structure of blood at small times (t≤ λc) and
therefore a large thixotropic overshoot of the structure shear
stress τst before the system relaxes towards the steady structure
shear stress τs.
⋆ if λa≪ λd (equivalently ≪γ̇ 1 −s 1), then λc≈ λa and we have:

≈τ τ .st max s, (35)

In this case, aggregation occurs at a much smaller timescale than
disaggregation due to the low WSR value. This results in almost
no variation of the structure of blood and therefore no thixotropic
overshoot of the structure shear stress τst.

3.3. Zero wall shear rate

We study here the reaggregation of initially disaggregated blood in
the absence of shear ( =γ̇ 0). At =t 0, we assume that =f f0 and

=τ τst st,0. The kinetic equation for the structure parameter is:

= −
+f

t
f

λ
d
d

1
,

a (36)

and its solution is straightforward:

= + − −f f1 [ 1]e .
t

λ0 a (37)

Injecting expression (37) in Eq. (15), we obtain the following expres-
sion for the structure shear stress τst:

=
− +

τ τ
f

f 1 e
.st st,0

0

0
t

ta (38)

Eqs. (37) and (38) enable us to highlight another asymptotic vis-
coelastic temporal dynamic when t→∞. Indeed, at very long times, the
structure parameter f and the structure shear stress τst relax towards the
steady values presented in Section 3.1, computed here for =γ̇ 0:

⎧
⎨⎩

=
=

→∞

→∞

f a
τ b

1 ( )
0. ( )

t

st t, (39)

This asymptotic behavior highlights the viscoelastic relaxation of in-
itially disaggregated RBCs towards a fully aggregated state. The phe-
nomenon is driven only by the characteristic aggregation timescale λa
as in the absence of shear λd→∞.

The asymptotic analysis conducted in this section highlights the

shear-thinning, viscoelastic and thixotropic behaviors of the proposed
rheological model (Eqs. (10), (11), (14) and (15)). In the following
sections, we compare numerical results, where spatial and hematocrit
variations taken into account, to the analytic results previously ob-
tained and to experimental results in order to assess if the model is able
to quantitatively describe time-dependent non-Newtonian behaviors of
blood.

4. Comparison with experimental data

We propose to compare here the numerical results of the 1D non-
Newtonian blood flow model to experimental data available in the lit-
erature. We use published results of Barbee [73], Bureau et al. [17] and
McMillan et al. [74], where the authors systematically studied the
steady behavior of blood in a capillary viscometer and its unsteady
response to step and triangular shear solicitations using a coaxial cy-
linder microviscosimeter.

In each example, we reproduce the viscometric conditions of the
experiment by imposing similar shear rate conditions in a straight ar-
tery of length L, neutral radius R0 and rigidity K. To do so, we impose
the flow rate Qin at the inlet of the artery and a homogeneous Neumann
boundary condition for the flow rate at the outlet of the artery. We also
impose a constant average hematocrit =H 0.45 and homogeneous
Neumann boundary conditions for the structure parameter f at the inlet
and outlet of the artery. The time-evolution of the inlet flow rate Qin

depends on the considered experimental test case and is designed to
impose a chosen WSR γ̇in:

= ⎡
⎣

∂
∂
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ϕ
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A R( ˙ ) ˙ ,in in in
r 1

1

0 0
(40)

where A0 is the neutral cross-sectional area of the artery. Finally, each
simulation is initialized by the following initial conditions:

⎧
⎨⎩

= =
= = =

Q A A a
H f τ b

0 and ( )
0.45 and 1 and 0. ( )st

0

(41)

The parameters of the time-dependent non-Newtonian blood con-
stitutive model are summarized in Table 2, the geometrical and me-
chanical parameters describing the artery in Table 3 and the time- and
space-discretization parameters in Table 4.

4.1. Steady state

In [73], Barbee obtained, using a capillary viscometer, the evolution
of the steady shear rate as a function of the pseudo shear rate

=U U R/[2 ] for 9 different blood samples with different hematocrit
values.

In Fig. 3, we compare these experimental results to steady numerical
results computed with the 1D non-Newtonian blood flow model and to
the steady analytic solution obtained in Section 3.1 (Eq. (25)). We
notice that, as expected, the analytic and 1D numerical results are
perfectly matched. Moreover, we observe that the results predicted by
the 1D non-Newtonian blood flow model are well within the experi-
mental data range and describe blood with an average hematocrit

≤ ≤H0.345 0.500.
To better fit the experimental data of Barbee [73], we could have

taken into account the dependence of the viscosities μ0 and μ∞ with the
average hematocrit H and the blood temperature, following ap-
proaches proposed in [22,59]. Similarly, we could also have accounted

Table 3
Geometrical and mechanical parameters describing the artery, given in cgs units.

L [cm] A [cm2] K [ −dyne·cm 3] ∂ =ϕr r 1

10 1 104 −4
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for the dependence of blood parameters with the average fibrinogen
concentration cf [22,76]. However, taking into account such detailed
parametric dependence would have been inconsistent with the level of
approximation of the 1D blood flow equations and is therefore out of
the scope of the 1D approach described here.

This comparison with steady experimental data highlights the shear-
thinning behavior of the 1D non-Newtonian blood flow model in the
steady flow limit. Moreover, these results show that with a minimal
number of parameters, the 1D non-Newtonian blood flow model is able
to reproduce average steady rheological data.

4.2. Single shear-step

In a series of experiments, Bureau et al. [77] obtained experimental

data on the behavior of a blood sample subjected to the following step-
change in shear rate:

= ⎧
⎨⎩

≤ <
≤

γ t
γ t t

t t
˙ ( )

˙ for 0 Δ
0 for Δ .

1,2 1,2

1,2 (42)

To highlight separately the viscoelastic and thixotropic behaviors of
blood, Bureau et al. considered a low shear rate regime for which
( =γ̇ 0.051

−s 1 and =tΔ 301 s) and a high shear rate regime ( =γ̇ 12
−s 1 and

=tΔ 8.52 s).
In Fig. 4, we compare the time evolution of the measured experi-

mental shear stress to the computed 1D numerical WSS and to the
analytic solutions presented in Sections 3.2 and 3.3 (Eqs. (30) and
(38)). We observe that for both flow conditions γ̇1 and γ̇ ,2 the experi-
mental data from Bureau et al. [77] agree qualitatively and semi-
quantitatively with the 1D numerical results. Moreover, the analytic
and 1D numerical results are perfectly matched. The data presented in
Fig. 4 Left are characteristic of a viscoelastic material: the shear stress
rises monotonously towards an equilibrium steady value and then re-
laxes in the absence of shear towards a fully aggregated state. On the
contrary, the data plotted in Fig. 4 Right present the characteristic
overshoot of a thixotropic material. Both rheological behaviors are
described in Section 3.2 and can be explained focusing on the evolution
of the structure parameter f, presented in Fig. 5. Indeed, in the low
shear rate regime (γ̇1), the structure of blood is not significantly altered.
Whereas in the high shear rate regime (γ̇2), large variations of the
structure of blood occur on a short timescale, leading to memory effects
and a thixotropic overshoot of the shear stress.

The agreement with experimental data from Bureau et al. [77] ob-
served here indicates that the 1D non-Newtonian blood flow model
enables, with a minimal number of parameters, a satisfactory descrip-
tion of the viscoelastic and thixotropic time-dependent behaviors of
blood.

4.3. Multiple shear-steps

Experimental data from McMillan et al. [74] describe the time-de-
pendent shear stress response of blood to two successive shear-steps of
amplitude =γ̇ 8 −s 1 and of length =tΔ 2.5 s. The experiment was re-
peated three times, each time decreasing the time delay Δtd between the
consecutive shear-steps, during which no shear was applied.

In Fig. 6 Left, we compare the time evolution of the experimental
and 1D numerical shear stresses for different time delays
Δtd∈ {1.5, 1, 0.5}. Both solutions are qualitatively and quantitatively
comparable and we observe the expected viscoelastic relaxation and
thixotropic transient overshoot. Results in Fig. 6 Right correlate the

Table 4
Numerical parameters describing the time discretization and the mesh.

Δt [s] Δx [cm] Order

−10 4 × −5 10 2 2

x=0.5L

1 10 100

|Ū = U/ [2R]| [s−1]

0.1

1

10

100

1000

|τ r
x
|[d

yn
e·c

m
−2

]

H̄=0.123
H̄=0.173
H̄=0.215
H̄=0.278

H̄=0.345
H̄=0.395
H̄=0.421
H̄=0.500

H̄=0.593
Analytic
1D

Fig. 3. Evolution of the WSS τrx with the pseudo shear rate =U U R/[2 ]: comparison
between experimental data from Barbee [75] for different hematocrit values (marks),
steady results of the 1D non-Newtonian blood flow model (*) and the steady analytic
solution (25) (––). The analytic and 1D numerical results are perfectly matched and are
well within the experimental data range, describing blood with an average hematocrit

≤ ≤H0.345 0.500.
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Fig. 4. Time evolution of the shear stress τrx with a step-change in shear rate: comparison between experimental data from Bureau [77] et al. ( ), results of the 1D non-Newtonian blood
flow model ( ) and analytic solutions (30) ( ) and (38) ( ). Left: Low shear rate viscoelastic regime with =γ̇ 0.051

−s 1 for =tΔ 301 s and then =γ̇ 01
−s 1. Right: High shear rate

thixotropic regime (overshoot) with =γ̇ 12
−s 1 for =tΔ 8.52 s and then =γ̇ 02

−s 1. There is a qualitative and quantitative match between experimental data and numerical results, and a
perfect match between analytic and numerical results.
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increase of the overshoot amplitude with larger variations of the
structure parameter f, as blood has more time to reaggregate when Δtd
increases.

4.4. Triangle shear solicitation

Bureau et al. [17] also obtained experimental hysteresis curves by
imposing the following triangular shear rate solicitation on the blood
sample:

=
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(43)

To highlight the viscoelastic and thixotropic behaviors of blood, the
authors considered a low shear rate regime ( =γ̇ 0.121

−s 1 and =t 131 s)
and a high shear rate regime ( =γ̇ 1.032

−s 1 and =t 47.62 s).
In Fig. 7, we plot the experimental and numerical variations of the

shear stress τrx with respect to the shear rate γ̇ . In the low shear rate
regime γ̇1 plotted in Fig. 7 Left, the viscoelastic behavior of blood is
highlighted and the experimental and numerical results match very
well. In the high shear rate regime displayed on Fig. 7 Right, the

thixotropic effect is dominant. For the increasing shear region of the
curve, the experimental and numerical results are well matched.
However, for the decreasing shear part, the experimental results are not
well reproduced, even though shear stress amplitudes are similar.

The results presented in Sections 4.1–4.4 indicate that the 1D non-
Newtonian blood flow model allows us to compute numerical results
similar to well-known experimental data form [73,74,77,77]. We can
now move towards more complex simulations in large networks of
elastic arteries.

5. Elementary bifurcation

Bifurcations are elementary parts of an arterial network and connect
a parent artery p to two daughter arteries d1 and d2. Bifurcations are
responsible for the reflection of the incoming pulse wave as they re-
present impedance discontinuities in the network. Moreover, due to the
complex flow patterns they generate, the non-Newtonian behavior of
blood can be particularly important in these configurations.

In a symmetric bifurcation, we compare the results of the 1D non-
Newtonian blood flow model to those of its Newtonian counterpart. The
geometrical and mechanical properties of the bifurcation are presented
in Table 5 and correspond to the average properties of large arteries. At
the inlet of the parent artery p, we impose the flow rate Qin to mimic the
behavior of the heart:

⎜ ⎟⎜ ⎟= ⎛
⎝

⎛
⎝

⎞
⎠

⎞
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≤ ≤Q t Q π t
T

t T( ) max 0, sin 2 , 0 5 ,in h
h

h
(44)

with =T 1h s. We choose the maximum flow rate Qh∈ {1, 10, 100}
−cm s3 1 to describe the flow in different regions of the systemic network.

We also impose a constant average hematocrit =H 0.45 and homo-
geneous Neumann boundary conditions for the structure parameter f at
the inlet and outlet of each artery. At the outlet of the daughter arteries
d1 and d2, we set non-reflecting boundary conditions. Finally, the initial
conditions are (41) and the time- and space-discretization parameters of
the network are described in Table 4. We present data obtained after 4
periods to ensure that the system has reached a periodic state.

In Fig. 8, we compare the waveforms for the structure parameter f
(left), shear stress τrx (middle) and pressure p (right), computed with
the Newtonian and non-Newtonian 1D blood flow models. Numerical
data are taken in the middle of the parent artery p and the daughter
artery d1, and we do not present results for the artery d2 as they are
identical to those of artery d1. As we decrease the flow rate ( =Q 100h

−cm s3 1 to =Q 1h
−cm s3 1 from top to bottom in Fig. 8), the shear rate

decreases, allowing the RBCs to aggregate. Consequently, in both
parent and daughter arteries, the structure parameter f and the shear
stress |τrx| are larger in the non-Newtonian than in the Newtonian case,

Fig. 5. Time evolution of the structure parameter f with a step-change in shear rate,
computed using the 1D non-Newtonian blood flow model : ( ) low shear rate viscoe-
lastic regime with =γ̇ 0.051

−s 1 for =tΔ 301 s; ( ) high shear rate thixotropic regime
with =γ̇ 12

−s 1 for =tΔ 8.52 s . In the high shear regime, there is a large decrease of the
structure parameter f on a short timescale, leading to the thixotropic behavior observed in
Fig. 4 Right.
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Fig. 6. Time evolution of the shear stress τrx (left) and the structure parameter f (right) with two successive step-changes in shear rate of amplitude =γ̇ 8 −s 1 and of length =tΔ 2.5 s:
comparison between experimental data from McMillan et al. [74] and numerical results of the 1D non-Newtonian blood flow model for a time delay Δtd∈ {1.5 (exp.О, 1D . ), 1 (exp.
□, 1D ), 0.5 (exp. △, 1D ) } s. There is a qualitative and quantitative agreement between experimental and numerical data. The thixotropic overshoot increases with Δtd as
structure variations are more important.
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with up to 100% differences for =Q 1h
−cm s3 1. The pressure then rises

to compensate the increased viscous stresses and maintain the normal
flow. Note that the value of f is higher and the value of |τrx| is lower in
artery d1 than in artery p as the flow coming from artery p splits in two
to vascularize both daughter arteries.

These results indicate that in the elementary network considered

here, non-Newtonian effects can lead to modifications of the WSS stress
patterns and an increase of pressure. These results are corroborated by
similar data obtained in different 3D studies [27,30] of bifurcations. In
the following, we extend this analysis to non-Newtonian effects in large
networks of arteries.

Fig. 7. Hysteresis curves of the evolution the shear stress τrx as a function of the shear rate γ̇ under a triangular shear solicitation: comparison between experimental data from Bureau
[17] ( ) and 1D numerical results ( ). Left: Low shear viscoelastic regime with =γ̇ 0.121

−s 1 and =t 131 s. Right: High shear thixotropic regime with =γ̇ 1.032
−s 1 and =t 47.62 s. There

is a qualitative and quantitative match between experimental data and numerical results.
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Fig. 8. Temporal evolution of the structure parameter f (left), the shear stress τrx (middle) and the pressure p (right) taken in the middle of the parent artery p and the daughter artery d1.
Top: =Q 100h −cm s3 1. Center: =Q 10h −cm s3 1. Bottom: =Q 1h −cm s3 1. We compare the results of the Newtonian (artery p , artery d1 ) and the non-Newtonian (artery p , artery
d1 ) 1D blood flow models. As the flow rate decreases, the aggregation increases, leading to a higher shear stress |τrx| and an increase of the pressure p.
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6. Idealized asymmetric network

Reduced-order 1D blood flow models have been designed to capture
the wave propagation dynamics in large networks. We therefore ana-
lyze here how non-Newtonian effects affect the network hemodynamics
using the 1D time-dependent non-Newtonian model presented and va-
lidated previously.

We consider an idealized asymmetric arterial tree made only of
elementary bifurcations linked together to form a network. In each
elementary bifurcation a parent artery p connects to two daughter ar-
teries dα and dβ. Given the mechanical and geometrical properties of the
parent artery p, we construct the daughter arteries using the relation-
ships presented in [78,79] and used more recently in [44,80], which
describe the physiological evolution the arteries’ geometrical and me-
chanical properties along the network:

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

=
=

=

= +

= −

[ ]

R αR a
R βR b
L R c

K R
pi

k k d

γ U
R

e

( )
( )

50 ( )
4
3

e ( )

˙ 4 , ( )

α p

β p

k R
1 32

(45)

where =α 0.9 and =β 0.6 are asymmetry coefficients and = ×k 2 101
7

−dyne cm ,4 = −k 22.532
−cm 1 and = ×k 8.65 103

5 −dyne cm 4. The aim of
this study is to understand how the size of the network, dependent on
the level nl of vessel ramifications, influences the aggregation process.

For a given value of nl, we construct the network by adding the
corresponding number nb of bifurcations and the number na of arteries.
Table 6 presents the values of na and nb for different values of nl. At the
root of the network, the radius of the artery is =R 10 cm and we impose
the same pulsatile flow rate (44) as in the previous Section 5, with

=Q 100h
−cm s3 1 and =T 1h s. We also impose a constant average he-

matocrit =H 0.45 and homogeneous Neumann boundary conditions
for the structure parameter f at the inlet and outlet of each artery. At the
end of each terminal vessel, we set as in the previous section a non-
reflecting boundary conditions. We detach ourselves from classical re-
sistive boundary conditions and construct the network dynamics by
adding successive levels of vessel ramifications. These boundary con-
ditions are invariant with nl and provide the adequate framework to
study network-size effects. Finally, the initial conditions are (41) and
the time- and space-discretization parameters of the network are de-
scribed in Table 7. We present data obtained after 9 periods to ensure
that the system has reached a periodic state.

6.1. Healthy network

We construct three healthy networks with nl∈ {2, 4, 6}. In Fig. 9, we
plot the distribution of the structure parameter f in the three networks
at 4 characteristic times of the last cardiac cycle: the beginning =t T9 ,h1
the systolic peak =t T9.25 ,h2 the middle =t T9.5 h3 and the diastolic peak

=t T9.75 h4 .
We observe clear effects of network size and asymmetry on the

aggregation of RBCs. At =t T9 ,h the aggregation is high for =n 2,l as the
reflective behavior of the network is smaller due to the smaller number
of bifurcations. At =t T9.25 ,h the inlet flow rate reaches its maximum
value and blood is globally disaggregated for =n {2, 4, 6}l .

Nevertheless, for =n 4l and =n 6,l aggregated regions remain in the
left hand side (l.h.s.) large extremity arteries. These regions belong to
high ramification levels and have not yet been reached by the incoming
pulse wave. At =t 9.5, all RBCs have been disaggregated by the in-
coming pulse. Finally at =t 9.75, RBCs reaggregate in the l.h.s. large
arteries since there is no flow coming from the heart and the reflected
waves have been damped by viscous effects. Furthermore, the shear
rate γ̇ is lower in these larger arteries. Overall, aggregation dynamics
depend on the size and asymmetry of the network and aggregation
occurs principally in the large arteries of the l.h.s. and their immediate
daughter arteries. In these arteries, the structure parameter reaches the
critical value of f≈ 0.1, at which blood displays viscoelastic and thix-
otropic effects (see Section 4.3).

These results indicate that we must take into account non-
Newtonian effects in networks presenting large arteries or a high level
of vessel ramifications. Furthermore, these results highlight the im-
portance of the network topology as the asymmetry here influences the
aggregation dynamics.

6.2. Pathological network

In the literature, non-Newtonian blood effects have been particu-
larly studied in elementary pathological networks such as bifurcations
[27,30,81]. However, as observed before, the size and asymmetry of the
network appear to play an important role in the aggregation dynamics.
To characterize how pathologies can modify blood flow and aggrega-
tion processes in a large network, we introduce two severe stenoses of
90% of obstruction in the 3 networks previously described. One stenosis
is located on the l.h.s., in the large radius branch of the network and the
other is on the r.h.s, in the small radius branch. The exact position of
both stenoses is represented in Fig. 10 by circles (○).

As previously, we plot in Fig. 10 the distribution of the structure
parameter f in the three networks (nl∈ {2, 4, 6}) for the last cardiac
cycle: =t T9 ,h1 =t T9.25 ,h2 =t T9.5 h3 and =t T9.75 h4 . For nl∈ {4, 6}, the
presence of the stenoses results in a higher blood aggregation in the
arteries downstream of the stenoses compared to Fig. 9. On the contrary
for =n 2,l the value of the structure f is lower than in Fig. 9 as the
stenoses create reflections that contribute to the disaggregation process.
The results show that aggregation effects are amplified in pathological
networks as the flow is reduced downstream of the stenoses. Upstream
of the stenoses, aggregation is reduced due to additional reflected
waves produced by the stenoses.

The numerical results presented in this section demonstrate that
non-Newtonian behaviors exist in healthy and pathological networks.
Even if these non-Newtonian behaviors are small, they are non-negli-
gible. They affect in particular the WSS distribution in the networks,
which plays an important role in cardiovascular pathogenesis. The non-
Newtonian aspect of blood must therefore be taken into account to

Table 5
Geometrical and mechanical parameters describing the properties of the parent artery p
and the daughter arteries d1 and d2, given in cgs units.

Lp d d, 1, 2 [cm] Rp d d, 1, 2 [cm] Kp d d, 1, 2 [ −dyne cm 3]

10 1 104

Table 6
Number nl of level of vessel ramifications, number nb of bifurcations and number
na of arteries of an idealized asymmetric network.

nl nb na

2 3 7
4 15 31
6 63 127
n −2 1n −+2 1n 1

Table 7
Numerical parameters describing the time discretization and the mesh.

Δt [s] Δx [cm] Order

−10 5 −10 2 2
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Fig. 9. Snapshots at =t T9 ,h1 =t T9.25 ,h2 =t T9.5 h3 and =t T9.75 h4 of the distribution of the structure parameter f in three networks with increasing levels of ramification
nl∈ {2 (left), 4 (middle), 6 (right)}. Aggregation occurs mainly in the large arteries on the l.h.s of the network and in their immediate daughter arteries. Aggregation depends on the
pulsatility of the flow, the size and the asymmetry of the network.
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Fig. 10. Snapshots at =t T9 ,h1 =t T9.25 ,h2 =t T9.5 h3 and =t T9.75 h4 of the distribution of the structure parameter f in three networks with increasing levels of ramification
nl∈ {2 (left), 4 (middle), 6 (right)}, presenting two stenosis marked by the black circles (О). Aggregation now occurs in the large arteries on the l.h.s of the network and in their immediate
daughter arteries but also on the r.h.s, downstream of the stenosis. In the arteries upstream of the stenoses, aggregation is reduced due to the additional reflections created by the stenoses.
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accurately compute network hemodynamics, especially in pathological
networks.

7. Conclusion

We have proposed a time-dependent non-Newtonian extension of a
1D blood flow model, based on a classical 1D approach for the con-
servation mass and the balance of momentum, but including time- and
structure-dependent viscous effects. The evolution of the shear stress is
governed by a Maxwell equation with coefficients depending on the
state of aggregation of RBCs. The balance between aggregation and
shear-dependent disaggregation is described by a kinetic equation,
which is a particular case of a structure model for viscoelastic fluids
[14,18]. We note that this approach is not restricted to blood rheology
and could be applied to other structured fluids.

We have confronted the numerical predictions of our 1D non-
Newtonian blood flow model to experimental data available in the lit-
erature [17,73,74,77], and we have shown that the model reproduces
qualitatively and quantitatively the rheology of blood. We have further
investigated the non-Newtonian effects in arterial networks of in-
creasing size and demonstrated how the pulsatility of the flow and the
network topology contribute to the aggregation process, which occurs
mainly in the large arteries and their immediate daughter arteries. The
aggregation of RBCs is further increased downstream of pathologies
such as stenoses.

In the entire study, we have assumed, in a 1D framework, that the
WSR γ̇ solely contributes to the disaggregation process as the structure
of blood is represented by a single homogeneous phase. The WSR γ̇
therefore governs the evolution of the blood structure near the wall and
in the bulk of the flow. In reality, the axial velocity profile varies with
time and space leading to variations of γ̇ along the radius of the artery.
In particular, for axisymmetric flow, ==γ̇ 0r 0 . By using the wall shear
rate =γ̇ r R to govern the disaggregation process in the entire artery, we
have overestimated the shearing effects and therefore underestimated
the non-Newtonian effects. However, we have also assumed an a priori
shape of the velocity profile, which is valid for experimental validation
(see Section 4) but an approximation for network flows. In Sections 5
and 6, we have assumed a Poiseuille flow everywhere in the network, as
is classically done in 1D applications, and therefore underestimated the
value of γ̇ . To overcome those limitations due to the loss of the velocity
profile in the 1D averaging process, we plan in future works to use the
2D multiring blood flow model developed in [56] to compute the axial
velocity profile and introduce radial variations in the aggregation
process.

Keeping in mind these limitations inherent to the 1D framework, the
1D non-Newtonian blood flow model presented here will be useful in
the future to help understand the hemodynamics in healthy and pa-
thological networks of the micro- and macro-circulation.
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