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In this paper, we propose a two-dimensional nonlinear “multiring” model to compute 
blood flow in axisymmetric elastic arteries. This model is designed to overcome the 
numerical difficulties of three-dimensional fluid–structure interaction simulations of blood 
flow without using the over-simplifications necessary to obtain one-dimensional blood flow 
models. This multiring model is derived by integrating over concentric rings of fluid the 
simplified long-wave Navier–Stokes equations coupled to an elastic model of the arterial 
wall. The resulting system of balance laws provides a unified framework in which both the 
motion of the fluid and the displacement of the wall are dealt with simultaneously. The 
mathematical structure of the multiring model allows us to use a finite volume method 
that guarantees the conservation of mass and the positivity of the numerical solution 
and can deal with nonlinear flows and large deformations of the arterial wall. We show 
that the finite volume numerical solution of the multiring model provides at a reasonable 
computational cost an asymptotically valid description of blood flow velocity profiles and 
other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid 
arteries. In particular, we validate the multiring model against well-known solutions such 
as the Womersley or the Poiseuille solutions as well as against steady boundary layer 
solutions in quasi-rigid constricted and expanded tubes.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The numerical simulation of blood flow in large elastic arteries requires the resolution of a complex fluid–structure 
interaction (FSI) problem. Indeed, the motion of blood is governed by the three-dimensional (3D) Navier–Stokes equations 
for an incompressible homogeneous Newtonian fluid [1] and the deformation of the arterial wall is described by a nonlinear 
elastic constitutive law [2]. Several numerical methods have been proposed to solve this nonlinear 3D FSI problem [3–8]. 
Due to their modeling complexity and high computational cost, they have only been used to accurately compute blood flow 
in small regions of interest such as in arterial pathologies or small portions of the systemic network [9–11]. However, an 
accurate local analysis is not sufficient to obtain physiological results. Indeed, the observed waveforms in large arteries are 
the result of the propagation, reflection, damping and diffusion throughout the systemic network of the waves emanating 
from the heart [12,13]. Realistic waveforms can therefore only be computed by performing a global simulation taking into 
account a large portion of the arterial network. Unfortunately, such large network 3D FSI simulations are too computationally 
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expensive [14]. Reduced-order models have therefore been proposed to compute physiological waveforms at lower modeling 
and computational costs [15–19]. The aim of this paper is to propose a novel two-dimensional (2D) reduced-order model 
that accurately computes linear and nonlinear blood flow features in axisymmetric rigid and elastic arteries at a reasonable 
computational cost with minimal modeling parameters. This model could prove to be an alternative to 3D FSI simulations 
in simple arterial configurations.

Reduced-order models for blood flow rely on a simplified system of equations for the motion of blood and a single 
equation for the deformation of the arterial wall. Assuming that the flow is axisymmetric and noticing that the characteristic 
length scale in the axial direction is much larger then the one in the radial direction, the Navier–Stokes equations can 
be simplified in the long-wave asymptotic limit. The resulting system of equations is often referred to as the reduced 
Navier–Stokes Prandtl (RNS-P) system of equations and a detailed derivation of this system can be found in [20,21]. This 
system describes the conservation of mass and the balance of axial momentum in an axisymmetric artery in which the 
pressure is hydrostatic (function only of the axial position x at the time t):⎧⎪⎪⎪⎪⎪⎪⎪⎨
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The axial and radial boundary conditions for system (1) are provided in the next section. Following a similar simplified 
approach, different hydrostatic pressure laws p(x, t) can be found linking the motion of the fluid and the displacement 
of the wall. Depending on the problem addressed, they can describe the behavior of flexible viscoelastic rubber tubes in 
hydraulic systems, the propagation of a water hammer wave (Allevi’s equations) or the deformation of an elastic artery. The 
later is used in this study and its exact formulation is given in the following section.

The RNS-P system of equations (1) is a rich dynamical system able to describe many asymptotic flow regimes in rigid 
tubes [22,23,21]. System (1) was solved numerically in [24,25] in a rigid axisymmetric tube using a variety of numerical 
methods. However, similar numerical difficulties to those encountered in 3D FSI problems arise when solving the RNS-P 
equations (1) in an elastic tube.

One-dimensional (1D) models were therefore introduced to simply and efficiently compute averaged quantities in elastic 
arteries [26–30]. These 1D models are obtained by averaging over the cross-sectional area of the artery the mass (1a)
and momentum (1b) equations. Unfortunately, they depend on coefficients which themselves depend on the shape of the 
velocity profile, lost in the averaging process. These coefficients are therefore estimated a priori, which often results in 
unrealistic viscous dissipation and pressure losses.

One-and-a-half-dimensional (3/2D) models were then proposed as intermediary models between the too simple 1D 
models and too complex RNS-P equations (1) or 3D FSI systems. In [31,32], the authors used an asymptotic analysis of 
the RNS-P equations (1) and homogenization theory to propose a 3/2D model for blood flow in an elastic artery. This 
model allows to compute, without any a priori coefficient estimation, the zero-th and first order components of the wall 
displacement and the axial and radial velocities. In [33], an approximate velocity profile function was obtained depending 
on the instantaneous pressure gradient and the thickness of the boundary layer. This function was then used in a 1D model 
to compute the velocity profile-dependent coefficients. In [34], a Von Kármán–Polhlausen integral method closed using the 
Womersley velocity profiles was studied. This integral method accurately computes linear solutions such as the Womersley 
solution [22] but is limited by the chosen linear closure relation. More recently, in [35], the authors proposed an analytic 
model for blood flow in an elastic artery based on a generalized Darcy’s model and the linear Womersley theory. Despite 
their added modeling precision, 3/2D models still only provide approximate solutions of the RNS-P equations (1) and often 
rely on a priori unknown closure relations.

Several authors have therefore proposed numerical methods to directly solve the RNS-P equations (1) in elastic arteries. 
A noteworthy attempt was presented in [36] but the problem was simplified by introducing an explicit dependence with 
experimental data. In [34], the author derived a boundary layer method which gives good results in the linear regime 
but behaves poorly in the nonlinear regime. To our knowledge, the most advanced numerical method was proposed in 
[37]. There, a semi-implicit efficient numerical method was introduced based on an Eulerian–Lagragian method to treat the 
advection term and a nested Newton algorithm to iteratively compute the pressure matching the desired wall displacement. 
The main drawback of this approach is that it can not deal with arbitrary large wall deformation and requires that the 
flow stays mildly nonlinear. Additionally, the semi-implicit nature of the method results in high computational costs when 
considering small time steps necessary to capture wave propagation phenomena.

In this work, we therefore propose a novel 2D blood flow model to explicitly solve without any approximations the 
RNS-P equations (1) in elastic arteries for arbitrary large arterial wall deformations. By decomposing the fluid domain in 
concentric rings, we derive what we refer to as the “multiring model with mass exchange”. This model is inspired from the 
multilayer model with mass exchange presented in [38] in the context of shallow water equations. This multiring system 
of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are 
dealt with simultaneously. Its mathematical structure allows us to use a finite volume numerical method that guarantees the 
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Fig. 1. Representation of the decomposition in several concentric rings of the fluid domain contained in an axisymmetric cylindrical artery. For clarity, only 
one-fourth of the artery of length L is represented. The springs in the arterial wall represent its elastic behavior. The variable Q α is the flow rate in the 
ring α and Aα is the cross-sectional area delimited by the radii Rα− 1

2
and Rα+ 1

2
.

conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations 
of the arterial wall. We show that this multiring model can compute all relevant flow features in elastic arteries.

In the first section, we present the derivation of the multiring model. Next, we discuss its mathematical properties and 
details of the numerical method. In the last sections, we propose a series a examples where we compare the solution of the 
multiring model to analytic and reference solutions in elastic and quasi-rigid arteries.

2. A multiring discretization of the RNS-P equations

We describe a multiring model with mass exchange for blood flow based on the axisymmetric RNS-P equations (1)
coupled to an elastic wall model. As stated in the introduction, this multiring model is the analog of the multilayer model 
with mass exchange for shallow water flows [38].

2.1. Radial decomposition of the fluid domain

In the framework of the axisymmetric RNS-P equations (1), the arteries are modeled as axisymmetric cylinders of radius 
R , cross-sectional area A = π R2 and length L. In this context, the fluid region delimited by the arterial wall can be divided 
into Nr concentric axisymmetric rings of width hα , with α = 1, . . . , Nr . To simplify the notations, we refer to the fluid ring 
of width hα as the ring α. This decomposition of the fluid domain is illustrated in Fig. 1.

Each ring α is delimited by an upper and lower interface, respectively defined by the radii Rα+ 1
2

and Rα− 1
2

, with:

hα = Rα+ 1
2

− Rα− 1
2
. (2)

The interface position Rα+ 1
2

and the radius of the artery R can now be written as:

Rα+ 1
2

=
α∑

j=1

h j and R =
Nr∑
j=1

h j. (3)

We also define the cross-sectional area of the ring α, noted Aα , the average flow rate in the ring α, noted Q α , and the 
mean velocity in the ring α, noted uα :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(4)

Finally, we note lr,α the proportion of the total radius R occupied by the ring α:

hα = lr,α R with
Nr∑

lr,α = 1, (5)

α=1
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and lα the proportion of the total cross-sectional area A occupied by the ring α:

Aα = lα A with lα =
⎡
⎣ α∑

j=1

lr, j

⎤
⎦

2

−
⎡
⎣α−1∑

j=1

lr, j

⎤
⎦

2

. (6)

Without loss of generality, we prescribe the radial decomposition of the artery in concentric rings and set the proportion 
lr,α in each ring α. This proportion is therefore a given constant number which can differ from one ring to another:

∀t ≥ 0, ∀x ∈ [0, L] lr,α = cst with α = 1, . . . , Nr . (7)

As a consequence, we have:

∀t ≥ 0, ∀x ∈ [0, L] lα = cst with α = 1, . . . , Nr . (8)

Assumption (7) indicates that the interfaces Rα− 1
2

and Rα+ 1
2

of the ring α are not impermeable interfaces but rather 
interfaces of a radial mesh, and therefore mass exchanges exist between neighboring rings. This radial mesh automatically 
adapts itself to the movement of the arterial wall and can sustain arbitrary large wall deformation as long as R > 0.

In the following, we use this decomposition of the fluid domain in concentric rings to introduce a finite volume discretiza-
tion of the axisymmetric RNS-P equations (1) in the radial direction.

2.2. System of equations for one layer

Inspired by finite volume methods, we integrate the axisymmetric RNS-P equations (1) over the cross-sectional area the 
ring α:
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Using the Leibniz integration rule, we obtain an integral form of the axisymmetric RNS-P mass and momentum equations 
(resp. eq. (1a) and (1b)) in the ring α:⎧⎪⎪⎪⎪⎪⎨
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The term Gα+ 1
2

represents the radial mass exchanges at the interface Rα+ 1
2

and is defined as:
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where ux,α+ 1
2

= ux
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2
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2
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)

are respectively the axial and radial velocities in Rα+ 1
2

. The 
source term SM,α characterizes the momentum associated with the radial mass exchanges in the ring α and writes:

SM,α = ux,α+ 1
2
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2
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2
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2
. (12)

The source term Sν,α describes the viscous dissipation in the ring α and writes:

Sν,α = 2πν
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Finally, the nonlinear advection correction coefficient ψα writes:

ψα = Aα

Q 2
α

R
α+ 1

2∫
R

α− 1
2

2πr u2
x dr. (14)

Up to this point, the integration process is exact and no approximation has been made in the finite volume radial dis-
cretization of the axisymmetric RNS-P equations (1). Next, we derive the system of equations governing the motion of blood 
in the entire artery.
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2.3. System of equations for the artery

To obtain the system of equations governing blood flow in the entire artery, we combine the Nr system of equations 
(10) describing the conservation of mass and the balance of axial momentum in each ring α. The unknowns of this global 
system are therefore the cross-sectional area Aα and the flow rate Q α of each ring α. However, an important consequence of 
assumption (7) is that the local cross-sectional area Aα can be deduced from the cross-sectional area A using the prescribed 
proportion lα . The unknowns of the system are then reduced to the cross-sectional area A and the flow rate Q α of each ring 
α. Indeed, by adding the Nr mass conservation equations (10a), we obtain a single mass conservation equation depending 
on the cross-sectional area A and the flow rate Q α of each ring α:
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Performing the same operation but adding only up to the ring α, we obtain the following expression for the mass exchange 
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2
:

Gα+ 1
2

−
⎡
⎣G Nr+ 1

2

α∑
j=1

l j + G 1
2

Nr∑
j=α+1

l j

⎤
⎦=

α∑
j=1

⎡
⎣∂ Q j

∂x
− l j

Nr∑
p=1

[
∂ Q p

∂x

]⎤⎦ . (16)

Combining the previous remarks, we obtain a global system of equations describing the conservation of mass in the 
artery and the balance of axial momentum in each ring α. We refer to this system as the multiring system of equations, 
which depends on the variables 

[
A, Q 1, . . . , Q α, . . . , Q Nr , p

]
and writes:⎧⎪⎪⎪⎪⎪⎪⎪⎨
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We now provide a closure relation linking the pressure p with the cross-sectional area A and describing the elastic 
behavior of the arterial wall.

2.4. Pressure law

We assume that the artery is an incompressible, isotropic and homogeneous thin-walled elastic cylinder and that each 
section of the wall moves independently of the others. Under these hypotheses, the transmural hydrostatic pressure can be 
expressed as:

p (x, t) − p0 = K (x)
(√

A (x, t) −√
A0 (x)

)
. (18)

See [39,28–30] for details. The variables A0 and K respectively represent the neutral cross-sectional area (when there is no 
flow) and the arterial wall rigidity. Both can vary with the axial position x. The variable p0 is the pressure applied on the 
exterior of the arterial wall and is assumed constant in the following.

2.5. Radial boundary conditions

To complete the description of the system of equations (17), we provide boundary conditions at center of the artery, in 
r = R 1

2
= 0, and at the arterial wall, in r = R Nr+ 1

2
= R .
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At the arterial wall, in r = R Nr+ 1
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, the following classical kinematic boundary condition is verified stating that the arterial 
wall is a material interface:
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Since we have assumed that each section of the wall moves independently of the others, which is a consequence of the fact 
that the axial stress at the wall is negligible compared to the radial stress, the following no-slip boundary conditions is also 
verified at the arterial wall, in r = R Nr+ 1

2
:

ux,Nr+ 1
2

= 0. (21)

As a result, the expressions of mass exchange terms G 1
2

and G Nr+ 1
2

can be simplified using the boundary conditions (19)

and (20):

G 1
2

= 0 and G Nr+ 1
2

= 0. (22)

Equations (22) indicate that there is no mass exchange at the arterial wall due to its impermeability and that there is no 
mass exchange in the center of the artery due to the axisymmetry of the flow.

2.6. Multiring system of equations

Injecting the pressure law (18) and the boundary conditions (22) in the multiring system of equations (17), we obtain 
the final closed-form of the multiring equations describing the conservation of mass and the balance of axial momentum in 
an elastic impermeable axisymmetric artery:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
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The source term ST is the geometrical and mechanical source term and is non-zero when the neutral cross-sectional area A0
or the arterial wall rigidity K vary with the axial position x. The mass exchange source term S M,α is defined by expression 
(12) and the viscous source term by expression (13). The expression (16) for the mass exchange term Gα+ 1

2
in each ring α

can be simplified using the boundary conditions (22) and writes:

Gα+ 1
2

=
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In the remainder of the study, we assume that the advection correction coefficient ψα = 1 in each ring α. Doing so, we 
suppose that the velocity profile is a piece-wise constant function of the variable r. This classical finite volume hypothesis 
is the only one used in the derivation of the multiring system of equations starting from the RNS-P equations (1) and is 
reasonable if we use a sufficiently large number of rings Nr .

2.7. Radial velocity

In the derivation of the multiring system of equations (23), the radial velocity ur has been eliminated from the RNS-P 
equations (1) through the successive radial integration of the incompressibility equation (1a) (see equation (10a)) and the 
manipulation of the mass exchange term Gα+ 1

2
(11) (see equation (16)). However, we can post-process the radial velocity 

ur by integrating the incompressibility equation (1a) over the cross-sectional area of the ring α, which gives:
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Using the axisymmetric boundary condition (19), which writes:
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2

= 0, (28)

and a numerical approximation of equation (27), we then iteratively compute the radial velocity ur,α+ 1
2

in each ring α. We 
finally obtain an approximation of the average radial velocity ur,α in the ring α as:

ur,α =
ur,α− 1

2
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2

2
. (29)

2.8. Link with the one-dimensional blood flow equations

The multiring system of equations (23) is a generalization of the classical 1D system of equations for blood flow. Indeed, 
by adding the momentum conservation equations (23b) of all the rings α, we obtain the following global momentum 
conservation equation:
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Using the boundary conditions (22), equation (30) simplifies to:
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Combining the mass conservation equation (23a) with equation (32), we obtain the following 1D system of equations for 
blood flow, describing the conservation of mass and the balance of axial momentum in an elastic artery:⎧⎪⎪⎪⎪⎪⎪⎪⎨
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The remaining unknowns are the nonlinear advection term 
∑Nr

α=1 Q 2
α/ [lα A] and the viscous term 2πν [r∂rux]R

Nr + 1
2

. They 

depend of the shape of the axial velocity profile ux (x, r, t), which is lost in the averaging process. It is therefore classical 
to close system (33) by prescribing an a priori shape of the velocity profile. As an example, if we assume that the velocity 
profile is a Poiseuille profile, we have as in [40]:
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Unfortunately, in the vast majority of flow configurations, this a priori shape is an unknown function of time and position 
and the correct estimation of the coefficients 

∑Nr
α=1 Q 2

α/ [lα A] and 2πν [r∂rux]R
Nr + 1

2

is impossible. We propose the multiring 

model (23) to overcome those difficulties. Indeed, by integrating over concentric rings of fluid the axisymmetric RNS-P 
equations (1) coupled to the elastic pressure law (18), we have derived a quasi-analytic radial discretization of the RNS-P 
equations (1). The resulting multiring system of equations can compute the velocity profile and therefore does not depend 
on unknown coefficients like all 1D models. It is a system of balance laws, where the left hand side is written as a system 
of conservation laws and the right hand side contains the mass, viscous and geometrical and mechanical source terms. This 
mathematical structure guarantees the conservation of mass and the balance of axial momentum and is conductive to a 
finite volume axial discretization. Next, we study the mathematical properties of this system of balance laws.
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3. Mathematical properties

We study here the mathematical properties of both the single layer system of equations (10) and the multiring system 
of equations (23).

3.1. Single layer system of equations

We consider the homogeneous form of the single layer system of equations (10):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ Aα

∂t
+ ∂ Q α

∂x
= 0

∂ Q α

∂t
+ ∂ F Qα

∂x
= 0.

(35a)

(35b)

This conservative system has been thoroughly studied by many authors and we only briefly recall its properties. Additional 
details can be found in [28,30,41].

The Jacobian matrix of system (35) has two real eigenvalues λ1,α and λ2,α , respectively associated to two right eigen-
vectors R1,α and R2,α :

λ1,α = Q α

Aα
− c, λ2,α = Q α

Aα
+ c and R1,α =

[
1

λ1,α

]
, R2,α =

[
1

λ2,α

]
, (36)

where c is the Moens–Korteweg celerity [42,43] and corresponds to the celerity of the elastic pulse waves propagating in 
the artery:

c =
√

K

2ρ

√
A. (37)

The hyperbolicity of system (35) is characterized by the Shapiro number Sh,α , introduced by Shapiro in [44]:

Sh,α = uα

c
. (38)

The Shapiro number Sh,α is the analog of the Froude number Fr for the shallow water equations or of the Mach number 
Ma for compressible flows. Depending on the value of Sh,α , we distinguish two flow regimes in the ring α: if Sh,α < 1, the 
flow is subcritical and if Sh,α > 1 the flow is supercritical. In both cases, system (35) is strictly hyperbolic as λ1,α �= λ2,α

and the right eigenvectors R1,α and R2,α are linearly independent. In physiological conditions, blood flow is almost always 
subcritical [45,41], and therefore we only consider the case Sh,α < 1.

The Riemann invariant vector Wα associated with the system (35) is:

Wα =
[

W1,α

W2,α

]
=
⎡
⎢⎣

Qα
Aα

− 4c

Qα
Aα

+ 4c

⎤
⎥⎦ . (39)

The vector Wα is linked to the conservative variables through the following relations:⎧⎪⎪⎨
⎪⎪⎩

Aα =
(

2ρ

K

)2(W2,α − W1,α

8

)4

Q α = Aα
W1,α + W2,α

2
.

(40)

The relations (40) are useful when defining boundary conditions at the inlet and outlet of the computational domain.

3.2. Two layers system of equations

We now focus on the more complicated inviscid two layers system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ A

∂t
+ ∂ F A

∂x
= 0

∂ Q 1

∂t
+ ∂ F Q 1

∂x
= SM,1

∂ Q 2

∂t
+ ∂ F Q 2

∂x
= SM,2.

(41a)

(41b)

(41c)
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To simplify the analysis, we suppose that the geometrical and mechanical properties of the artery do not vary (S T = 0). In 
this case, system (41) can be written in the following quasi-linear form:

M
∂ X

∂t
+ H

∂ X

∂x
= 0. (42)

The vector X and the matrices M and H are respectively defined as:

X =
⎡
⎣ A

Q̄ 1

Q̄ 2

⎤
⎦ , M =

⎡
⎣ 1 0 0

−u 1 0
−u 0 1

⎤
⎦ , H =

⎡
⎢⎣

0 l 1 − l

c2 − Q̄ 2
1

A2 2 Q̄ 1
A − u 0

c2 − Q̄ 2
2

A2 0 2 Q̄ 2
A − u

⎤
⎥⎦ , (43)

where l = l 3
2

, u = ux, 3
2

, Q 1 = l Q̄ 1 and Q 2 = (1 − l) Q̄ 2. System (42) is identical to the quasi-linear strictly hyperbolic system 
obtained in [38] for the two layers shallow water model with mass exchange. Therefore, the two layers system (41) is also 
strictly hyperbolic.

3.3. Multiring system of equations

In [38], the authors have studied the hyperbolicity of the multilayer shallow water system with mass exchange. They 
performed numerous numerical tests showing that for a given number of layers, the multilayer system is hyperbolic when 
small shear flows are considered. In regions of high shear, some eigenvalues can become complex and lead to the devel-
opment of an Kelvin–Helmholtz-like instability [46]. This behavior is expected as the RNS-P equations (1) are not a system 
of conservation laws. By analogy, this analysis is valid for the multiring system of equation (23) and we assume that in 
physiological conditions the multiring system (23) is hyperbolic.

4. Numerical methods

For simplicity, we rewrite the multiring system of equations (23) in the following vectorial form:

∂U

∂t
+ ∂ F

∂x
= S M + Sν + S T , (44)

where:

U =

⎡
⎢⎢⎢⎣

A
Q 1
...

Q Nr

⎤
⎥⎥⎥⎦ and F =

⎡
⎢⎢⎢⎣

F A

F Q 1
...

F Q Nr

⎤
⎥⎥⎥⎦ , (45)

and:

S M =

⎡
⎢⎢⎢⎣

0
SM,1

...

SM,Nr

⎤
⎥⎥⎥⎦ and Sν =

⎡
⎢⎢⎢⎣

0
Sν,1
...

Sν,Nr

⎤
⎥⎥⎥⎦ and S T = ST

⎡
⎢⎢⎢⎣

0
l1
...

lNr

⎤
⎥⎥⎥⎦ . (46)

The structure of the multiring system of equation (44) as a system of balance laws naturally leads us to propose a finite 
volume numerical scheme to obtain an approximate solution. Doing so, we ensure that the numerical scheme is robust, 
conservative and shock-capturing and that the numerical solution is positive if the chosen numerical flux preserves the 
positivity of the solution.

4.1. Problem splitting

The first step towards obtaining a numerical approximation of the solution of the multiring system of equations (44) in 
a finite volume framework is to discretize both the temporal and spatial domains. We first divide the time domain using a 
constant time step 
t and the discrete times are defined as:

tn = n
t for n ∈N. (47)

We note U n = U
(
tn
)
. We then introduce a mesh in the axial direction and divide the length L of the artery in a series of 

cells Ci defined as:

Ci =
[

xi− 1 , xi+ 1

]
= [(i − 1)
x, i
x] for i = 1, . . . , Nx, (48)
2 2
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where 
x is the cell size, supposed constant for simplicity, and L = Nx
x. Finally, we discretize the multiring system of 
equations (44) using the following time splitting method:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U ∗ − U n


t
+ ∂

∂x

[
F
(
U n)]= S M

(
U n)+ S T

(
U n)

U n+1 − U ∗


t
= Sν

(
U n+1

)
.

(49a)

(49b)

Both the convective and viscous systems of equations (resp. eq. (49a) and (49b)) are solved numerically in the following 
subsections.

4.2. Explicit convective numerical scheme

We first solve the convective system of equations (49a) using an explicit finite volume scheme, which includes the mass 
exchange source term S M and the geometrical and mechanical source term S T .

Integrating system (49a) over the cell Ci , we obtain the explicit finite volume scheme:

U ∗
i − U n

i


t
+ 1


x

[
F n

i+ 1
2

− F n
i− 1

2

]
= Sn

M,i + Sn
T ,i, (50)

where U n
i is the space-average approximation of the vector U in the cell Ci at the time tn:

U n
i ≈ 1


x

∫
Ci

U
(
x, tn)dx. (51)

The vector F n
i+ 1

2
is the two-points numerical flux vector, and corresponds to the numerical approximation of the flux vector 

F at interface xi+ 1
2

of the cell Ci at time tn:

F n
i+ 1

2
= F

(
U n

i+ 1
2 ,L

, U n
i+ 1

2 ,R

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FA

(
U n

i+ 1
2 ,L

, U n
i+ 1

2 ,R

)

FQ 1

(
U n

i+ 1
2 ,L

, U n
i+ 1

2 ,R

)
...

FQ Nr

(
U n

i+ 1
2 ,L

, U n
i+ 1

2 ,R

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (52)

The flux FA

(
U n

i+ 1
2 ,L

, U n
i+ 1

2 ,R

)
can also be written as the sum of the contribution of each ring α:

FA

(
U n

i+ 1
2 ,L

, U n
i+ 1

2 ,R

)
=

Nr∑
j=1

FA j

(
U n

i+ 1
2 ,L

, U n
i+ 1

2 ,R

)
(53)

The choice of the vector function F defines the numerical flux and thus the finite volume scheme. As we use only a 
first-order finite volume numerical scheme, the vectors U n

i+ 1
2 ,L

and U n
i+ 1

2 ,R
at the left and right of the interface xi+ 1

2
of the 

cell Ci at time tn are defined as:

U n
i+ 1

2 ,L
= U n

i and U n
i+ 1

2 ,R
= U n

i+1. (54)

The vectors Sn
M,i and Sn

T ,i correspond respectively to the discretization of the mass exchange source term S M
(
U n

i

)
and the 

geometrical and mechanical source term S T
(
U n

i

)
and are specified in the following subsections.

4.2.1. Kinetic flux
As shown previously, there is no analytic expression for the eigenvalues of jacobian of the multiring system of equations 

(44). We therefore choose to use a kinetic flux function, which does not require the computation of the eigenstructure of 
system (44). Other approaches are possible, see [47,46]. A review of the kinetic method applied to different systems of 
equations can be found in [48] and more particularly to the 1D blood flow system in [19,41] and to the multilayer shallow 
water system with mass exchange in [38]. In the following, we briefly present the derivation of the expression of the kinetic 
vector function F for the multiring system of equations (44).



146 A.R. Ghigo et al. / Journal of Computational Physics 350 (2017) 136–165
According to kinetic theory, the vector function F is defined as:

F (U L, U R) = F+ (U L) +F− (U R) , (55)

and F+ and F− write:

F+ =

⎡
⎢⎢⎢⎢⎣

∑Nr
j=1 F

+
A j

F+
Q 1
...

F+
Q Nr

⎤
⎥⎥⎥⎥⎦ and F− =

⎡
⎢⎢⎢⎢⎣

∑Nr
j=1 F

−
A j

F−
Q 1
...

F−
Q Nr

⎤
⎥⎥⎥⎥⎦ . (56)

The fluxes F±
Aα

and F±
Q α

in each ring α are defined as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
F+

Aα

F+
Qα

]
=
∫

ξ≥0

ξ

[
1
ξ

]
Mα (A, ξ − uα)dξ

[
F−

Aα

F−
Qα

]
=
∫

ξ≤0

ξ

[
1
ξ

]
Mα (A, ξ − uα)dξ.

(57)

The function Mα is the kinetic Maxwellian, or so-called Gibbs equilibrium, and represents a distribution function of the 
microscopic particle velocity ξ ∈ R in the ring α:

Mα (A, ξ − uα) = lα A

c̃
χ

(
ξ − uα

c̃

)
, (58)

where:

c̃ =
√

K

3ρ

√
A. (59)

We choose the function χ as:

χ (w) =
⎧⎨
⎩

1

2
√

3
if |w| ≤ √

3

0 else.

(60)

Injecting the expressions of the functions χ and Mα in the definition of the fluxes (57), we obtain after some computation 
the expressions for the fluxes F±

Aα
and F±

Q α
in each ring α:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
F+

Aα

F+
Qα

]
= lα A

2
√

3c̃

⎡
⎣ 1

2

((
ξ+

p,α

)2 − (
ξ+

m,α

)2
)

1
3

((
ξ+

p,α

)3 − (
ξ+

m,α

)3
)
⎤
⎦

[
F−

Aα

F−
Qα

]
= lα A

2
√

3c̃

⎡
⎣ 1

2

((
ξ−

p,α

)2 − (
ξ−

m,α

)2
)

1
3

((
ξ−

p,α

)3 − (
ξ−

m,α

)3
)
⎤
⎦ ,

(61)

with: ⎧⎪⎨
⎪⎩

ξ+
p,α = max

(
0, uα + √

3c̃
)

, ξ+
m,α = max

(
0, uα − √

3c̃
)

ξ−
p,α = min

(
0, uα + √

3c̃
)

, ξ−
m,α = min

(
0, uα − √

3c̃
)

.
(62)

4.2.2. Mass exchange source term
We define the discrete mass exchange source term Sn as:
M,i



A.R. Ghigo et al. / Journal of Computational Physics 350 (2017) 136–165 147
Sn
M,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
un

3
2 ,i

Gn
3
2 ,i

...

un
α+ 1

2 ,i
Gn

α+ 1
2 ,i

− un
α− 1

2 ,i
Gn

α− 1
2 ,i

...

−un
Nr− 1

2 ,i
Gn

Nr− 1
2 ,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (63)

Following [38] and by analogy with expression (26), we compute Gn
α+ 1

2 ,i
in each ring α as:

Gn
α+ 1

2 ,i
= 1


x

α∑
j=1

{[
FA j

(
U n

i+ 1
2 ,L

, U n
i+ 1

2 ,R

)
−FA j

(
U n

i− 1
2 ,L

, U n
i− 1

2 ,R

)]
−

l j

[
FA

(
U n

i+ 1
2 ,L

, U n
i+ 1

2 ,R

)
−FA

(
U n

i− 1
2 ,L

, U n
i− 1

2 ,R

)]}
.

(64)

We define un
α+ 1

2 ,i
in an upwind manner:

un
α+ 1

2 ,i
=
⎧⎨
⎩

un
α,i if Gn

α+ 1
2 ,i

≤ 0

un
α+1,i if Gn

α+ 1
2 ,i

> 0.
(65)

This choice is motivated by the analysis of expression (11) for the mass exchange term Gα+ 1
2

. Indeed, Gα+ 1
2

> 0 if the 
cross-sectional area π R2

α+ 1
2

increases with time or if the interface velocity ur,α+ 1
2

< 0. In both cases, from the perspective 
of the interface Rα+ 1

2
, the flow is coming from the upper ring α + 1 and the upwind velocity is therefore ux,α+1.

4.2.3. Hydrostatic reconstruction
The considered kinetic flux function does not take into account the geometrical and mechanical source term S T , which 

results from axial variations of the neutral cross-sectional area A0 or the arterial rigidity K . This source term must be treated 
using a well-balanced method to prevent spurious oscillations of the numerical solution close to steady states [49–52]. To 
that effect, we use the well-balanced hydrostatic reconstruction technique (HR for short) introduced in [53] for shallow 
water equations. This technique was then applied to blood flow equations in [54,55,41] and to the multilayer shallow water 
system with mass exchange in [38]. Through a reconstruction of the conservative variables, HR allows to obtain a simple 
and efficient well-balanced numerical scheme given any finite volume numerical flux. Next, we briefly recall the derivation 
of HR applied to the multiring system of equations (44).

We define the discrete geometrical and mechanical source term Sn
T ,i as:

Sn
T ,i = Sn

T ,i

⎡
⎢⎢⎢⎣

0
l1
...

lNr

⎤
⎥⎥⎥⎦ , (66)

where Sn
T ,i is:

Sn
T ,i = 1

3ρ
x

[
K ∗

i+ 1
2

[
A∗n

i+ 1
2 ,L

] 3
2 − Ki+ 1

2 ,L

[
An

i+ 1
2 ,L

] 3
2 − K ∗

i− 1
2

[
A∗n

i− 1
2 ,R

] 3
2 + Ki− 1

2 ,R

[
An

i− 1
2 ,R

] 3
2
]

. (67)

The reconstructed variables A∗n
i+ 1

2 ,L
, A∗n

i+ 1
2 ,R

and K ∗
i+ 1

2
are defined such that the steady states at rest are preserved as well 

as the positivity of the cross-sectional area A:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A∗n
i+ 1

2 ,L
=
⎡
⎣H∗n

i+ 1
2 ,L

K ∗
i+ 1

2

⎤
⎦

2

A∗n
i+ 1

2 ,R
=
⎡
⎣H∗n

i+ 1
2 ,R

K ∗
i+ 1

2

⎤
⎦

2

K ∗
1 = max

(
Ki+ 1 ,L, Ki+ 1 ,R

)
,

(68)
i+ 2 2 2
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with: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H∗n
i+ 1

2 ,L
= max

(
0, Z∗

i+ 1
2

+
[

K
√

A
]

i+ 1
2 ,L

−
[

K
√

A0

]
i+ 1

2 ,L

)

H∗n
i+ 1

2 ,R
= max

(
0, Z∗

i+ 1
2

+
[

K
√

A
]

i+ 1
2 ,R

−
[

K
√

A0

]
i+ 1

2 ,R

)

Z∗
i+ 1

2
= min

([
K
√

A0

]
i+ 1

2 ,L
,
[

K
√

A0

]
i+ 1

2 ,R

)
.

(69)

Finally, we obtain a well-balanced numerical scheme by replacing each occurrence of the conservative vectors U n
i+ 1

2 ,L
and 

U n
i+ 1

2 ,R
in the vector function F by the reconstructed conservative vectors U ∗n

i+ 1
2 ,L

and U ∗n
i+ 1

2 ,R
, defined as:

U ∗n
i+ 1

2 ,L
=

⎡
⎢⎢⎢⎢⎢⎣

A∗n
i+ 1

2 ,L

Q n
1,i+ 1

2 ,L
...

Q n
Nr ,i+ 1

2 ,L

⎤
⎥⎥⎥⎥⎥⎦ , U ∗n

i+ 1
2 ,R

=

⎡
⎢⎢⎢⎢⎢⎣

A∗n
i+ 1

2 ,R

Q n
1,i+ 1

2 ,R
...

Q n
Nr ,i+ 1

2 ,R

⎤
⎥⎥⎥⎥⎥⎦ . (70)

4.2.4. CFL condition
The stability of the convective numerical scheme is ensured if at each time tn , the time step 
t verifies the following 

CFL (Courant, Friedrichs and Lewy) [56] condition:


t ≤
Nx

min
i=1

Nr

min
j=1

l j An
i 
x

l j An
i

(
|un

j,i| + c̃n
i

)
+ 
x

(
Gn

j+ 1
2 ,i

− Gn
j− 1

2 ,i

) . (71)

This CFL condition ensures that the kinetic scheme preserves the positivity of the cross-sectional area A (for a detailed proof 
see [38]). Note that its more restrictive than the classical CFL condition used in 1D blood flow models as the flow can now 
exit the ring through both its axial and radial interfaces.

4.3. Implicit viscous numerical scheme

We solve the viscous system of equations (49b) using an implicit numerical scheme, chosen for stability reasons.
Integrating system (49b) over the cell Ci , we obtain the following implicit viscous numerical scheme:

U n+1
i − U ∗

i


t
= Sn+1

ν,i , (72)

where U ∗
i is the solution of the convective numerical scheme (50) in the cells Ci and Sn+1

ν,i is the discretization of the 

viscous source term Sν

(
U n+1

i

)
and writes:

Sn+1
ν,i =

⎡
⎢⎢⎢⎣

0
Sn+1
ν,1,i
...

Sn+1
ν,Nr ,i

⎤
⎥⎥⎥⎦ . (73)

In each ring α of the cell Ci at time tn+1, we define Sn+1
ν,α,i as the discrete analog of Sν,α (13). To compute Sn+1

ν,α,i , we use a 

centered finite difference discretization of the term 
[

r ∂ux
∂r

]
R

α+ 1
2

, which writes:

[
r
∂ux

∂r

]
R

α+ 1
2

= Jr,α

[
un+1

α+1,i − un+1
α,i

]
for α = 1, . . . , Nr − 1, (74)

where:

Jr,α = 2

∑α
j=1 lr, j

. (75)

lr,α + lr,α+1
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At the interfaces R 1
2

and R Nr+ 1
2

, the previous discretization (74) of 
[

r ∂ux
∂r

]
is not possible and the boundary conditions 

(19) and (21) must be taken into account. At the ring interface R 1
2

, the axisymmetric boundary condition (19) imposes 
that: [

r
∂ux

∂r

]
R 1

2

= 0. (76)

To express 
[

r ∂ux
∂r

]
R

Nr + 1
2

at the ring interface R Nr+ 1
2

using only the conservative vector U , we first perform the following 

asymptotic expansion of ux in the ring Nr :

ux = ux,Nr+ 1
2

+
[

r − R Nr+ 1
2

] ∂ux

∂r

∣∣∣∣
R

Nr+ 1
2

+ O

([
R Nr+ 1

2
− r

]2
)

. (77)

Neglecting the higher-order terms and using the no-slip boundary condition (21), we obtain the following expression:

ux ≈
[

r − R Nr+ 1
2

] ∂ux

∂r
|R

Nr+ 1
2
. (78)

We then integrate this expression over the cross-sectional area of the ring Nr and we obtain:

[
r
∂ux

∂r

]
R

Nr+ 1
2

= Jr,ν
Q n+1

Nr ,i

An+1
i

, (79)

with:

Jr,ν = 1

− 1
3 + [

1 − lr,Nr

]2 − 2
3

[
1 − lr,Nr

]3
. (80)

It is important to note that the discretization (79) of 
[

r ∂ux
∂r

]
R

Nr+ 1
2

imposes the no-slip boundary condition (21) at the wall, 

which is the natural boundary condition for viscous flows.
Finally, noticing that the first component of the source term Sν is zero, we obtain the following trivial solution of the 

system of equations (49b) for the first component of U n+1
i :

An+1
i = A∗

i for i = 1, . . . , Nx. (81)

We can therefore rewrite the implicit viscous scheme (72) in the following matrix form:

[
I+ 
tM∗

ν,i

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q n+1
1,i
...

Q n+1
α,i
...

Q n+1
Nr ,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Q ∗
1,i
...

Q ∗
α,i
...

Q ∗
Nr ,i

⎤
⎥⎥⎥⎥⎥⎥⎦

, (82)

where I is the identity matrix and M∗
ν,i is the following tridiagonal matrix:

M∗
ν,i = 2πν

A∗
i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jr,1
l1

− Jr,1
l2

0 . . . 0
. . .

. . .
. . .

. . .
...

0 − Jr,α−1
lα−1

Jr,α−1+ Jr,α
lα

− Jr,α
lα+1

0
...

. . .
. . .

. . .
. . .

0 . . . 0 − Jr,Nr−1
lNr−1

Jr,Nr−1
lNr

− Jr,ν

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (83)

We invert system (82) using the Thomas algorithm [57], well-suited for solving tridiagonal matrix systems.
To conclude the description of the numerical scheme we use to solve the multiring system of equations (44), we provide 

in the following methodologies to impose inlet and outlet boundary conditions.
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5. Boundary conditions

As we compute subcritical solutions of system (44), boundary conditions are required at both ends of the computational 
domain. We impose these boundary conditions in inlet and outlet ghost cells, respectively noted Cin and Cout . Therefore, 
in both ghost cells Cin and Cout , the corresponding vectors of conservative variables U n

in and U n
out must be prescribed in 

order to update the numerical solution from time tn to time tn+1 in each cell Ci of the computational domain. We propose 
methodologies to impose these boundary conditions, but we describe only the derivation of the inlet boundary conditions 
as the implementation of inlet and outlet boundary conditions is very similar.

5.1. Imposed flow rate

We wish to impose the flow rate Q n
e,α at the interface between the first cell C1 and the inlet ghost cell Cin of each ring 

α, namely:

FAα

(
U n

in, U n
1

)= Q n
e,α for α = 1, . . . , Nr . (84)

Following the methodology proposed in [58] and taking advantage of the fact that the kinetic flux function FAα can be 
split in two, equation (84) rewrites as:

F+
Aα

(
U n

in

)+F−
Aα

(
U n

1

)= Q n
e,α for α = 1, ..., Nr . (85)

To ensure the stability of the scheme, condition (85) is imposed in each ring α in an upwind manner. Consequently, we 
define the quantity:


Q =
Nr∑

α=1

Q n
e,α −F−

Aα

(
U n

1

)
, (86)

and distinguish two cases:

• If 
Q ≤ 0, the dominant part of the information is coming from inside the computational domain. As we are performing 
an upwind evaluation of the inlet boundary condition, we impose:{

F+
A

(
U n

in

)= 0

F+
Qα

(
U n

in

)= 0 for α = 1, . . . , Nr .
(87)

• If 
Q > 0, the dominant part of the information is coming from outside the computational domain. In this case, we 
impose:{

F+
Aα

(
U n

in

)= Q n
e,α −F−

Aα

(
U n

1

)
for α = 1, . . . , Nr

W1
(
U n

in

)= W1
(
U n

1

)
.

(88)

The scalar function W1 is the 1D analog of the Riemann invariant W1,α in the ring α and characterizes the global 
outgoing characteristic. It writes:

W1 =
∑Nr

α=1 Q α

A
− c. (89)

Similarly, we write W2 as:

W2 =
∑Nr

α=1 Q α

A
+ c. (90)

We compute the inlet vector of conservative variables U n
in in the ghost cell Cin by either solving system (87) or system (88). 

This can be done using a classic Newton’s method in a limited number of iterations.

5.2. Imposed cross-sectional area

We wish to impose the cross-sectional area An
e in the inlet ghost cell Cin . Therefore, we set:

An
in = An

e . (91)

To completely determine the inlet vector of conservative variables U n
in , we estimate the outgoing Riemann invariant 

W1,α

(
U n

)
in the ring α as:
in
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W1,α

(
U n

in

)= W1,α

(
U n

1

)
for α = 1, . . . , Nr, (92)

and using equations (39) and (40), we compute W2,α

(
U n

in

)
and then Q n

in,α in each ring α:

⎧⎪⎨
⎪⎩

W2,α

(
U n

in

)= W1,α

(
U n

in

)+ 8cn
in

Q n
in,α = lα An

in

W1,α

(
U n

in

)+ W2,α

(
U n

in

)
2

.

(93)

5.3. Imposed reflection coefficient

We wish to impose the reflection coefficient Rt in the inlet ghost cell Cin . The inlet reflection coefficient Rt is defined 
as:

W2
(
U n

in

)− W2

(
U 0

in

)
= −Rt

[
W1

(
U n

in

)− W1

(
U 0

in

)]
, (94)

and characterizes the proportion of the outgoing information reflected back into the computational domain. When we wish 
to remove any reflection of the outgoing information, we set Rt = 0. We first estimate the outgoing Riemann invariant 
W1

(
U n

in

)
as:

W1
(
U n

in

)= W1
(
U n

1

)
, (95)

and using equation (94), we compute W2
(
U n

in

)
and then An

in:

An
in =

(
2ρ

Kin

)2
(

W2
(
U n

in

)− W1
(
U n

in

)
8

)4

. (96)

Finally, we use the methodology presented in the previous subsection to completely determine the inlet vector of conserva-
tive variables U n

in .
In the following sections, we perform a series of numerical tests to validate the multiring model (23), the numerical 

scheme and the boundary conditions previously described.

6. Linear examples in an elastic artery

6.1. The Womersley solution

In [22], Womersley proposed an analytic harmonic solution of the linearized Navier–Stokes equations which is also a 
solution of the linearized RNS-P equations (1). The Womersley solution is an important test case for numerical methods 
simulating blood flow in elastic arteries as it includes pulsatile effects, elastic deformation of the arterial wall and viscous 
dissipation. In [34,37,59], the authors used the Womersley solution in a rigid axisymmetric tube to validate their numerical 
method. In this section, we compute the Womersley solution in an elastic artery as a first validation case of the multiring 
model (23).

6.1.1. Linear harmonic solution
We first briefly detail the derivation of the Womersley solution starting from the linear RNS-P system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

r

∂

∂r
[rur] + ∂ux

∂x
= 0

∂ux

∂t
= − 1

ρ

∂ p

∂x
+ ν

r

∂

∂r

[
r
∂ux

∂r

]

p (x, r, t) = p (x, t) .

(97a)

(97b)

(97c)

Following [22], we search for a harmonic solution of the axial velocity ux , the pressure p and the radius R:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ux = ûx(r)ei[ωt−kx]

p = p0 + p̂ei[ωt−kx]

R = R (x) + R̂ei[ωt−kx],

(98)
0



152 A.R. Ghigo et al. / Journal of Computational Physics 350 (2017) 136–165
with R̂ 
 1. For simplicity we choose p0 = 0. Injecting the expressions (98) in the linear momentum equation (97b), we 
obtain:

∂2ûx

∂r2
+ 1

r

∂ ûx

∂r
− i

α2

R2
ûx = − iω

μc
p̂, (99)

where α is the Womersley number and c is the wave celerity, respectively defined as:

α = R

√
ω

ν
and c = ω

k
. (100)

The Womersley number α represents the relative importance of pulsatile effects with respect to viscous effects and is the 
relevant dimensionless number in this example. Combining both the homogeneous solution of equation (99), computed 
using the Bessel function J0, and the particular solution of equation (99), we obtain the general solution of equation (99), 
using the no-slip boundary condition at the wall (21):

ûx = p̂

ρc

⎡
⎣1 −

J0

(
i

3
2 α r

R

)
J0

(
i

3
2 α
)
⎤
⎦ . (101)

Using expression (101), we compute the flow rate Q and the wall shear stress (WSS) τw as:

Q = Q̂ ei[ωt−kz] with Q̂ =
2π∫
0

R∫
0

ûxrdrdθ = π R2 p̂

ρc
[1 − F10 (α)] , (102)

and:

τw = τ̂w ei[ωt−kz] with τ̂w = −μ
∂ux

∂r

∣∣∣∣
r=R

= i
να2

2R

p̂

ρc
F10 (α) , (103)

where F10 is defined as:

F10 (α) = 2

i
3
2 α

J1(i
3
2 α)

J0(i
3
2 α)

. (104)

Finally, after integrating the incompressibility equation (97a) over the cross-sectional area of the artery, we obtain the 
following linearized expression for the wave celerity c:

c = p̂

R̂

R0

2ρ
[1 − F10 (α)] . (105)

The inlet boundary condition imposes the value of either p̂ or R̂ , which are linked through the elastic pressure law (18):

p̂

R̂
= √

π K . (106)

Next, we compare the numerical solution of the multiring model (23) to the linear harmonic Womersley solution pre-
sented previously.

6.1.2. Numerical results
We consider a straight artery initially at rest:{

A (x, t = 0) = A0

Q α (x, t = 0) = 0 for α = 1, . . . , Nr .
(107)

We impose at the inlet a sinusoidal oscillation of the pressure:

p (x = 0, t) = p̂ sin

(
2π

t

Tc

)
with p̂ = √

π K R̂, (108)

and at the outlet a zero reflection coefficient Rt to remove any backward traveling waves. The values of the geometrical 
and mechanical parameters describing the artery as well as those describing the inlet and outlet boundary conditions are 
presented in Table 1 and are given in the “cgs” unit system. They mimic physiological conditions and the value of R̂ is 
chosen small enough such that the linear approximation required to obtain the Womersley solution is valid. The final 
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Table 1
Elastic Womersley example – Geometrical and mechanical parameters describing the artery and the inlet and outlet bound-
ary conditions, given in the “cgs” unit system.

L R0 K ρ μ R̂ Rt Tc t f α

200 1 104 1 2π ρ
Tc

R2
0

α2 10−3 0 0.5 12Tc {5, 20}

Fig. 2. Elastic Womersley example – Comparison between the analytic Womersley velocity profiles ( ) and the computed multiring velocity profiles 
(marks) obtained using Nx = 1600 cells and Nr = 128 rings in x = 25 at times t ∈ {0.2 (�) , 0.4 (�) , 0.5 (◦) , 0.7 (�)}Tc + 11Tc for α = 5 (left) and α = 20
(right). We observe that the multiring numerical solutions agree well with the analytic Womersley solutions.

simulation time t f is chosen large enough to reach a periodic regime. For the sake of illustration, we consider only two 
different Womersley numbers, α = 5 and α = 20, selected to respectively represent flow conditions in arterioles and large 
arteries. At small Womersley numbers (α = 5), viscous effects dominate, whereas at large Womersley numbers (α = 20), 
unsteady advection effects are dominant.

In Fig. 2, we plot the analytic and multiring Womersley velocity profiles obtained in x = 25 at t ∈ {0.2, 0.4, 0.5, 0.7}Tc +
11Tc for α = 5 (Fig. 2 left) and α = 20 (Fig. 2 right). We use Nx = 1600 cells and Nr = 128 rings. We observe that for both 
Womersley numbers α = 5 and α = 20, the analytic and multiring velocity profiles are well matched for each recorded 
time. Small discrepancies between both solutions appear near the maxima of velocity due to the numerical dissipation of 
the kinetic scheme and the small intrinsic nonlinearities of the multiring numerical solution.

In Fig. 3, we represent the spatial evolution of the flow rate Q , the pressure p and the wall shear stress (WSS) τw

computed with the analytic Womersley solution and the multiring model at time t = 0.3Tc + 11Tc for α = 5 (Fig. 3 left) and 
α = 20 (Fig. 3 right). Once again, we use Nx = 1600 cells and Nr = 128 rings. For α = 20, the Womersley and the multiring 
solutions are superposed except at the local maxima and minima of Q , p and τw due to the numerical dissipation of the 
multiring numerical scheme. For α = 5, both solutions match almost perfectly as in this case the viscous dissipation is much 
larger than the numerical dissipation.

Next, we perform a convergence analysis in both the number of cells Nx and the number of rings Nr . In Fig. 4, we 
plot the evolution of the L2 spatial error between the analytic Womersley and the multiring numerical solutions with the 
dimensionless number of cells N̄x = λNx/L, where λ is the wavelength of the pressure pulse, and with the dimensionless 
number of rings N̄r = Nr/α for α = 5 (Fig. 4 left) and α = 20 (Fig. 4 right). We focus only on the flow rate Q and the 
WSS τw taken at time t = 0.3Tc + 11Tc . For both α = 5 and α = 20, we observe that increasing N̄x or N̄r is not equivalent. 
For low values of N̄x , increasing N̄r does not significantly decrease the error, whereas increasing N̄x does. On the contrary, 
for high values of N̄x , increasing N̄r significantly decreases the error, whereas increasing N̄x does not. This behavior is 
expected as wave propagation in the axial direction is the main physical behavior described by the Womersley solution 
and can only be captured if a sufficient number of cells N̄x is used. Only then can we increase the number of rings N̄r to 
compute in detail the velocity profile. However, the behavior of the WSS τw for α = 20 is different from the behavior of the 
other quantities as the effect of increasing the number of rings N̄r for low values of N̄x is significant. This behavior can be 
explained by the fact that for α = 20, the boundary layer near the wall is thin, therefore increasing N̄r immediately allows 
to better capture the viscous behavior of the flow near the wall and therefore the WSS τw . As a rule of thumbs, we observe 
that N̄x = 500 and N̄r = 2 is the minimum mesh and ring refinements necessary to obtain an accurate description of the 
Womersley solution.

To conclude the analysis of the Womersley solution, we study three additional flow configurations where we increase 
the nonlinearity of the flow by changing the amplitude of the wall perturbation R̂ . We choose R̂ ∈ {10−3, 10−2, 10−1,

3 × 10−1}. In Fig. 5, we plot snapshots of the spatial evolution of the axial velocity profile ux computed with the multiring 
model at time t = 0.3Tc + 11Tc for α = 20 using Nx = 1600 cells and Nr = 128 rings. The values of the other geometrical 
and mechanical parameters describing the artery are identical to those presented in Table 1. We observe that the multiring 
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Fig. 3. Elastic Womersley example – Spatial evolution of the flow rate Q (top), the pressure p (middle) and the WSS τw (bottom) computed with the 
analytic Womersley solution ( ) and with the multiring model (◦) using Nx = 1600 cells and Nr = 128 rings at time t = 0.3Tc + 11Tc for α = 5 (left) 
and α = 20 (right). We observe that the multiring solutions agree well with the analytic Womersley solutions.

model (23) is able to compute nonlinear flow behaviors with small and large deformations of the arterial wall without 
requiring any mesh adaptation strategy or particular numerical effort.

6.2. The steady linear elastic Poiseuille solution

In [60], Fung proposed a steady analytic solution of the linear RNS-P equations (97) in an elastic artery. As the Poiseuille 
solution, it describes the steady balance between the pressure gradient and the viscous radial dissipation term but takes 
into account the elastic deformation of the wall:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = 2Q

π R2

[
1 −

[
r

R (x)

]2
]

p = p0 + K
√

π [R − R0]

R =
[

R5 (x = 0) − 40νQ

π
3
2 K

x

] 1
5

Q = π
3
2 K [

R5 (x = 0) − R5 (x = L)
]
.

(109)
40νL
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Fig. 4. Elastic Womersley example – Phase diagram of the evolution with N̄x = λNx/L and with N̄r = Nr/α of the L2 spatial error between the analytic 
Womersley and the multiring numerical solutions for the flow rate Q (top) and the WSS τw (bottom) for α = 5 (left) and α = 20 (right) at time t =
0.3Tc + 11Tc . At low values of N̄x , increasing N̄r does not significantly decrease the L2 error, whereas increasing N̄x does. On the contrary, at high values of 
N̄x , increasing N̄r significantly decreases the L2 error, whereas increasing N̄x does not. (For interpretation of the colors in this figure, the reader is referred 
to the web version of this article.)

Fig. 5. Elastic Womersley example – Snapshots of the spatial evolution of the axial velocity ux computed with the multiring model at t = 0.3Tc + 11Tc

using Nx = 1600 cells and Nr = 128 rings for α = 20 and R̂ ∈ {10−3, 10−2, 10−1, 3 × 10−1}. We observe that the multiring model is able to compute 
nonlinear flow behaviors with small and large wall deformations. (For interpretation of the colors in this figure, the reader is referred to the web version 
of this article.)
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Table 2
Elastic Poiseuille example – Geometrical and mechanical parameters describing the 
artery and the inlet and outlet boundary conditions, given in the “cgs” unit system.

L R0 K ρ μ R̂ t f

10 1 102√
π

1 1 10−1 20

Fig. 6. Elastic Poiseuille example – Spatial evolution of the steady radius R (left) and the steady axial velocity profiles ux (right) computed with the analytic 
Poiseuille solution ( ) and the multiring model (marks) in x ∈ {0 (�) , 0.2 (�) , 0.4 (◦) , 0.6 (�) , 0.8 (�) , 0.99 (+)}L using Nx = 800 cells and Nr = 64
rings. We observe a good agreement between the Poiseuille and the multiring numerical solutions.

Table 3
Elastic Poiseuille example – Convergence of the L1, L2 and L∞ spatial errors between the steady analytic Poiseuille solution and 
the steady multiring numerical solution for the radius R . We observe that the numerical solution converges at order 1, which is the 
expected order of convergence.

Nx Nr L1 (R) Order L2 (R) Order L∞ (R) Order

100 8 1.29 × 10−3 – 7.35 × 10−4 – 5.36 × 10−4 –
200 16 5.93 × 10−4 −0.56 3.37 × 10−4 −0.56 2.46 × 10−4 −0.56
400 32 2.25 × 10−4 −0.70 1.27 × 10−4 −0.70 9.33 × 10−5 −0.70
800 64 4.54 × 10−5 −1.15 2.49 × 10−5 −1.18 2.05 × 10−5 −1.09

In [37,59], the authors used this solution to validate their numerical code solving the axisymmetric RNS-P equations (1). We 
reproduce here this solution using the multiring model (23).

We consider a straight artery initially at rest (eq. (107)). We impose the pressure gradient by setting at the inlet and 
outlet constant pressures consistent with the analytic solution (109):{

p (x = 0) = p0 + √
π K R0 R̂

p (x = L) = p0 − √
π K R0 R̂.

(110)

For simplicity we set p0 = 0. The values of the geometrical and mechanical parameters describing the artery as well as those 
describing the inlet and outlet boundary conditions are presented in Table 2 and are given in the “cgs” unit system. The 
final simulation time t f is chosen large enough to reach a steady flow regime and the value of R̂ is chosen small enough 
such that the linear approximation required to obtain the elastic Poiseuille solution is valid.

In Fig. 6, we plot the spatial evolution of the steady radius R (Fig. 6 left) and the steady axial velocity profiles ux (Fig. 6
right) computed with the analytic Poiseuille solution and the multiring model in x ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.99}L. We use 
Nx = 800 cells and Nr = 64 rings. We observe that at each recorded position, the steady multiring numerical solution is in 
agreement with the steady analytic Poiseuille solution.

As the steady Poiseuille solution is smooth enough, we perform a convergence analysis to determine the order of accu-
racy of the multiring numerical scheme. We consider the following axial and radial mesh refinements [Nx, Nr] ∈ {[100,8] ,
[200,16] , [400,32] , [800,64]} and focus only on the numerical solution for the radius R for simplicity. In Table 3, we com-
pute the L1, L2 and L∞ spatial errors between the analytic Poiseuille solution and the steady multiring numerical solution 
for the radius R . We observe that the numerical solution converges at order 1, which is the expected order of convergence.

In the two previous examples, we have shown that the multiring model (23) is able to accurately capture steady and 
unsteady linear blood flow behaviors in a straight artery. We are therefore confident that the multiring model (23) can 
compute all relevant linear flow features encountered in large straight axisymmetric elastic arteries. However, the RNS-P 
system of equations (1) is a rich dynamical system that is not limited to describing linear harmonic and steady solutions in 
elastic arteries. In the following sections, we will continue to validate the multiring model, the numerical scheme and the 
boundary conditions using nonlinear steady examples in rigid arteries with varying geometrical and mechanical properties.
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Table 4
Rigid Poiseuille example – Geometrical and mechanical parameters describing the artery and the inlet and outlet boundary condi-
tions, given in the “cgs” unit system.

L R0 K ρ μ Uin Rt t f Re,R

0.25 Re,R R|x=0 1 107 1 ρ Uin R|x=0
Re,R

100 0 0.5 Re,R R|x=0
Uin

100

7. Nonlinear examples in a rigid artery

7.1. Nonlinear transition from a flat to a Poiseuille velocity profile

In [21], the authors studied the behavior of the RNS-P equations (1) when computing steady flows in a rigid axisymmet-
ric cylinder. They showed that RNS-P equations are able to describe the steady spatial transition from the Blasius [61] to the 
Poiseuille flow regime, starting from a flat velocity profile at the inlet and evolving towards a fully developed Poiseuille ve-
locity profile at the outlet. We reproduce here this phenomenon using the multiring model (23). The relevant dimensionless 
number in this example is the Reynolds number Re,R , defined as:

Re,R = ux R

ν

∣∣∣∣
x=0

, (111)

and used to determine the relevant length and time scales in order to observe the steady spatial transition from the Blasius 
to the Poiseuille flow regime. Details on the determination of theses scales can be found in [21].

We consider a straight artery initially at rest (eq. (107)). We impose at the inlet a steady velocity profile. As we can not 
impose a flat velocity profile since it is not compatible with the no-slip boundary condition at the wall (21), we impose 
at the inlet a Von Kármán–Pohlhausen velocity profile [62], describing a fourth-order approximation of the axial velocity 
profile in the viscous boundary layer:

ux (x = 0, r, t) = Uin φPohlhausen (r) , (112)

where:

φPohlhausen (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − [1 − η]3 [1 + [
1 + 


6

]
η
]

1
30

[
30 − 3

[
6 + 


6

]
δBL + [

4 + 

6

]
δ2

BL

] if η < 1

1
1

30

[
30 − 3

[
6 + 


6

]
δBL + [

4 + 

6

]
δ2

BL

] if η ≥ 1,

(113)

with 
 = 12 and η = [1 − r/R] /δBL . The parameter δBL is the estimated width of the boundary layer, that we choose here 
equal to δBL = lr,Nr + lr,Nr−1. We impose at the outlet a zero reflection coefficient Rt to remove any backward traveling 
waves. The values of the geometrical and mechanical parameters describing the artery as well as those describing the inlet 
and outlet boundary conditions are presented in Table 4 and are given in the “cgs” unit system. They mimic physiological 
conditions at the root of the aorta, where Re,R ≈ 100. The final simulation time t f is chosen large enough to reach a steady 
flow regime. As the multiring model (23) is intrinsically elastic, it is not possible to exactly simulate the flow of blood in 
a rigid cylinder. Nevertheless, by artificially increasing the arterial wall rigidity K (here K = 107), we penalize the wall’s 
displacement and place ourselves in a quasi-rigid wall configuration.

To assess the quality of the multiring numerical results, we compare them to those of the steady numerical code pre-
sented in [21]. This steady code was used to solve the steady RNS-P equations (1) in a rigid tube and compared well with 
the results of an integral interactive boundary layer (IBL) code. In the following examples, all results of the steady code used 
as reference solutions are obtained using Nx = 50000 cells in the axial direction and Nr = 1000 cells in the radial direction, 
which corresponds to a very fine mesh in both directions.

In Fig. 7, we plot the steady spatial evolution of the centerline velocity ux|r=0 (Fig. 7 left) and the pressure p (Fig. 7 right) 
computed with the reference solution and the multiring model. We use Nx ∈ {800, 1600, 3200} cells and Nr = 32 rings. We 
observe that as we increase the number of cells Nx , the steady multiring numerical solution converges towards the steady 
reference solution and is able to describe the spatial transition from a flat velocity profile at the inlet to a Poiseuille velocity 
profile at the outlet. The number of cells Nx required to match the steady solution is relatively high since the transition 
from of flat to a Poiseuille velocity profile is a nonlinear phenomenon occurring on a short length scale (between x = 0 and 
x = 0.15Re,R R|x=0).

In Fig. 8, we represent the steady velocity profiles computed with the steady reference solution and the multiring model 
in x ∈ {0.005, 0.01, 0.025, 0.05, 0.1, 0.2}Re,R R|x=0. We use Nx ∈ {800, 3200} cells and Nr = 32 rings. For each recorded 
position, the steady multiring numerical velocity profiles converge towards the steady reference velocity profiles as we 
increase the number of cells Nx . These results are coherent with the results presented in Fig. 7.
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Fig. 7. Rigid Poiseuille example – Spatial evolution of the steady centerline velocity ux|r=0 (left) and the steady pressure p (right) computed with the 
steady reference solution [21] ( ) and the multiring model (marks) using Nx ∈ {800 (�) , 1600 (�) , 3200 (◦)} cells and Nr = 32 rings. On the left plot, the 
dashed lines ( ) represent the values of the flat centerline velocity (ux|r=0 = ux|x=0) and the Poiseuille centerline velocity (ux|r=0 = 2ux|x=0). On the right 
plot, the dashed line ( ) represents the pressure drop −8x/ [Re,R R|x=0

]
of a Poiseuille flow. For each quantity, the steady multiring numerical solution 

converges towards the steady reference solution and we observe the transition from a flat to a Poiseuille velocity profile.

Fig. 8. Rigid Poiseuille example – Spatial evolution of the steady velocity profiles ux computed with the steady reference solution [21] ( ) and with the 
multiring model (marks) in x ∈ {0.005 (�) , 0.01 (�) , 0.025 (◦) , 0.05 (�) , 0.1 (�) , 0.2 (+)}Re,R R|x=0 using Nx ∈ {800 (left), 3200 (right)} cells and Nr = 32
rings. We observe that the steady multiring velocity profiles converge towards the steady reference velocity profiles and accurately reproduce the transition 
from the Blasius to the Poiseuille flow regime.

7.2. Rigid wall stenosis and aneurysm

Stenoses and aneurysms are commonly encountered pathologies and correspond respectively to local constrictions and 
expansions of the neutral radius R0 of the artery. The flow patterns in rigid stenoses and aneurysms have been studied 
by many authors [63–68]. In [21], the authors computed the numerical solution of the steady RNS-P equations (1) in an 
axisymmetric rigid artery presenting a stenosis. They used the steady code presented in the previous section and were able 
to compute flow recirculations in case of severe stenoses. We use here the multiring model (23) to compute the steady flow 
in a rigid stenosis and in a rigid aneurysm. As in the previous section, the relevant dimensionless number is the Reynolds 
number Re,R (111).

We consider an artery initially at rest (eq. (107)). We impose at the inlet a steady Poiseuille velocity profile:

ux (x = 0, r, t) = 2Uin

[
1 − r2

R2

]
, (114)

and at the outlet a zero reflection coefficient Rt to remove any backward traveling waves. The values of the geometrical 
and mechanical parameters describing the artery as well as those describing the inlet and outlet boundary conditions are 
presented in Table 5 and are given in the “cgs” unit system. They mimic physiological conditions at the root of the aorta, 
where Re,R ≈ 100. The final simulation time t f is chosen large enough to reach a steady flow regime. The stenosis and 
aneurysm considered here are described by the following variation of the neutral radius R0:

R0 =

⎧⎪⎨
⎪⎩

R0 if x < xs or x > x f

R0

[
1 + 
R

2

[
1 + cos

(
π + 2π

x − xs

x − x

)]]
if xs ≤ x ≥ x f .

(115)
f s



A.R. Ghigo et al. / Journal of Computational Physics 350 (2017) 136–165 159
Table 5
Rigid stenosis and aneurysm examples – Geometrical and mechanical parameters describing the artery and the inlet and 
outlet boundary conditions, given in the “cgs” unit system.

L R0 
R K ρ μ Uin Rt t f Re,R

0.25 Re,R R|x=0 1 ±0.4 107 1 ρ Uin R|x=0
Re,R

100 0 0.5 Re,R R|x=0
Uin

100

Fig. 9. Rigid stenosis example – Spatial evolution of the steady centerline velocity ux|r=0 (left) and the steady WSS τw (right) computed with the steady 
reference solution [21] ( ) and the multiring model (marks) using Nx ∈ {800 (�) , 1600 (�) , 3200 (◦)} cells and Nr = 32 rings. On the left plot, the dashed 
line ( ) represents the value of the Poiseuille centerline velocity (ux|r=0 = 2ux|x=0). On the right plot, the dashed line ( ) represents the value of the 
Poiseuille WSS (τw = 4μux|x=0/R|x=0). For each quantity, the steady multiring numerical solution converges towards the steady reference solution.

We choose xs = L
5 and x f = 3L

5 to satisfy the long-wave hypothesis. We set 
R = −0.4 to define the stenosis and 
R = +0.4
to define the aneurysm. As in the previous section, we artificially increase the arterial wall rigidity K (here K = 107) to 
penalize the wall’s displacement and place ourselves in a quasi-rigid wall configuration.

As in the previous section, we compare the results of the multiring model (23) to those of the steady numerical code 
presented in [21]. In [25], this steady code was used to solve the steady RNS-P equations (1) in a rigid stenosis and compared 
well to the results of a finite element code for the incompressible Navier–Stokes equations. In the following examples, all 
results of the steady code used as reference solutions are obtained using Nx = 50000 cells in the axial direction and Nr =
1000 cells in the radial direction, which corresponds to a very fine mesh in both directions.

7.2.1. Flow in a stenosis
We first compute the steady flow in a rigid stenosis (
R = −0.4). In Fig. 9, we plot the steady spatial evolution of the 

centerline velocity ux|r=0 (Fig. 9 left) and of the wall shear stress (WSS) τw (Fig. 9 right) computed with the steady reference 
solution and the multiring model. We use Nx ∈ {800, 1600, 3200} cells and Nr = 32 rings. We observe that as we increase 
the number of cells Nx , the steady multiring numerical solution for the centerline velocity ux|r=0 converges towards the 
steady reference solution. On the contrary, the steady multiring numerical solution for the WSS τw is already converged for 
Nx = 800. Indeed, the number of rings Nr used is sufficient to obtain an accurate description of the shape of the velocity 
profile near the wall. We also note that the WSS τw becomes negative after the stenosis, indicating that the multiring model 
is able to capture flow recirculations. Finally, the steady WSS τw is similar to the one obtained in [69,23,70].

In Fig. 10, we represent the steady velocity profiles computed with the steady reference solution and the multiring 
model in x ∈ {0.05, 0.075, 0.1, 0.125, 0.15, 0.175}Re,R R|x=0. We use Nx = 3200 cells and Nr = 32 rings. For each recorded 
position, the steady multiring numerical velocity profiles agree well with the steady reference velocity profiles. We observe 
that after the stenosis, a small jet-like region of high velocities forms in the center of the artery and a region of low and 
negative velocities appears near the wall. These results are coherent with those presented in Fig. 9 and with the velocities 
profiles obtained in [69].

7.2.2. Flow in an aneurysm
We compute here the steady flow in a rigid aneurysm (
R = +0.4). In Fig. 11, we plot the steady spatial evolution of 

the centerline velocity ux|r=0 (Fig. 11 left) and of the wall shear stress (WSS) τw (Fig. 11 right) computed with the steady 
reference solution and the multiring model. We use Nx ∈ {800, 1600, 3200} cells and Nr = 32 rings. For each quantity, the 
steady multiring numerical solution converges towards the steady reference solution. We also note that even though the 
aneurysm is not large enough to create a flow recirculation, the WSS τw is almost negative in the center of the aneurysm. 
Finally, the steady WSS τw is similar to the one obtained in [71,72].

In Fig. 12, we represent the steady velocity profiles computed with the steady reference solution and the multiring 
model in x ∈ {0.05, 0.075, 0.1, 0.125, 0.15, 0.175}Re,R R|x=0. We use Nx = 3200 cells and Nr = 32 rings. For each recorded 
position, the steady multiring numerical velocity profiles agree well with the steady reference velocity profiles.
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Fig. 10. Rigid stenosis example – Spatial evolution of the steady velocity profiles computed with the steady reference solution [21] ( ) and the multiring 
model (marks) in x ∈ {0.05 (�) , 0.075 (�) , 0.1 (◦) , 0.125 (�) , 0.15 (�) , 0.175 (+)}Re,R R|x=0 using Nx = 3200 cells and Nr = 32 rings. We observe that the 
multiring velocity profiles are in good accord with the steady reference velocity profiles.

Fig. 11. Rigid aneurysm example – Spatial evolution of the steady centerline velocity ux|r=0 (left) and the steady WSS τw (right) computed with the 
reference solution [21] ( ) and the multiring model (marks) using Nx ∈ {800 (�) , 1600 (�) , 3200 (◦)} cells and Nr = 32 rings. On the left plot, the dashed 
line ( ) represents the value of the Poiseuille centerline velocity (ux|r=0 = 2ux|x=0). On the right plot, the dashed line ( ) represents the value of the 
Poiseuille WSS (τw = 4μux|x=0/R|x=0). For each quantity, the steady multiring numerical solution converges towards the steady reference solution.

Fig. 12. Rigid aneurysm example – Spatial evolution of the steady velocity profiles computed with the reference solution [21] ( ) and the multiring model 
(marks) in x ∈ {0.05 (�) , 0.075 (�) , 0.1 (◦) , 0.125 (�) , 0.15 (�) , 0.175 (+)}Re,R R|x=0 using Nx = 3200 cells and Nr = 32 rings. We observe that the steady 
multiring velocity profiles are in good accord with the steady reference velocity profiles.

The results presented previously indicate that for a high arterial wall rigidity, the multiring model (23) is able to compute 
the characteristic steady nonlinear flow features in a rigid artery. Indeed, we have shown that it can describe the nonlinear 
steady transition from a flat to a Poiseuille velocity profile, the acceleration of the flow in a stenosis, the deceleration of the 
flow in a aneurysm as well as small flow recirculations after the stenosis. It can also correctly compute the variation of the 
WSS and the pressure. These results show that the multiring model (23) correctly describes all relevant steady and unsteady 
nonlinear blood flow features in quasi-rigid straight, constricted (stenosis) and expanded (aneurysm) arteries. Next, we use 
the multiring model to compute the unsteady blood flow in an elastic stenosis.
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Table 6
Elastic artery example – Geometrical and mechanical parameters describing the artery and the inlet and outlet boundary conditions, given in the “cgs” unit 
system.

L R0 
R K ρ μ Uin Rt Tc t f Re,R α Sh

0.25 Re,R R|x=0 1 {0,−0.4} 105 1 ρ Uin R|x=0
Re,R

Shc 0 2π
ν

R2
0

α2 5Tc 100 15 10−2

8. Unsteady flow in an elastic straight and stenosed artery

In physiological conditions, the arteries are elastic and the flow of blood is pulsatile. We propose here to compute with 
the multiring model (23) a periodic flow in straight and stenosed elastic arteries and to systematically compare the flow 
features computed in both configurations. The Womersley number α (100), the Reynolds number Re,R (111) and the Shapiro 
number Sh (38) are the relevant dimensionless numbers in this example. Here Sh is defined as:

Sh = Uin

c
with c =

√
√

π
K

2ρ
R. (116)

We consider an artery initially at rest (eq. (107)). We impose at the inlet a periodic Pohlhausen velocity profile (113)
mimicking the flow ejected by the heart in the aorta:

ux (x = 0, r, t) = Uin φPolhlausen (r)max

(
0, sin

(
2π

t

Tc

))
, (117)

where Tc is the period of the flow. Note that blood is injected in the artery for only half a period, such that this test case 
is not strictly equivalent to the Womersley solution presented in the previous sections. At the outlet, we impose a zero 
reflection coefficient Rt to remove any backward traveling waves and highlight only the flow perturbations induced by the 
stenosis. The values of the geometrical and mechanical parameters describing the artery as well as those describing the inlet 
and outlet boundary conditions are presented in Table 6 and are given in the “cgs” unit system. They mimic physiological 
conditions at the root of the aorta, where Re,R ≈ 100, α ≈ 15 and Sh ≈ 10−2. The final simulation time t f is chosen large 
enough to reach a periodic flow regime. As in the previous section, the stenosis is described by the neutral radius R0 (115)
with xs = L

5 , x f = 3L
5 and 
R = −0.4. The straight artery is obtained by choosing 
R = 0.

In Fig. 13, we plot the time variations for 4Tc ≤ t ≤ 5Tc of the pressure p (Fig. 13 top), the flow rate Q (Fig. 13 middle 
top), the pressure gradient ∇x p (Fig. 13 middle bottom) and the WSS τw (Fig. 13 bottom) computed with the multiring 
model in the straight (
R = 0) and stenosed (
R = −0.4) arteries in x ∈ {0.025 (left), 0.1 (center), 0.225 (right)}Re,R R|x=0. 
We use Nx = 3200 cells and Nr = 32 rings. In the straight artery configuration (
R = 0), we observe characteristic features 
of the unperturbed propagation of the elastic pulse wave from the inlet to the outlet. Indeed, the time variations of the dif-
ferent variables are identical at each recorded position but occur with an increasing delay as the wave moves away from the 
inlet at the finite wave speed c (37). In the stenosed artery configuration (
R = −0.4), we observe similar wave propaga-
tion behaviors with added perturbations due to the presence of the stenosis. During systole (4Tc ≤ t ≤ 4.5Tc), the maximum 
amplitude of the pressure waveform is higher than in the straight configuration before the stenosis, in x = 0.025Re,R R|x=0, 
whereas the maximum amplitude of the flow waveform is higher after the stenosis, in x = 0.225Re,R R|x=0. At the begin 
of diastole (4.5Tc ≤ t ≤ 4.7Tc) at each recorded position in the stenosed artery configuration, the pressure becomes nega-
tive and the flow reverses whereas these quantities are zero in the straight artery configuration as the wave has already 
exited the artery. These behaviors during systole and diastole are evidence of wave reflection and transmission phenomena 
caused by the presence of the stenosis. Additionally, the stenosis induces a flow acceleration, which is highlighted by larger 
variations of the pressure gradient ∇x p and the WSS τw than in the straight configuration in the middle of the stenosis, 
in x = 0.1Re,R R|x=0. Finally, we note that in both the straight and stenosed arteries, the WSS τw becomes negative during 
diastole (4.5Tc ≤ t ≤ 5Tc), which is evidence of flow reversal and recirculation.

To better understand the flow perturbations induced by the stenosis, we decompose in Fig. 14 the flow motion over the 
fourth period (4Tc ≤ t ≤ 5Tc) and focus on three different instants of the cycle: the peak of systole at t = 0.2Tc + 4Tc , the 
end of systole (or the beginning of diastole) at t = 0.6Tc +4Tc and the end of diastole at t = 0.9Tc +4Tc . For each instant, we 
plot the velocity profiles in the straight (
R = 0, Fig. 14 top) and stenosed (
R = −0.4, Fig. 14 middle) arteries and compare 
in these two configurations the velocity profiles in x = {0.025, 0.1, 0.225}Re,R R|x=0 (Fig. 14 bottom). In Fig. 14 bottom, we 
observe that the velocity profiles taken in x = {0.025, 0.225}Re,R R|x=0 are almost identical in the straight and stenosed 
arteries, indicating that the stenosis does not induce strong perturbations of the shape and amplitude of the velocity profiles 
at these positions. On the contrary, they differ in x = 0.1Re,R R|x=0 as the constriction creates a flow acceleration which has 
already been observed in Fig. 13. Finally, at times t = 0.6Tc + 4Tc and t = 0.9Tc + 4Tc , we observe that the pulse wave has 
left the artery and that the flow relaxes towards its equilibrium state. The velocity amplitude decreases as we reach the end 
of diastole, with positive velocities in the center of the artery, in r = 0, and negative velocities near the wall, highlighted by 
the negative WSS τw in Fig. 13. Indeed, in Fig. 13, we see that for 0.3Tc + 4Tc ≤ t ≤ 0.6Tc + 4Tc , the pressure gradient is 
positive, which reverses the flow only near the wall as the flow inertia in the core of the artery is too strong.
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Fig. 13. Elastic artery example – Time variations for 4Tc ≤ t ≤ 5Tc of the pressure p (top), the flow rate Q (middle top), the pressure gradient ∇x p (middle 
bottom) and the WSS τw (bottom) computed with the multiring model in the straight ( ) and stenosed (◦) arteries in x ∈ {0.025 (left), 0.1 (center), 
0.225 (right)}Re,R R|x=0 using Nx = 3200 cells and Nr = 32 rings. We observe evidence of wave propagation and reflection as well as flow reversal and 
recirculation.

The results presented in Figs. 13 and 14 are similar to those obtained in [73]. They indicate that the multiring model 
(23) is capable of describing unsteady flows and wave propagation in a elastic stenosis and that this model can compute 
the expected unsteady flow behaviors such as wave reflections and flow recirculations.

9. Conclusion

We have presented a two-dimensional (2D) nonlinear axisymmetric multiring model to compute blood flow in elastic 
arteries. This model results from the integration of the RNS-P equations (1) over concentric rings of fluid in an elastic 
artery, providing a unified framework where both the motion of the fluid and the displacement of the arterial wall are dealt 
with simultaneously. Its mathematical structure as a system of balance laws has allowed us to use a robust, conservative 
and positive finite volume numerical method to compute steady and unsteady linear and nonlinear flows in quasi-rigid 
and elastic arteries. The multiring model and the numerical method were validated on multiple physiological blood flow 
examples. For each of the considered test cases, the multiring solution agreed very well with the reference solution for 
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Fig. 14. Elastic artery example – Snapshots at times t ∈ {0.2, 0.6, 0.9}Tc + 4Tc of the spatial evolution of the axial velocity ux in the straight (top) and 
stenosed (middle) arteries and comparison of the axial velocity profiles ux in the straight ( ) and stenosed (marks) arteries in x = {0.025 (�) , 0.1 (�) , 
0.225 (◦)}Re,R R|x=0 (bottom), computed with the multiring model using Nx = 3200 cells and Nr = 32 rings. In x = {0.025, 0.225}Re,R R|x=0, we observe 
almost no difference between the straight and stenosed velocity profiles. On the contrary, in x = 0.1Re,R R|x=0, we see a flow acceleration due to the 
constriction. At times t ∈ {0.6, 0.9}Tc + 4Tc , backflow is created near the wall in the straight and stenosed arteries due to the positive pressure gradient 
occurring at 0.3Tc + 4Tc ≤ t ≤ 0.6Tc + 4Tc . However, the inertia in the core of the artery is too strong to observe a complete flow reversal in one period.

the velocity profiles, the wall shear stress (WSS) and other averaged quantities such as the flow rate or the pressure, even 
when large arterial wall deformations were considered. In the presence of pathologies such as stenoses or aneurysms, the 
multiring model captured the expected flow behaviors, and in particular flow recirculation, downstream of the stenosis and 
in the aneurysm. In comparison, classical one-dimensional (1D) models can only compute average quantities such as the 
flow rate or the pressure and can not describe flow recirculations. This study shows that the multiring model can serve as a 
superior alternative to 1D models to accurately compute blood flow in large elastic arteries at a reduced computational cost 
and could also prove to be a reliable substitute to three-dimensional (3D) models when simple arterial configurations are 
considered. This method can be extended to other pressure laws to describe the flow in veins and viscoelastic tubes or the 
propagation of a water hammer wave (Allevi’s equation). In future works, we plan to couple the 2D multiring model with a 
1D model and to propose a non-Newtonian 2D multiring model to take into account the effect of aggregation of red blood 
cells in regions of low shear rate.
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