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The purpose of this work is to construct a simple, efficient and accurate well-balanced 
numerical scheme for one-dimensional (1D) blood flow in large arteries with varying 
geometrical and mechanical properties. As the steady states at rest are not relevant for 
blood flow, we construct two well-balanced hydrostatic reconstruction techniques designed 
to preserve low-Shapiro number steady states that may occur in large network simulations. 
The Shapiro number Sh = u/c is the equivalent of the Froude number for shallow water 
equations and the Mach number for compressible Euler equations. The first is the low-
Shapiro hydrostatic reconstruction (HR-LS), which is a simple and efficient method, inspired 
from the hydrostatic reconstruction technique (HR). The second is the subsonic hydrostatic 
reconstruction (HR-S), adapted here to blood flow and designed to exactly preserve all 
subcritical steady states. We systematically compare HR, HR-LS and HR-S in a series 
of single artery and arterial network numerical tests designed to evaluate their well-
balanced and wave-capturing properties. The results indicate that HR is not adapted to 
compute blood flow in large arteries as it is unable to capture wave reflections and 
transmissions when large variations of the arteries’ geometrical and mechanical properties 
are considered. On the contrary, HR-S is exactly well-balanced and is the most accurate 
hydrostatic reconstruction technique. However, HR-LS is able to compute low-Shapiro 
number steady states as well as wave reflections and transmissions with satisfying accuracy 
and is simpler and computationally less expensive than HR-S. We therefore recommend 
using HR-LS for 1D blood flow simulations in large arterial network simulations.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Since the early work of Euler [1], one-dimensional (1D) models have been successfully used to describe the flow of 
blood in the large arteries of the systemic network [2–6]. They have proved to be valuable and efficient tools to capture 
pulse wave propagation in large network simulations and obtain satisfactory evaluations of average quantities such as the 
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Fig. 1. Schematic representations of possible arterial geometrical configurations. Left: Taper; Center: stenosis; Right: aneurysm.

cross-sectional area (A), the flow rate (Q ) or the pressure (P ) [7,8]. In recent works, 1D models have also been used to 
compute inverse problems to obtain patient specific parameters [9–11]. Due to their simplicity, efficiency and the reduced 
number of parameters they require, we hope that in the near future these 1D models will be intensively used by medical 
practitioners to make pre-and-post operative diagnosis and perform patient specific simulations of surgeries.

In physiological situations, the mechanical and geometrical properties of the arterial wall can vary locally. These varia-
tions can be caused by tapering (Fig. 1 left), pathologies such as stenoses (Fig. 1 center) or aneurysms (Fig. 1 right) and 
endovascular prosthesis (stent). Mathematically, they result in a source term in the momentum conservation equation that 
prevents from writing the system in a conservation-law form. A naive discretization of this nonconservative source term can 
lead to spurious oscillations of the numerical solution and the failure of the numerical method, especially close to steady 
states [12]. This problem was originally pointed out by Roe [13] for the scalar equation with source terms and reflects a 
truncation error between the discretization of the conservative flux gradient and the nonconservative source term that does 
not vanish close to steady states. Since the works of Bermúdez and Vázquez [14] and LeRoux [15,16] in the context of 
shallow-water equations, numerical schemes that preserve some steady states at a discrete level are called well-balanced.

The aim of this study is to propose a simple, robust and efficient well-balanced numerical method for blood flow in 
an artery with variations of its mechanical and geometrical properties. As blood flow equations are mathematically similar 
to shallow water equations, several well-balanced numerical schemes have been derived for 1D blood flow equations with 
varying geometrical and mechanical properties. A popular approach consists in expressing the system in terms of primitive 
variables, namely the cross-sectional area (A) and the flow velocity u. The resulting system can be written in a conservation-
law form, even in the presence of varying geometrical and mechanical properties. However, it has been proved for shallow 
water equations that this formulation is not mass-conservative and can lead to erroneous estimations of the wave celerity 
[17]. This analysis is also valid for blood flow equations and the numerical solutions obtained with a nonconservative system 
will be incorrect in the presence of elastic jumps. Indeed, the Rankine–Hugoniot jump relation of the nonconservative form 
is different from the one of the conservative form. C̆anić [18] and Sherwin [19] were among the first to address the issue 
of the nonconservative source term for blood flow simulation. C̆anić proposed to treat the nonconservative product in this 
source term through jump conditions, while Sherwin used a two-rarefaction Riemann solver when the material properties 
varied abruptly. More recently, Toro and Siviglia [20] reformulated the 1D conservative system with varying geometrical 
and mechanical properties as a homogeneous quasi-linear system and solved the associated Riemann problem. To do so, 
they introduced an auxiliary steady variable containing the geometrical and mechanical properties of the artery, and also 
included variations of the external pressure. In the framework of path-conservative methods [21], Müller and Toro [22] used 
this augmented quasi-linear system to propose an exactly well-balanced numerical scheme for all steady states (subcriti-
cal, transcritical and supercritical). Murillo and García-Navarro [23] derived an energy balanced numerical scheme in the 
framework of augmented solvers for arteries with varying mechanical and geometrical properties, and also variations of the 
external pressure. In [12], Delestre and Lagrée successfully applied the hydrostatic reconstruction (HR), proposed in [24] for 
shallow water equations, to compute blood flow in arteries with varying cross-sectional area. In more recent work [25], 
Delestre extended the hydrostatic reconstruction (HR) to arteries with varying cross-sectional area and arterial wall rigidity.

The hydrostatic reconstruction (HR) meets the simplicity and efficiency requirements for 1D blood flow simulation and 
will be the reference well-balanced method used in this study. The hydrostatic reconstruction (HR) can be used with any 
finite-volume numerical flux for a conservative problem and guarantees the following natural properties of shallow water 
flows:

• well-balanced for the steady states at rest, or hydrostatic equilibria;
• the conservation of mass;
• the non-negativity of the water-height h;
• the ability to compute dry states and transcritical flows;
• a discrete or semi-discrete entropy inequality, which enables to compute the entropic solution in the presence of a 

discontinuity.

Unfortunately, the steady states at rest preserved by the hydrostatic reconstruction (HR) are not relevant for blood flow as 
they only occur in “dead men” [12]. We propose two extensions of the hydrostatic reconstruction adapted to blood flow 
simulation in large arteries.
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By relaxing some of the properties of the hydrostatic reconstruction (HR) such as the ability to compute dry states, we 
derive an extension of the hydrostatic reconstruction, that we refer to as the “low-Shapiro” hydrostatic reconstruction (HR-
LS). The low-Shapiro hydrostatic reconstruction (HR-LS) accurately preserves low-Shapiro number steady states that may 
occur in large network simulations. The Shapiro number S = u/c is the equivalent of the Froude number for shallow water 
equations and the Mach number for compressible Euler equations. We also adapt the subsonic hydrostatic reconstruction 
(HR-S), proposed by Bouchut [26], to blood flow equations with variable geometrical and mechanical properties. The sub-
sonic hydrostatic reconstruction (HR-S) exactly preserves all subcritical steady states, including low-Shapiro number steady 
states. By construction, both the low-Shapiro hydrostatic reconstruction (HR-LS) and the subsonic hydrostatic reconstruc-
tion (HR-S) are able to accurately compute wave reflections and transmissions. The different numerical methods are then 
tested and compared in a series of steady and unsteady physiological flow configurations, where both the geometrical and 
mechanical wall properties vary.

This work is organized as follows. In section 2 we derive the hyperbolic system of equations that describes the flow of 
blood in large arteries and recall its main mathematical properties. In section 3, we present a kinetic numerical scheme 
for the homogeneous problem and the boundary conditions used in the examples presented in this study. In section 4, we 
introduce the low-Shapiro hydrostatic reconstruction (HR-LS) and the subsonic hydrostatic reconstruction (HR-S) for blood 
flow in arteries with varying mechanical and geometrical wall properties. In sections 5 and 6, we present a series a steady 
and unsteady test cases for a single artery and a 55 arteries network, in which we evaluate the performances of the different 
hydrostatic reconstruction techniques.

2. Mathematical model

2.1. Model derivation

The 1D models for blood flow are derived by averaging over the cross-sectional area of each artery a simplified Navier–
Stokes system of equations. These simplified equations are obtained using the long wave approximation (D/λ � 1, ratio 
between the averaged diameter of an artery D and the average wave length of the pulse wave λ) and supposing the axial 
symmetry of blood flow (∂θ = 0). We recall that in arteries the ratio D/λ is of the order of 1 ×10−2, therefore the long wave 
hypothesis is asymptotically valid. Because blood and wall viscosities will damp the effects we want to highlight, namely 
pulse wave propagation, we neglect them in the rest of this study. We use the inviscid system of equations describing the 
flow of blood in an elastic artery at the axial position x and time t⎧⎪⎪⎨

⎪⎪⎩
∂ A

∂t
+ ∂ Q

∂x
= 0

∂ Q

∂t
+ ∂

∂x

(
Q 2

A

)
= − A

ρ

∂ P

∂x
.

(1)

The variables Q , A and P are respectively the flow rate, the cross-sectional area and the blood pressure. We also introduce 
the flow velocity u = Q

A . The parameter ρ is the density of blood and is supposed constant. For a description of the 
derivation of system (1) we refer the reader to [27–29]. To close the system of equations, the variation of pressure is linked 
to the deformation of the artery. Assuming that the arterial wall is a homogeneous, incompressible Hookean solid and that 
the artery is represented by a thin-cylinder whose sections move independently of one another, the following wall law is 
obtained, describing the elastic, or spring-like, behavior of the arterial wall

P (x, t) = P0 + K (x)
(√

A (x, t) − √
A0 (x)

)
, (2)

where A0 is the cross-sectional area at rest of the artery and K is the arterial wall rigidity. Both quantities can vary with 
the axial position x. More complex and general pressure laws can be used (for example in veins [30]), yet equation (2)
contains sufficient information to describe the main features of blood flow in large arteries [4,8]. Combining both system 
(1) and equation (2) we obtain the final 1D nonconservative system of equations⎧⎪⎨

⎪⎩
∂ A

∂t
+ ∂ Q

∂x
= 0

∂ Q

∂t
+ ∂ F

∂x
= ST ,

(3)

where F is the momentum flux

F = Q 2

A
+ K

3ρ
A

3
2 , (4)

and ST is a source term taking into account the possible variations of the geometrical and mechanical properties of the 
arterial wall

ST = A
(

∂ (
K

√
A0

)
− 2√

A
∂ K

)
. (5)
ρ ∂x 3 ∂x
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2.2. Hyperbolic system

System (3) can be written as a system of balance laws

∂U

∂t
+ ∂

∂x
[F (U, K )] = S (U, K )

∂σ

∂x
. (6)

U and F are respectively the vector of conservative variables and the vector of mass and momentum flux

U =
[

A
Q

]
, F (U, K ) =

[
Q
F

]
, (7)

and the vector σ and the matrix S are defined as:

σ =
[

K
Z

]
=

[
K

K
√

A0

]
, S (U) =

[
0 0

− 2
3

A
3
2

ρ
A
ρ

]
. (8)

The main difficulty of system (6) lies in the presence of the nonconservative source term S ∂σ
∂x . This nonconservative term 

vanishes when the cross-sectional area at rest A0 and the arterial wall rigidity K are constant, and system (6) is reduced to 
the following system of conservation laws

∂U

∂t
+ ∂

∂x
[F (U, K )] = 0. (9)

The conservative system (9) has been thoroughly studied by many authors and we only briefly recall its properties. Ad-
ditional details can be found in [31]. To analyze the mathematical properties of the system (9), we compute the Jacobian 
matrix of the flux vector F

J (U, K ) = ∂F

∂U
=

[
0 1

K
√

A
2ρ − Q 2

A2
2Q

A

]
. (10)

J (U,K) has two real eigenvalues λ1 and λ2, respectively associated to two right eigenvectors R1 and R2

λ1 = Q

A
− c, λ2 = Q

A
+ c, R1 =

[
1
λ1

]
, R2 =

[
1
λ2

]
. (11)

c is the Moens–Korteweg wave speed [32,33] and corresponds to the speed of pulse waves in an artery

c =
√

K

2ρ

√
A. (12)

The hyperbolicity of the system is characterized by the Shapiro number Sh , introduced by Shapiro in [34]

Sh = u

c
= 1

c

Q

A
. (13)

Sh as the analogue of the Froude number Fr for the shallow-water equations or of the Mach number Ma for compressible 
flows. Depending on the value of Sh , we distinguish two flow regimes, represented respectively by the subcritical velocity 
domain Usub and the supercritical velocity domain Usup⎧⎪⎪⎨

⎪⎪⎩
Usub =

{
Q

A
∈R | A > 0, K > 0, Z > 0, Sh < 1

}

Usup =
{

Q

A
∈R | A > 0, K > 0, Z > 0, Sh > 1

}
.

(14)

In both regions Usub and Usup , system (9) is strictly hyperbolic as λ1 �= λ2 and the right eigenvectors R1 and R2 are linearly 
independent. However, when Sh = 1 the flow is critical and the system looses its strict hyperbolicity. In this case resonance 
phenomena can occur, leading to a possible loss of uniqueness of the solution [35–38].

In physiological conditions, blood flow is almost always subcritical. Nevertheless, very specific pathologies may lead to 
supercritical flows but will not be the subject of this study. Only subcritical solutions of system (9) and more generally of 
system (6) in Usub will be considered here.

For solutions of system (9) in Usub , linear algebra shows that the Jacobian matrix J is diagonalizable in the form J =
R�R−1, where the columns of R are the right eigenvectors R1 and R2 and � is a diagonal matrix containing the eigenvalues 
of J. Introducing a new vector W = [W1, W2]T such that ∂UW = R−1, system (9) can be written as:

∂W + �
∂W = 0. (15)
∂t ∂x
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Finally, by integrating the equation ∂UW = R−1, the following expression for W is obtained

W =
[

W1
W2

]
=

⎡
⎣ Q

A − 4c

Q
A + 4c

⎤
⎦ . (16)

The vector W is often referred to as the Riemann invariant vector and is linked to the conservative variables⎧⎪⎪⎨
⎪⎪⎩

A =
(

2ρ

K

)2 (
W2 − W1

8

)4

Q = A
W1 + W2

2
.

(17)

The relations (17) are useful to define the boundary conditions at the inlet and outlet of the computational domain.
The vector U, solution of system (9), satisfies an entropy inequality linked to the entropy pair (η, G)

∂η

∂t
+ ∂G

∂x
≤ 0, (18)

where η is the entropy and G is the entropy flux⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η (U, K ) = Q 2

2A
+ 2

3

K

ρ
A

3
2

G (U, K ) =
(

Q 2

2A
+ K

ρ
A

3
2

)
Q

A
.

(19)

This entropy inequality is extended to solutions of system (6) through a new entropy pair 
(
η̃, G̃

)
taking into account the 

vector σ⎧⎪⎪⎨
⎪⎪⎩

η̃ (U,σ ) = η (U, K ) − Z

ρ
A

G̃ (U,σ ) = G (U, K ) − Z

ρ
Q .

(20)

This entropy inequality is closely linked to the variation of the physical energy of the system. The existence of such an 
inequality is essential in order to select the correct physical solution across discontinuities [39].

System (6) admits non-trivial steady solutions, verifying the following steady state system of equations⎧⎪⎨
⎪⎩

Q = C1

1

2

Q 2

A2
+ 1

ρ

(
K

√
A − Z

)
= C2,

(21)

where C1 and C2 are two constants. In the following, we note E = 1
2

Q 2

A2 + 1
ρ

(
K

√
A − Z

)
the energy discharge. A particular 

family of steady states are the steady states at rest, or “man at eternal rest” equilibria, defined by{
Q = 0

K
√

A − Z = C2.
(22)

For shallow water flows, steady states mainly occur in lakes and verify the “man at eternal rest” equilibria (22). In arteries, 
steady or quasi-steady flow regimes are observed in small segments when the frequency of the pulse wave is greatly 
reduced due to a high resistance of the flow, for example after severe stenoses or in smaller arteries. In these cases, the 
relevant equilibria are no longer the steady states at rest but the non-zero flow steady states described by system (21).

3. Numerical scheme for the homogeneous conservative system

In this section we describe the finite volume numerical scheme used to solve the homogeneous conservative system (9). 
The spatial domain is discretized in a series of cells Ci defined as

Ci =
[

xi− 1
2
, xi+ 1

2

]
=

[
xi − �x

2
, xi + �x

2

]
, i ∈ [1, N] , (23)

where �x is the cell size, supposed constant for simplicity. The time domain is also discretized using a constant time step 
�t and the discrete times are defined as

tn = n�t, n ∈N. (24)
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3.1. Finite volume numerical scheme

We first derive the integral form of the conservative system (9) by integrating it with respect to t and x over 
]
tn, tn+1

[×
Ci [37]

∫
Ci

[
U

(
x, tn+1

)
− U

(
x, tn)]

dx +
tn+1∫
tn

[
F
(

U
(

xi+ 1
2
, t

)
, K

(
xi+ 1

2

))
− F

(
U

(
xi− 1

2
, t

)
, K

(
xi− 1

2

))]
dt = 0. (25)

We then approximate the integrals in (25) using the discrete variable Un
i and the numerical flux Fn

i+ 1
2

, corresponding re-

spectively to an approximation of the space average of the exact solution U over the cell Ci at time tn

Un
i ≈ 1

�x

∫
Ci

U
(
x, tn)

dx, (26)

and to an approximation of the time average of F at the cell interface Ii+ 1
2

Fn
i+ 1

2
≈ 1

�t

tn+1∫
tn

F
(

U
(

xi+ 1
2
, t

)
, K

(
xi+ 1

2

))
dt. (27)

Using these definitions, we obtain the following explicit finite volume numerical scheme

Un+1
i = Un

i − �t

�x

[
Fn

i+ 1
2

− Fn
i− 1

2

]
. (28)

We define Fn
i+ 1

2
as a two-points numerical flux vector, namely

Fn
i+ 1

2
= F (UL,UR) =

[
FA (UL,UR)

FQ (UL,UR)

]
. (29)

As we focus only on first-order finite volume numerical schemes, the vectors UL and UR at the cell interface Ii+ 1
2

at time 
tn are defined as

UL = Un
i , UR = Un

i+1. (30)

The choice of the function F defines the numerical flux and thus the finite volume scheme. Several possibilities exist, and 
a review of the most common ones applied to blood flow equations can be found in [12,22,40,4,23,41].

3.2. Kinetic numerical flux

We choose to compute the function F using a kinetic numerical flux, and a review of this method applied to different 
systems of equations can be found in [42]. The kinetic method was first introduced for shallow water equations in [43], 
combined with the hydrostatic reconstruction (HR) in [44] and adapted to the blood flow in [12,41]. The principal motiva-
tions for choosing a kinetic numerical flux are that it preserves the positivity of the cross-sectional area and its numerical 
diffusion is better suited to compute resonant solutions [45,46]. We briefly recall the classical kinetic approach.

Following [43,44], we introduce the real, positive, even and compactly supported function χ (w), verifying the following 
properties

⎧⎪⎨
⎪⎩

χ (−w) = χ (w)∫
R

χ (w)dw =
∫
R

w2χ (w)dw = 1. (31)

We choose the following expression for the function χ (w)

χ (w) =
⎧⎨
⎩

1

2
√

3
if |w| ≤ √

3

0 else.

(32)
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Using this function, we define the kinetic Maxwellian, or so-called Gibbs equilibrium, which represents the density of micro-
scopic particles moving at the velocity ξ ∈ R

M (x, t, ξ) = M (A, ξ − u) = A (x, t)

c̃
χ

(
ξ − u

c̃

)
, (33)

where

c̃ =
√

K

3ρ

√
A. (34)

Noticing that the integral and the first and second moments on R of M respectively allow to recover A, Q and F , it can be 
proved [43] that U is solution of system (9) if and only if M satisfies the following linear kinetic equation

∂M

∂t
+ ξ

∂M

∂x
= Q (x, t, ξ) , (35)

where Q (x, t, ξ) is a collision term that satisfies

∫
R

Qdξ =
∫
R

ξQdξ = 0. (36)

As the equation (35) is linear, it can be approximated by a simple upwind scheme. The flux function F is then obtained 
using the integral and the first moment of the upwind numerical flux used to solve the linear kinetic equation (35), and 
writes

F (UL,UR) = F+ (UL) +F− (UR) , (37)

where UL and UR are defined as in (30). The fluxes F+ (U) and F− (U) are defined as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F+ (U)=
∫

ξ≥0

ξ

[
1
ξ

]
M (A, ξ − u)dξ

F− (U)=
∫

ξ≤0

ξ

[
1
ξ

]
M (A, ξ − u)dξ.

(38)

After some computation, we find that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F+ (U) = A

2
√

3c̃

⎡
⎣ 1

2

((
ξ+

p

)2 − (
ξ+

m

)2
)

1
3

((
ξ+

p

)3 − (
ξ+

m

)3
)
⎤
⎦

F− (U) = A

2
√

3c̃

⎡
⎣ 1

2

((
ξ−

p

)2 − (
ξ−

m

)2
)

1
3

((
ξ−

p

)3 − (
ξ−

m

)3
)
⎤
⎦ ,

(39)

with ⎧⎪⎨
⎪⎩

ξ+
p = max

(
0, u + √

3c̃
)

, ξ+
m = max

(
0, u − √

3c̃
)

ξ−
p = min

(
0, u + √

3c̃
)

, ξ−
m = min

(
0, u − √

3c̃
)

.
(40)

The stability of the scheme is ensured if at each time tn , the time step �t verifies the following CFL (Courant, Friedrichs 
and Lewy) [47] condition

�t ≤ N
min
i=1

�x

|un
i | + c̃n

i

. (41)
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3.3. Initial condition

All numerical simulations presented in this study are initialized by the following solution of the steady state at rest 
system (22)

Q = 0 and A = A0, (42)

and the initial vector of conservative variable in the cell Ci is then

U0
i =

[
A0,i

0

]
. (43)

3.4. Subcritical boundary condition

In each artery at time tn , boundary conditions are imposed in inlet and outlet ghost cells, respectively noted Cin and Cout , 
by setting the value of their associated vector of conservative variable Un

in and Un
out . As we compute subcritical solutions of 

system (6) in Usub , one boundary condition is imposed in the inlet ghost cell Cin and one boundary condition is imposed in 
the outlet ghost cell Cout , respectively allowing to determine one component of Un

in and one component of Un
out . To compute 

the remaining unknown components of Un
in and Un

out , we follow the methodology proposed by Bristeau and Coussin [48]
and Alastruey [49]. In the following, we assume that in each cell Ci at time tn , the discrete vector of conservative variables 
Un

i is known.

3.4.1. Inlet boundary condition: imposed flow rate Q in

We describe here a methodology to impose the flow rate Q in
(
tn

) = Q n
in at the interface between the first cell of the 

computational domain C1 and the inlet ghost cell Cin , namely

FA
(
Un

in,Un
1

) = Q n
in. (44)

Taking advantage of the fact that the kinetic flux function F can be split in two, equation (44) can be expressed as

FA
+ (

Un
in

) +FA
− (

Un
1

) = Q n
in. (45)

To ensure the stability of the scheme, this condition is imposed in an upwind manner. Following [48], we define the 
quantity

a1 = Q n
in −FA

− (
Un

1

)
. (46)

Two possible cases exist:

• If a1 ≤ 0, the dominant part of the information is coming from inside the computational domain. As we are performing 
an upwind evaluation of the inlet boundary condition, we impose{

FA
+ (

Un
in

) = 0

FQ
+ (

Un
in

) = 0.
(47)

• If a1 > 0, the dominant part of the information is coming from outside the computational domain. In this case, we 
impose

FA
+ (

Un
in

) = a1.

An additional equation is required to completely determine Un
in . We take advantage of the characteristic structure of the 

problem: as we are in the subcritical case, there exists an outgoing characteristic on which the Riemann invariant W1
is constant. Using this property, we assume that a correct estimation of the cell average value of the outgoing Riemann 
invariant W1

(
Un

in

)
is W1

(
Un

1

)
. Finally, we impose

{
FA

+ (
Un

in

) = a1

W1
(
Un

in

) = W1
(
Un

1

)
.

(48)

Un
in is obtained by solving either system (47) or system (48). This can be done using a classic Newton’s method in a limited 

number of iterations (∼ 5).
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3.4.2. Unsteady outlet boundary condition: reflection of the outgoing characteristic
We propose here a methodology to characterize the incoming information at the outlet of the computational domain. 

Indeed, as we are in the subcritical regime, there exists an outgoing characteristic on which the Riemann invariant W2 is 
constant and an incoming characteristic on which propagates the Riemann invariant W1. As in the previous case, the cell 
average value of the outgoing Riemann invariant W2

(
Un

out

)
can be estimated by W2

(
Un

N

)
and we impose

W2
(
Un

out

) = W2
(
Un

N

)
. (49)

The value of the incoming Riemann invariant W1
(
Un

out

)
is unknown as it propagates on a characteristic coming from outside 

the computational domain. In large artery simulations, it is common to estimate the incoming Riemann invariant W1
(
Un

out

)
as a fraction of the outgoing Riemann invariant W2

(
Un

out

)
[4,49,7,23]. This fraction is quantified by a reflection coefficient 

Rt such that

W1
(
Un

out

) − W1

(
U0

out

)
= −Rt

[
W2

(
Un

out

) − W2

(
U0

out

)]
, (50)

where W1
(
U0

out

)
and W2

(
U0

out

)
are the initial Riemann invariants of the ghost cell Cout . The reflection coefficient Rt , 

whose value ranges between 0 and 1, models the reflective and resistive behavior of the network that is not taken into 
account in the numerical simulation and lies distal (anatomically located far from the point of reference) to the outlet of 
the computational domain. Finally, using the relations (17), we solve the following system of equations to obtain Un

out⎧⎨
⎩

W2
(
Un

out

) = W2
(
Un

N

)
W1

(
Un

out

) − W1

(
U0

out

)
= −Rt

[
W2

(
Un

out

) − W2

(
U0

out

)]
.

(51)

When we wish to remove any incoming information, or equivalently any distal reflection, we set Rt = 0.

3.4.3. Steady outlet boundary condition: imposed cross-sectional area Aout

We describe here a methodology to impose the cross-sectional area Aout at the outlet of the computational domain. 
Indeed, when the flow rate is imposed at the inlet of the computational domain and the vector σ is known, the steady 
states verifying system (21) are completely determined if we impose the value of the cross-sectional area at the outlet of 
the computational domain. We set in the outlet ghost cell Cout a constant cross-sectional area Aout

An
out = Aout .

We need only to compute Q n
out to completely determine the outlet vector of conservative variables Un

out . To do so, we 
estimate as in the previous section W2

(
Un

out

)
by

W2
(
Un

out

) = W2
(
Un

N

)
,

and using the relations (17), we compute W1
(
Un

out

)
and then Q n

out⎧⎨
⎩

W1
(
Un

out

) = W2
(
Un

out

) − 8cn
out

Q n
out = An

out
W1

(
Un

out

) + W2
(
Un

out

)
2

.
(52)

3.4.4. Junction boundary condition: conservation of mass and continuity of total pressure
In large network simulations, boundary conditions must also be provided at every junction point, where arteries that 

are neither the inlet segment nor the terminal segments are connected together. At these junctions points, the outlets of 
the parent arteries are linked to the inlets of the daughter arteries through the conservation of mass and the continuity of 
total pressure, or equivalently the energy discharge [50]. We consider here a junction point where a single parent artery A P

is connected to ND daughter arteries (ADi)
ND
i=1. The values of Un

out|A P and of 
(
Un

in|ADi

)ND

i=1 must be computed, with a total 
of 2 (ND + 1) unknowns. ND + 1 equations are obtained by estimating the outgoing Riemann invariant of the parent and 
daughter arteries as{

W2
(
Un

out

) |A P = W2
(
Un

N

) |A P

W1
(
Un

in

) |ADi = W1
(
Un

1

) |ADi , i ∈ [1, ND ] .
(53)

The missing equations are provided by the conservation of mass and total pressure, or equivalently the energy discharge, at 
each junction point [51,19]
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q n
out |A P =

ND∑
i=1

Q n
in|ADi

[
1

2
ρ

(
Q n

out

An
out

)2

+ K
√

An
out − Z

]
|A P =

[
1

2
ρ

(
Q n

in

An
in

)2

+ K
√

An
in − Z

]
|ADi , i = 1, ..., ND .

(54)

In practice, since in physiological conditions the flow is always subcritical, we can simplify the problem and impose only 
the continuity of pressure [7], neglecting the advection terms in the second equation of system (54)⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Q n

out |A P =
ND∑
i=1

Q n
in|ADi

[
K

√
An

out − Z

]
|A P =

[
K

√
An

in − Z
]
|ADi , i = 1, ..., ND .

(55)

This set of equations allows to accurately compute wave reflections and transmissions if a change of impedance occurs 
between the parent and the daughter arteries. Accurately computing reflected waves is crucial to obtain physiological wave 
forms in the simulated network, as the observed pressure and flow waves are the sum of the incoming and the multiple 
reflected waves [7,3,8].

4. Hydrostatic reconstruction

In many physiological configurations, the geometrical and mechanical properties of an artery vary significantly with its 
length. In the scope of this paper, these geometrical and mechanical gradients are limited to variations of the cross-sectional 
area at rest A0 and the arterial wall rigidity K . To prevent spurious oscillations of the numerical solution of system (6)
close to steady states, a well-balanced numerical scheme is required to properly balance the source term S T and the flux 
gradient ∂xF.

In order to make an explicit analogy with the well-balanced methods derived for shallow water equations, we introduce 
the following notations

P(A, K ) = K

3ρ
A

3
2 , E(A, K ) = 2K

3ρ

√
A, H = K

√
A. (56)

With these notations, we have ∂E
∂ A = P

A2 and the flux vector F can be expressed as

F (U, K ) =
[

Q
Q 2

A +P(A, K )

]
. (57)

Moreover, the steady state systems (21) and (22) can respectively be written as⎧⎪⎨
⎪⎩

Q = C1

1

2

Q 2

A2
+ E(A, K ) + P(A, K )

A
− Z

ρ
= C2,

(58)

and {
Q = 0

H − Z = C2.
(59)

4.1. The hydrostatic reconstruction: HR

The hydrostatic reconstruction (HR) was introduced by Audusse [24] for shallow water equations and applied to blood 
flow equations by Delestre [12,25]. Through a reconstruction of the conservative variables, HR allows to obtain a simple 
and efficient well-balanced numerical scheme given any finite volume numerical flux for the homogeneous problem (9). 
It is simple to implement and can easily be adapted to different pressure laws with multiple varying parameters, which 
is useful when considering veins, collapsible tubes and external pressure variations [30,52,5]. This technique allows to 
preserve at a discrete level the steady states at rest (59) and guarantees that the scheme verifies some natural properties of 
the shallow water equations (listed as bullets in the introduction), such as the positivity of the water height (equivalent of 
the cross-sectional area A), the ability to compute dry states and transcritical flows and a semi-discrete entropy inequality. 
This last property is necessary to select the admissible entropy solution across a discontinuity, as explained in [39].
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On both sides of each cell interface Ii+ 1
2

, reconstructed conservative variables are defined to preserve the following 
system of equations, which coincides with the steady states at rest system (59) when the flow rate Q or the velocity u are 
zero ⎧⎨

⎩ u = Q

A
= C1

H − Z = C2.

(60)

Details on the derivation of HR for blood flow in an artery with variable cross-sectional area A and variable arterial wall 
rigidity K can be found in [25].

In large arteries, the steady states at rest preserved by HR only occur for “dead men” or distal to an obliterated segment 
and are of little interest when simulating blood flow in the systemic network. However, in regions of large flow resistance 
such as small arteries, arterioles or arteries severely constricted by a stenosis, the flow looses its pulsatility and reaches 
steady or near-steady states with a non-zero flow rate. These quasi-steady flow configurations can occur in large network 
simulations when the level of arterial precision extends to small arteries and arterioles or in the presence of a very severe 
stenosis. They are described by the steady state system (58). Therefore, a modification of HR is necessary to capture the 
relevant steady states for blood flow in large arteries, described by system (58).

4.2. The low-Shapiro hydrostatic reconstruction: HR-LS

System (58) is nonlinear and difficult to solve in practice. However, in physiological conditions, blood flow is subcritical 
with a Shapiro number of the order of Sh ≈ 1 × 10−2. Therefore, the nonlinear advection term 1

2
Q 2

A2 in system (58) can be 
neglected at first order with respect to the term E(A, K ) + P(A,K )

A − Z
ρ that scales as c2. Doing so, we obtain the following 

simplified low-Shapiro number steady state system of equations{
Q = C1

H − Z = C2.
(61)

System (61) coincides with the steady state at rest system (59) when Q or u are zero and is an asymptotically correct 
approximation of the steady state system (58) in low-Shapiro number flow regimes. It also contains the correct conservation 
properties to obtain low-Shapiro number wave reflections if a change of impedance occurs at the interface between two 
cells of the computational domain. Indeed, the conservation properties of system (61) are identical to those of system (55), 
which have proved to be adequate to compute wave reflections and transmissions at junction points [7,4]. System (61) is 
the basis for the derivation of the modification of HR we propose in this study, referred to as the low-Shapiro hydrostatic 
reconstruction (HR-LS) and better suited to compute blood flow in physiological conditions.

HR-LS aims at preserving low-Shapiro number steady states system (61) in an artery with a varying cross-sectional area 
at rest A0 and arterial wall rigidity K . Similarly to HR, the well-balanced property is enforced by defining reconstructed 
variables on both sides of each cell interface Ii+ 1

2
according to the reconstruction procedure (61). In the following, variables 

noted with “∗” will refer to the reconstructed variables. Given the vectors of conservative variables UL and UR and the 
vectors σ L and σ R at the left and right of the interface Ii+ 1

2
between cells Ci and Ci+1, the discrete analogue of system 

(61) writes{
Q ∗

L = Q L

H∗
L − Z∗ = H L − Z L,

{
Q ∗

R = Q R

H∗
R − Z∗ = H R − Z R .

(62)

By solving system (62) and preserving the positivity of H , we obtain the following reconstructed variables{
H∗

L = max
(
0, Z∗ + H L − Z L

)
Q ∗

L = Q L,

{
H∗

R = max
(
0, Z∗ + H R − Z R

)
Q ∗

R = Q R .
(63)

The reconstructed variable Z∗ is chosen considering nonlinear stability arguments that require that{
0 ≤ H∗

L ≤ H L

0 ≤ H∗
R ≤ H R ,

to preserve the positivity of H . A simple choice is the downwind value

Z∗ = min (Z L, Z R) . (64)

In order to obtain the reconstructed values A∗
L and A∗

R , we must select a reconstruction for K ∗ . Following [45,25] we choose

K ∗ = max(K L, K R). (65)
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Therefore, we directly have

A∗
L =

(
H∗

L

K ∗

)2

, A∗
R =

(
H∗

R

K ∗

)2

. (66)

Finally, at each side of the interface Ii+ 1
2

, we obtain the reconstructed conservative vectors

UL
∗ =

[
A∗

L
Q ∗

L

]
, UR

∗ =
[

A∗
R

Q ∗
R

]
, (67)

that will be used to compute the numerical flux F
(
U∗

L,UR
∗).

A conservative formulation for the source term ST is obtained by integrating over the cell Ci the steady flux gradient 
in which the nonlinear advection term is neglected. This approximation is valid in low-Shapiro number flow regimes, and 
therefore particularly appropriate for blood flow in large arteries. The following conservative expression for S T is obtained, 
expressed in terms of the reconstructed conservative vector U ∗

Sn
T i = 1

�x

∫
Ci

ST (U,σ )dx = P
(

A∗
L,i+ 1

2
, K ∗

i+ 1
2

)
−P

(
A∗

R,i− 1
2
, K ∗

i− 1
2

)
, (68)

where 
(

A∗
L,i+ 1

2
, A∗

R,i− 1
2

)
are the reconstructed cross-sectional areas at the left of the cell interface Ii+ 1

2
and at the right of 

the cell interface Ii− 1
2

respectively and 
(

K ∗
i+ 1

2
, K ∗

i− 1
2

)
are the reconstructed arterial wall rigidities at the cell interfaces Ii+ 1

2

and Ii− 1
2

respectively. For consistency reasons, we modify the previous expression and write

ST i =
[
P

(
A∗

L,i+ 1
2
, K ∗

i+ 1
2

)
−P

(
AL,i+ 1

2
, K L,i+ 1

2

)]
−

[
P

(
A∗

R,i− 1
2
, K ∗

R,i− 1
2

)
−P

(
AR,i− 1

2
, K R,i− 1

2

)]
. (69)

To simplify the expression, we introduce the notation

P
(

A, A∗, K , K ∗) = P
(

A∗, K ∗) −P (A, K ) . (70)

With these notations, the first order well-balanced finite-volume numerical scheme for system (6) is simply

Un+1
i = Un

i − �t

�x

[
Fn∗

i+ 1
2

− Fn∗
i− 1

2

]
, (71)

with ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fn∗
i+ 1

2
=F

(
UL,i+ 1

2

∗,UR,i+ 1
2

∗, K ∗
i+ 1

2

)
+

⎡
⎣ 0

P
(

AL,i+ 1
2
, A∗

L,i+ 1
2
, K L,i+ 1

2
, K ∗

i+ 1
2

)⎤
⎦

Fn∗
i− 1

2
=F

(
UL,i− 1

2

∗,UR,i− 1
2

∗, K ∗
i− 1

2

)
+

⎡
⎣ 0

P
(

AR,i− 1
2
, A∗

R,i− 1
2
, K R,i− 1

2
, K ∗

i− 1
2

)⎤
⎦ .

(72)

It is straightforward to see that HR-LS is well-balanced for the steady states at rest system (59) and provides a good 
evaluation of low-Shapiro number steady states system (61). It also guarantees the following natural properties of blood 
flow equations:

• the conservation of mass;
• the non-negativity of the cross-sectional area A;
• correct reflection and transmission conditions when variations of vessel impedance occur.

In physiological conditions, the arteries never completely collapse, therefore the numerical scheme no longer needs to 
be able to compute dry states. Furthermore, as the flow is subcritical and the heart input signal is not discontinuous, 
transcritical or supercritical regimes and discontinuities of the conservative variables do no occur. Hence the semi-discrete 
entropy inequality as well as the ability to compute transcritical flows are no longer crucial requirements of the numerical 
scheme. Finally, the viscosity of the blood and of the arterial wall, that are not taken into account in the theoretical part 
of this study, are of great importance in arteries and have diffusive and dissipative effects that remove high frequency 
components and therefore any discontinuity in the conservative variables. This last point will be addressed in the last 
example section 6.
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4.3. The subsonic hydrostatic reconstruction: HR-S

In [26], Bouchut proposed an extension of HR, referred to as the subsonic hydrostatic reconstruction (HR-S), ideal for 
blood flow simulations in large arteries. HR-S is well-balanced for all subcritical steady states (58) and also preserves the 
good properties of HR (listed as bullets in the introduction), that is the positivity of the water height (equivalent of the 
cross-sectional area A), the ability to compute dry states and transcritical flows and a semi-discrete entropy inequality. 
HR-S is also able to correctly capture wave reflections and transmissions in regions where the impedance of the arterial 
wall changes. Indeed, the subcritical steady states system (58) coincides with the junction conservation properties (54). 
However, HR-S requires the resolution of the nonlinear steady state system (58) at each time step at every cell interface 
presenting a gradient of the artery’s geometrical or mechanical properties. This increases the computational cost compared 
to HR and HR-LS, especially if the region requiring a well-balanced treatment is not limited to a few cells.

In this section, we present the derivation of HR-S adapted to blood flow in an artery where both variations of cross-
sectional area at rest A0 and variations of the arterial wall rigidity K are taken into account. HR-S will serve as a reference 
exactly well-balanced method to be compared to HR and HR-LS. In particular, HR-S will allow us to assess if relaxing the 
dry-state property and the semi-discrete entropy inequality in HR-LS impacts solutions of blood flow in physiological condi-
tions. With the notations (56) and (58), we are in the framework introduced by Bouchut [26]. Therefore, we will only briefly 
recall the main steps of the derivation of HR-S and additional details can be found in the cited publication.

4.3.1. Well-balanced subsonic positivity-preserving reconstruction procedure for the cross-sectional area A
Similarly to HR and HR-LS, the well-balanced property is enforced by defining reconstructed variables on both sides of 

each cell interface Ii+ 1
2

according to the reconstruction procedure (58). Variables noted with “
∗
” will refer to the recon-

structed variables. Following [26], we introduce the function f

f : R× (
R

+∗)2→R

(Q , A, K ) →1

2

Q 2

A2
+

[
E (A, K ) + P (A, K )

A

]
,

(73)

and given the vectors of conservative variables UL and UR and the vectors σ L and σ R at the left and right of the interface 
Ii+ 1

2
between cells Ci and Ci+1, the discrete analogue of system (58) writes

{
Q ∗

L = Q L

f
(

Q ∗
L , A∗

L, K ∗) = f (Q L, AL, K L) + δL{
Q ∗

R = Q R

f
(

Q ∗
R , A∗

R , K ∗) = f (Q R , AR , K R) + δR ,

(74)

with ⎧⎪⎪⎨
⎪⎪⎩

δL = 1

ρ

(
Z∗ − Z L

)
δR = 1

ρ

(
Z∗ − Z R

)
.

(75)

Similarly to HR-LS, the reconstruction of the flow rate Q ∗ is straightforward. However, contrary to HR and HR-LS, system 
(74) is nonlinear in A∗ and is difficult to solve analytically. To help the resolution of system (74), we recall the following 
properties (see [26] for details).

For fixed values of Q and K , function f admits a minimum in As (Q , K ) and ms (Q , K ) is the minimum value of f

As (Q , K ) =
(

2ρ

K
Q 2

) 2
5

, ms (Q , K ) = 5

4

K

ρ

[
2ρ

K
Q 2

] 1
5

. (76)

For fixed values of Q and K and since the function f is convex, system (74) admits a subcritical and a supercritical solution 
for the cross-sectional area A if f (Q , A, K ) > ms (Q , K ). Furthermore, if A > As (Q , K ) the flow is subcritical with U ∈ Usub
and inversely if A < As (Q , K ) the flow is supercritical with U ∈ Usup (see Fig. 2).

Using these properties, Bouchut [26] proposed a reconstruction procedure for the cross-sectional area A∗ . The first step 
is to select reconstructions of the variables Z∗ and K ∗ that preserve the positivity of A and select the subcritical solution of 
system (74). The following inequalities must be verified to respectively preserve the positivity of A and select the subcritical 
solution of system (74){

A∗
L ≤ AL

A∗ ≤ AR ,
(77)
R
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Fig. 2. Representation of the function f (Q L , ·, ·). The abscissa of the intersections between function f and the straight lines representing the different 
values of f

(
Q ∗

L , A∗
L ,k∗) give the possible values of A∗

L . A graphical analysis shows that conditions (77) and (78) are met only for δL < 0.

and {
As ≤ A∗

L

As ≤ A∗
R .

(78)

The inequalities (78) are naturally verified as we consider only subcritical flow configurations. On the contrary, the inequal-
ities (77) are verified if inequalities (78) are true and if Z∗ and K ∗ are chosen such that δL,R ≤ 0. A simple choice for Z∗
and K ∗ is

Z∗ = min (Z L, Z R) , K ∗ = max(K L, K R). (79)

Given the expressions (79) for Z∗ and K ∗ , we adapted the reconstruction procedure for the cross-sectional area A∗ pro-
posed by Bouchut [26] to blood flow in arteries with variable cross-sectional area A0 and variable arterial wall rigidity 
K . It is summarized in Fig. 2 and is presented in the Algorithm 1. The Algorithm 1 describes the steps that need to be 
followed to obtain the reconstructed cross-sectional area A∗

L , solution of system (74). The same algorithm can be applied to 
reconstruct A∗

R .

Algorithm 1 Algorithm to compute the reconstructed cross-sectional area A∗
L to enforce the well-balanced property by 

interface for the steady state system (58).
if δL = 0 then

A∗
L ← AL

else
if uL ≥ cL then

A∗
L ← AL

else
if f (Q L , AL , KL) + δL > ms (Q L , K ∗) then{

Q ∗
L = Q L

f
(

Q ∗
L , A∗

L , K ∗) = f (Q L , AL , K L) + δL

The solution of the system can be obtained numerically using a recursive procedure.
else

A∗
L ← As(Q L , K ∗)

4.3.2. Well-balanced subsonic first-order numerical scheme
Similarly to HR and HR-LS, a conservative formulation for the source term S T is obtained by integrating over the cell 

Ci the steady flux gradient. However, the nonlinear advection term is no longer neglected and an additional flux term is 
introduced to take it into account

ST i =P
(

AL,i+ 1
2
, A∗

L,i+ 1
2
, K L,i+ 1

2
, K ∗

i+ 1
2

)
+ TL

(
UL,i+ 1

2
,UL,i+ 1

2

∗,UR,i+ 1
2

∗, K ∗
i+ 1

2

)
−

P
(

AR,i− 1
2
, A∗

R,i− 1 , K R,i− 1
2
, K ∗

i− 1

)
− TR

(
UR,i− 1

2
,UL,i− 1

2

∗,UR,i− 1
2

∗, K ∗
i− 1

)
,

(80)
2 2 2
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where 
(

A∗
L,i+ 1

2
, A∗

R,i− 1
2

)
are the reconstructed cross-sectional areas at the left the cell interface Ii+ 1

2
and at the right of the 

cell interface Ii− 1
2

respectively and 
(

K ∗
i+ 1

2
, K ∗

i− 1
2

)
are the reconstructed arterial wall rigidities at the cell interfaces Ii+ 1

2
and 

Ii− 1
2

respectively. The additional fluxes TL and TR are chosen such that the numerical scheme satisfies an entropy inequality 
by interface (see [26] for details). The computation of TL and TR is presented in the Algorithm 2. Only the steps that need 
to be followed to obtain TL are detailed in 2 but similar results are obtained for TR .

Algorithm 2 Algorithm to compute the flux TL used in HR-S to balance the nonlinear advection term Q 2

A and the source 
term ST .
To simplify the expression of TL we use the following notations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

FA =FA
(
U∗

L,U∗
R, K ∗)

FQ =FQ
(
U∗

L,U∗
R, K ∗)

P =P
(

AL , A∗
L , K L , K ∗)

� f = f
(

Q ∗
L , A∗

L , K ∗) − f (Q L , AL , K L) − δL ,

if δL = 0 then
TL

(
UL,U∗

L ,U∗
R, K ∗) ← 0

else
if uL ≥ cL then

TL
(
UL,U∗

L ,U∗
R, K ∗) ← − AL

Q L
FA δL

else
if f (Q L , AL , KL) + δL > ms (Q L , K ∗) then
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Finally, the first-order well-balanced finite-volume numerical scheme for system (6) is still

Un+1
i = Un

i − �t

�x

[
Fn∗

i+ 1
2

− Fn∗
i− 1

2

]
, (81)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(82)

In the following section, we present a series of numerical test-cases were we systematically compare HR, HR-LS and 
HR-S.

5. Physiological examples in a single artery

In this section we present a series of numerical computations designed to evaluate the performances in physiological 
conditions of the low-Shapiro hydrostatic reconstruction (HR-LS) in comparison with the hydrostatic reconstruction (HR) 
and the subsonic hydrostatic reconstruction (HR-S). All quantities are represented in centimeters, grams and seconds, or 
equivalently “cgs”, which are the natural units to describe blood flow. Indeed, the density of blood is close to 1 in “cgs”.

The following numerical simulations are performed in a single artery representative of a large artery such as the aorta. 
Table 1 summarizes the values of the characteristic properties of blood and of the artery, namely the blood density ρ , the 
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Table 1
Parameters describing the artery used in the different test-cases, given in “cgs”: the density ρ , 
the length L, the inlet radius Rin and the inlet rigidity Kin .

ρ [g·cm−3] L [cm] Rin [cm] Kin [g·cm−2·s−2]

1 10 0.5 1 × 105

Fig. 3. Representation of the radius at rest R0 and the arterial wall rigidity K for the smooth stenosis (83) and the decreasing step (84) for �G = 10%. Left: 
R0 for the stenosis; Center: R0 for the step; Right: K for the stenosis (full line) and the step (dashed line).

length L of the artery and the inlet radius at rest and arterial wall rigidity Rin and Kin , all written in “cgs”. We study two 
geometrical configurations in which both the cross-sectional area at rest A0 and the arterial wall rigidity K vary. Both are 
idealized representations of variations of arteries’ geometrical and mechanical properties encountered in arterial networks. 
The first configuration is a smooth stenosis and corresponds to a local reduction of the cross-sectional area at rest A0. It is 
a classical arterial pathology caused by the formation of plaque that deposits on the arterial wall and slowly obliterates the 
vessel. The stenosis is represented in Fig. 3 and is defined by the following radius at rest R0 and arterial wall rigidity K⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0 (x) =

⎧⎪⎨
⎪⎩

Rin if x < xs or x > x f

Rin

(
1 − �G

2

[
1 + cos

(
π + 2π

x − xs

x f − xs

)])
if xs ≤ x ≥ x f

K (x) =

⎧⎪⎨
⎪⎩

Kin if x < xs or x > x f

Kin

(
1 + �G

2

[
1 + cos

(
π + 2π

x − xs

x f − xs

)])
if xs ≤ x ≥ x f .

(83)

We choose xs = 3L
10 and x f = 7L

10 . The second configuration we investigate is a decreasing step, or decreasing discontinuity. It 
is an idealized representation of a pointwise transition between a parent artery and a smaller daughter artery and is useful 
to evaluate the reflecting behavior of a numerical method. The decreasing step is represented in Fig. 3 and is defined by the 
following radius at rest R0 and arterial wall rigidity K⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
R0 (x) =

{
Rin if x < xm

Rin (1 − �G) if x ≥ xm

K (x) =
{

Kin if x < xm

Kin (1 + �G) if x ≥ xm.

(84)

We choose xm = L
2 . In both configuration, the amplitude of the geometrical and mechanical variations depends on the wall 

deformation parameter �G . The values of �G used in the following simulations are taken from Table 2 and are chosen to 
test the limits of the well-balanced methods while staying in the subcritical flow regime. From a well-balanced point of view, 
each of these two configurations has a different behavior with respect to the cell size �x. Indeed, the step configuration 
is a discontinuity of the cross-sectional area at rest A0 and of the arterial wall rigidity K , and therefore the amplitude of 
the variation of the geometrical and mechanical properties of the artery, proportional to �G , is independent of �x. On 
the contrary, the stenosis configuration is a smooth variation of A0 and K , and therefore the local variation of the artery’s 
geometrical and mechanical properties at each cell interface will decrease with the cell size �x.

We now provide the values of the conservative variables at the inlet and outlet of the computational domain, based on 
methods detailed in section 3.4. We impose the flow rate Q in at the inlet of the computational domain, in x = 0. In reality, 
to control the flow regime, we give the value of the inlet Shapiro number Sh,in and compute the inlet flow rate Q in as a 
function of Sh,in

Q in = Sh,in Aincin. (85)
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Table 2
Values of the inlet Shapiro number Sh,in and the wall deformation parameter �G used in the single artery test-cases. These values are 
chosen to test the well-balanced methods in the limits of the low-Shapiro number flow regime.

Sh,in 0 1 × 10−3 1 × 10−2 1 × 10−1 �G 1% 10% 30%

Ain and cin are respectively the inlet cross-sectional area and Moens-Korteweg wave speed (12) and are unknown. However, 
a dimensional analysis of system (9) allows us to show that the inlet Shapiro number Sh,in scales as the ratio of the 
perturbation of the wall’s radius �R = R − R0 over the radius at rest R0. With this scaling law, we can estimate a value of 
the inlet cross-sectional area Ain consistent with the inlet Shapiro number Sh,in and we compute Ain as

Ain = A0 (x = 0)
[
1 + Sh,in

]2
. (86)

At the outlet of the computational domain, in x = L, we either impose the reflection coefficient Rt = 0 or the cross-sectional 
area Aout , depending on the test case. Similarly to the inlet cross-sectional area Ain , we compute the outlet cross-sectional 
area as a function of Sh,in

Aout = A0 (x = L)
[
1 + Sh,in

]2
. (87)

The values of the inlet Shapiro number Sh,in and the wall deformation parameter �G used in the following simulations 
are presented in Table 2. They cover a wide range of physiological configurations, allowing us to assess the behavior of the 
three numerical schemes under consideration in the limit of the low-Shapiro number flow regime. We recall that in arteries 
the average Shapiro number is of the order of Sh = 1 × 10−2.

5.1. Steady solutions

We evaluate the well-balanced properties of HR, HR-LS and HR-S by computing steady solutions of system (6) in the 
smooth stenosis (83) and the decreasing step (84). Steady flow configurations in arterial geometries similar to the stenosis 
(83) have been studied by Müller [22], where only variations of the wall rigidity K are taken into account. In [23], the 
authors computed steady solutions in tapered tubes. In the context of the shallow water equations, steady flow solutions 
over a bump (analogue of the stenosis) or a step have been studied by many authors [53–56].

The steady numerical solutions are obtained for t = 200 s. The time step �t is constant and chosen such that the CFL 
condition (41) is always satisfied. We impose the flow rate Q in (85) at the inlet and the cross-sectional area Aout (87) at 
the outlet. We therefore select a specific steady state characterized by its associated flow rate Q st and energy discharge Est . 
These values can be computed analytically and provide exact solutions to compare with our numerical results⎧⎪⎨

⎪⎩
Q st = Q in

Est = 1

2

Q st2

A2
out

+ K (x = L)

ρ

(√
Aout − √

A0 (x = L)
)

.
(88)

In both configurations (83) and (84), we perform a series of 12 numerical computations for all combinations of the 
inlet Shapiro number Sh,in and the wall deformation parameter �G taken from Table 2. Table 3 shows L1 relative errors 
between the analytic solutions and the results obtained with HR, HR-LS and HR-S for a fixed number of cells N = 50. In 
both the stenosis (83) and the step (84) configurations, the results are similar and indicate that, as expected, each numerical 
method is exactly well-balanced for the steady states at rest (Sh,in = 0). Only HR-S is exactly well-balanced for all considered 
subcritical steady states. For the low-Shapiro number steady states (Sh,in = 10−3, 10−2, 10−1), HR-LS is more accurate than 
HR. However, the accuracy of HR-LS diminishes when the values of Sh,in and �G increase, and for Sh,in = 1 × 10−1 and 
�G = 30%, in the limit of the low-Shapiro number flow regime, HR-LS is only one order of magnitude more accurate than 
HR. Interestingly, the errors obtained with HR are independent of the inlet Shapiro number Sh,in , but increase significantly 
with the wall deformation parameter �G .

To test the consistency and the order of convergence of the different methods, we perform a convergence study for the 
average low-Shapiro steady configuration Sh,in = 1 × 10−2 and �G = 10% in both the stenosis and the step configurations. 
L1 relative errors with analytic solutions are presented in Table 4 for the following number of cells N ∈ {50,100,200,400}.

In the stenosis configuration (83), both HR and HR-LS converge with order 1, whereas in the step configuration (84), 
they do not achieve order 1 convergence. Indeed, in the stenosis configuration, the variations of the artery’s geometrical 
and mechanical properties at each cell interface decrease when the number of cells N increases, enabling the convergence 
of both methods. On the contrary, the geometrical and mechanical variations remain unchanged in the step configuration 
when the number of cells N increases. These observations are illustrated by Figs. 4 and 5, where we respectively plot 
the spatial evolution of the flow rate Q and the energy discharge E with the number of cells in the stenosis and step 
configurations.

In both configurations, the values of the errors obtained in Table 4 with HR-S are of the order of machine precision, 
indicating that HR-S is exactly well-balanced for the considered low-Shapiro steady state. However, the errors increase 
slightly with the number of cells. Similar behaviors are observed in convergence studies presented in [55] for an exactly 
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Table 3
Steady solutions: Relative errors L1 [Q ] and L1 [E] computed in the stenosis (83) and the step (84) for N = 50 cells for all combinations of values of the 
inlet Shapiro number Sh,in and the wall deformation parameter �G taken from Table 2. Only HR-S is exactly well-balanced, but HR-LS is more accurate 
than HR.

Stenosis Step

�G 1% 10% 30% 1% 10% 30%

Sh,in = 0
HR 0 0 0 0 0 0

L1 [Q ] HR-LS 0 0 0 0 0 0
HR-S 0 0 0 0 0 0

HR 0 0 0 0 0 0
L1 [E] HR-LS 0 0 0 0 0 0

HR-S 0 0 0 0 0 0

Sh,in = 1 × 10−3

HR 4.0 × 10−4 4.2 × 10−3 1.4 × 10−2 2.2 × 10−4 2.3 × 10−3 7.4 × 10−3

L1 [Q ] HR-LS 3.6 × 10−7 4.1 × 10−6 1.9 × 10−5 1.8 × 10−7 2.1 × 10−6 9.4 × 10−6

HR-S 5.4 × 10−13 5.3 × 10−13 4.2 × 10−14 2.9 × 10−13 3.1 × 10−13 5.8 × 10−13

HR 3.0 × 10−4 5.1 × 10−3 4.2 × 10−2 2.1 × 10−4 9.4 × 10−3 1.3 × 10−1

L1 [E] HR-LS 2.1 × 10−7 2.6 × 10−6 1.5 × 10−5 1.1 × 10−7 1.4 × 10−6 1.0 × 10−5

HR-S 4.6 × 10−13 4.9 × 10−13 6.1 × 10−13 6.7 × 10−13 6.5 × 10−13 1.4 × 10−12

Sh,in = 1 × 10−2

HR 4.0 × 10−4 4.2 × 10−3 1.4 × 10−2 2.3 × 10−4 2.3 × 10−3 7.4 × 10−3

L1 [Q ] HR-LS 3.6 × 10−6 4.1 × 10−5 1.9 × 10−4 1.8 × 10−6 2.1 × 10−5 9.4 × 10−5

HR-S 2.6 × 10−13 2.7 × 10−13 9.6 × 10−14 2.4 × 10−13 9.5 × 10−14 1.8 × 10−13

HR 3.0 × 10−4 5.1 × 10−3 4.2 × 10−2 2.1 × 10−4 9.4 × 10−3 1.2 × 10−1

L1 [E] HR-LS 2.1 × 10−6 2.6 × 10−5 1.5 × 10−4 1.1 × 10−6 1.4 × 10−5 8.1 × 10−5

HR-S 2.7 × 10−13 2.7 × 10−13 3.3 × 10−13 2.7 × 10−13 3.4 × 10−13 5.9 × 10−13

Sh,in = 1 × 10−1

HR 4.0 × 10−4 4.2 × 10−3 1.4 × 10−2 2.3 × 10−4 2.3 × 10−3 7.5 × 10−3

L1 [Q ] HR-LS 3.6 × 10−5 4.1 × 10−4 1.8 × 10−3 1.8 × 10−5 2.1 × 10−4 9.0 × 10−4

HR-S 2.6 × 10−13 3.4 × 10−13 2.0 × 10−13 2.8 × 10−13 2.4 × 10−13 1.4 × 10−13

HR 3.2 × 10−4 5.4 × 10−3 4.4 × 10−2 2.2 × 10−4 9.9 × 10−3 1.2 × 10−1

L1 [E] HR-LS 2.2 × 10−5 2.8 × 10−4 1.8 × 10−3 1.2 × 10−5 2.0 × 10−4 2.2 × 10−3

HR-S 2.3 × 10−13 2.4 × 10−13 2.9 × 10−13 2.3 × 10−13 2.9 × 10−13 3.4 × 10−13

Table 4
Steady solutions: Relative errors L1 [Q ] and L1 [E] computed in the stenosis (83) and the step (84) for Sh,in = 1 × 10−2 and �G = 10% obtained for 
N ∈ {50,100,200,400}. HR and HR-LS converge with order 1 whereas HR-S is exactly well-balanced up to machine precision.

Stenosis Step

N L1 [Q ] Order L1 [E] Order L1 [Q ] Order L1 [E] Order

HR
50 4.22 × 10−3 − 5.09 × 10−3 − 2.34 × 10−3 − 9.41 × 10−3 −
100 2.11 × 10−3 −1.01 2.56 × 10−3 −1.01 1.17 × 10−3 −1.01 8.64 × 10−3 −0.12
200 1.05 × 10−3 −1.01 1.28 × 10−3 −1.01 5.86 × 10−4 −1.01 8.26 × 10−3 −0.07
400 5.26 × 10−4 −1.00 6.38 × 10−4 −1.00 2.93 × 10−4 −1.00 8.07 × 10−3 −0.03

HR-LS
50 4.14 × 10−5 − 2.61 × 10−5 − 2.08 × 10−5 − 1.39 × 10−5 −
100 2.07 × 10−5 −1.01 1.31 × 10−5 −1.01 1.04 × 10−5 −1.01 7.24 × 10−6 −0.96
200 1.04 × 10−5 −1.01 6.58 × 10−6 −1.00 5.19 × 10−6 −1.01 3.91 × 10−6 −0.90
400 5.19 × 10−6 −1.00 3.30 × 10−6 −1.00 2.59 × 10−6 −1.00 2.24 × 10−6 −0.80

HR-S
50 2.68 × 10−13 − 2.73 × 10−13 − 9.53 × 10−14 − 3.43 × 10−13 −
100 1.40 × 10−15 − 3.39 × 10−13 − 9.20 × 10−14 − 3.97 × 10−13 −
200 1.94 × 10−12 − 7.30 × 10−13 − 2.26 × 10−12 − 8.44 × 10−13 −
400 8.83 × 10−12 − 1.45 × 10−12 − 1.01 × 10−11 − 1.63 × 10−12 −

well-balanced method. In our case, this phenomenon is due to a small error between the computed boundary conditions 
and those required to obtain the desired steady state, and is not caused by HR-S.

The results indicate that among the three well-balanced methods considered, HR is the least accurate when comput-
ing low-Shapiro number steady solutions in an artery presenting smooth and discontinuous variations of its cross-sectional 
area at rest A0 and of its arterial wall rigidity K . On the contrary, HR-S is the only exactly well-balanced method for the 
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Fig. 4. Steady solutions: Spatial evolution of the flow rate Q (top) and the energy discharge E (bottom) in the stenosis configuration (83), at t = 200 s for 
Sh,in = 1 × 10−2 and �G = 10% obtained with different numbers of cells N = {50 (blue),100 (green),200 (red),400 (purple)} and compared to the analytic 
solution (88) (black). Left: HR; Right: HR-LS. We observe that for both HR and HR-LS, the errors with the analytic solution decrease when the number of 
cells N increases, indicating the convergence of the method. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 5. Steady solutions: Spatial evolution (zoom for 0.4 ≤ x
L ≤ 0.6) of the flow rate Q (top) and the energy discharge E (bottom) in the step configuration 

(84), at t = 200 s for Sh,in = 1 × 10−2 and �G = 10% obtained with different numbers of cells N = {50 (blue),100 (green),200 (red),400 (purple)} and 
compared to the analytic solution (88) (black). Left: HR; Right: HR-LS. We observe that for both HR and HR-LS, the maximal amplitude of the errors with 
the analytic solution remains unchanged when the number of cells N increases. However, the region of error is more localized when the number of cells 
increases, explaining why the error decreases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)
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Fig. 6. Wave propagation: Time evolution of the inlet flow rate Q in for Sh,in = 1 × 10−2 and T pulse = 0.04.

considered low-Shapiro number steady states. Finally, even though HR-LS is not exactly well-balanced for the considered 
low-Shapiro number steady states, it allows to compute with satisfying accuracy steady solutions for smooth and discon-
tinuous variations of the artery’s geometrical and mechanical properties. These results show that the system (61) (used 
by HR-LS) is a better approximation than system (60) (used by HR) of the steady state system (58) (used by HR-S) in 
low-Shapiro flow configurations.

5.2. Single wave propagation

The wave-capturing properties of HR, HR-LS and HR-S are now evaluated. We simulate the propagation of a single wave 
in the smooth stenosis (83) and the decreasing step (84). The step configuration was studied in [12,25,57] for an artery with 
only variations of its cross-sectional area at rest A0.

The results are obtained for t = 0.045 s. The time step �t is constant and chosen such that the CFL condition (41) is 
always satisfied. We impose a single pulse of flow at the inlet of the computational domain and the unsteady inlet flow rate 
Q in (t) is defined as

Q in (t) =

⎧⎪⎨
⎪⎩

Q pulse sin

(
2π

t

T pulse

)
if t ≤ T pulse

2

0 else .

(89)

We choose T pulse = 0.04 s to artificially reduce the wave length of the pulse for visualization purposes and the value of 
Q pulse is a function of the inlet Shapiro number Sh,in and is defined as in equation (85). Fig. 6 represents the function 
Q in for Sh,in = 1 × 10−2. At the outlet of the computational domain, we set the reflection coefficient Rt = 0 to remove any 
terminal reflection.

5.2.1. The step configuration
We focus on the decreasing step configuration (84). Given the inlet condition (89), the pulse wave propagates in the 

artery starting from the left-hand side of the domain until it reaches the step. The change of impedance of the vessel 
creates reflected and transmitted waves that need to be captured by the numerical scheme. A linear analytic solution was 
proposed in [51] and validated in [12,25,4], and gives the expression of the reflection coefficient Rt and the transmission 
coefficient Tt , based on the conservation properties (55)⎧⎨

⎩ Rt = Y L − Y R

Y L + Y R

Tt = 1 + Rt,

(90)

where Y = A/ (ρc) is the vessel admittance. Subscripts L and R respectively refer to the values at the left and right of 
the step. As the coefficients Rt and Tt do not depend on the frequency of the incoming wave, we can analytically predict 
the position, shape and amplitude of the linear reflected and transmitted waves. However, as the inlet Shapiro number 
Sh,in is non-zero, the flow is nonlinear and the linear analytic solution (90) is only valid in the asymptotic limit Sh,in → 0. 
To evaluate the quality of the results obtained with HR, HR-LS and HR-S, we compute reference solutions, obtained with 
HR-S for N = 25600 and values of Sh,in and �G taken from Table 2. To assess the validity of these reference solutions, we 
compare them to the linear analytic solutions (90) in Fig. 7. We observe that for low values of the inlet Shapiro number 
Sh,in (Fig. 7 left), for which the linear approximation is valid, the analytic and reference solutions match. As expected, for 
higher values of Sh,in , the flow is no longer linear and the propagation speed as well as the amplitude of the reflected and 
transmitted waves change (Fig. 7 center and right).

We present results only for the flow rate Q to reduce the number of variables and simplify the analysis of the results. 
Similar conclusions to those presented hereafter would have been drawn if we had considered the pressure P or the wall 
perturbation R − R0.
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Fig. 7. Wave propagation: Comparison between the linear solution (full black line) and the reference solution (dashed black line) for the step configuration 
(84), obtained using HR-S for N = 25600, for the flow rate Q at t = 0.045 s for �G = 10%. Left: Sh = 1 × 10−3; Center: Sh = 1 × 10−2; Right: Sh = 1 × 10−1.

Table 5
Wave propagation: Relative error L1 [Q ] computed in the step (84) for values of Sh,in and �G taken from Table 2 obtained for N = 1600. HR, HR-LS and 
HR-S present similar results except for �G = 30%.

�G 1% 10% 30%

Sh,in = 1 × 10−3

HR 2.3 × 10−2 5.5 × 10−2 5.5 × 10−1

L1 [Q ] HR-LS 2.3 × 10−2 2.8 × 10−2 6.6 × 10−2

HR-S 2.3 × 10−2 2.8 × 10−2 6.6 × 10−2

Sh,in = 1 × 10−2

HR 2.3 × 10−2 5.5 × 10−2 5.5 × 10−1

L1 [Q ] HR-LS 2.3 × 10−2 2.8 × 10−2 6.6 × 10−2

HR-S 2.3 × 10−2 2.8 × 10−2 6.6 × 10−2

Sh,in = 1 × 10−1

HR 2.9 × 10−2 6.1 × 10−2 5.1 × 10−1

L1 [Q ] HR-LS 2.9 × 10−2 3.5 × 10−2 7.6 × 10−2

HR-S 2.9 × 10−2 3.5 × 10−2 7.5 × 10−2

We perform a series of 9 numerical computations with different combinations of the non-zero inlet Shapiro number Sh,in

and the wall deformation parameter �G taken from Table 2. Table 5 shows L1 [Q ] relative errors between the reference 
solutions and the results obtained with HR, HR-LS and HR-S for a fixed number of cells N = 1600. We choose a high value 
of N to reduce the numerical dissipation and highlight the effects of the well-balanced methods. The results obtained with 
HR, HR-LS and HR-S are almost identical and indicate that each method is able to correctly compute the expected reflected 
and transmitted waves. For each method, the error L1 [Q ] is independent of the inlet Shapiro number Sh,in but increases 
with the wall deformation parameter �G . However, the error obtained with HR increases faster with �G than with the 
other methods. In particular, for �G = 30%, the value of L1 [Q ] obtained with HR is one order of magnitude higher than 
the one obtained with HR-LS or HR-S.

This last point is corroborated by Figs. 8, 9 and 10, where we represent the spatial evolution of the flow rate Q at 
t = 0.045 s, obtained using N = 100 (left) and N = 1600 (right) for Sh,in = 1 × 10−2 and �G = {10%,30%,60%} respectively. 
In each figure, we compare the results obtained using HR, HR-LS and HR-S to the corresponding reference solution and 
observe if increasing the number of cells allows the numerical solution to converge towards the reference solution. In 
Fig. 8, the results obtained for �G = 10% with HR, HR-LS and HR-S are similar and indicate that each numerical solution 
converges towards the reference solution. On the contrary, in Fig. 9 for �G = 30% and in Fig. 10 for �G = 60%, only the 
solutions obtained with HR-LS and HR-S converge towards the reference solution. HR is unable to compute the expected 
amplitude of the reflected and transmitted waves and overestimates the amplitude of the reflected wave and underestimates 
the amplitude of the transmitted wave.

The results indicate that HR-LS and HR-S are able to compute wave reflections and transmissions in an artery presenting 
an arbitrary large discontinuous variation of its cross-sectional area at rest A0 and arterial wall rigidity K . On the contrary, 
HR is unable to compute the correct amplitude of the reflected and transmitted waves when the discontinuous variation 
of the artery’s geometrical and mechanical properties is too large, independently of the number of cells N . Moreover, 
these results show that the system (61) (used by HR-LS) has the appropriate conservation properties to compute wave 
reflections for arbitrary large discontinuous geometrical and mechanical variations in low-Shapiro number flow regimes. On 
the contrary, HR, using the system (60), is only able to compute wave reflections for small discontinuous variations of the 
artery’s properties (�G = 10%, see Fig. 8). This last point can be problematic as large variations of the artery’s geometrical 
and mechanical properties can be encountered when modeling arterial pathologies such as stenoses.
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Fig. 8. Wave propagation: Flow rate Q (x) for the step (84) at t = 0.045 s for the reference solution (black dashed line), HR (blue circle), HR-LS (green 
square) and HR-S (red triangle) for Sh = 1 × 10−2 and �G = 10%; Left: N = 100; Right: N = 1600. For N = 100 and N = 1600, all solutions are comparable, 
and for N = 1600, HR, HR-LS and HR-S converge towards the reference solution. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 9. Wave propagation: Flow rate Q (x) for the step (84) at t = 0.045 s for the reference solution (black dashed line), HR (blue circle), HR-LS (green 
square) and HR-S (red triangle) for Sh = 1 × 10−2 and �G = 30%; Left: N = 100; Right: N = 1600. HR-LS and HR-S converge towards the reference solution 
while HR does not. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Wave propagation: Flow rate Q (x) for the step (84) at t = 0.045 s for the reference solution (black dashed line), HR (blue circle), HR-LS (green 
square) and HR-S (red triangle) for Sh = 1 × 10−2 and �G = 60%; Left: N = 100; Right: N = 1600. HR-LS and HR-S converge towards the reference solution 
while HR does not. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5.2.2. The stenosis configuration
In this subsection we focus on the stenosis configuration (83). To evaluate the quality of the results obtained with HR, 

HR-LS and HR-S, we compute reference solutions, obtained with HR-S for N = 25600 and values of Sh,in and �G taken 
from Table 2. As the variation of geometrical and mechanical properties of the artery is smooth, the observed flow rate is 
constituted of a continuum of reflected and transmitted waves that are created at each cell interface, where the artery’s 
geometrical and mechanical properties are discontinuous.

Similar results to those of subsection 5.2.1 are obtained, and therefore we do not completely repeat the previous analysis. 
In Figs. 11, 12 and 13, we present the spatial evolution of the flow rate Q at t = 0.045 s, obtained using N = 100 (left) and 
N = 1600 (right) for Sh,in = 1 ×10−2 and �G = {10%,30%,60%} respectively. In each figure, we compare the results obtained 
using HR, HR-LS and HR-S to the corresponding reference solution and observe if increasing the number of cells allows the 
numerical solution to converge towards the reference solution. Contrary to the step configuration studied in subsection 5.2.1, 
the results obtained with HR, HR-LS and HR-S are similar and indicate that each numerical solution converges towards the 
reference solution. However, for �G = {30%,60%} and N = 100, HR is less accurate than HR-LS and HR-S.
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Fig. 11. Wave propagation: Flow rate Q (x) for the stenosis (83) at t = 0.045 s for the reference solution (black dashed line), HR (blue circle), HR-LS (green 
square) and HR-S (red triangle) for Sh = 1 × 10−2 and �G = 10%; Left: N = 100; Right: N = 1600. For N = 100 and N = 1600, all solutions are comparable, 
and for N = 1600, HR, HR-LS and HR-S converge towards the reference solution. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 12. Wave propagation: Flow rate Q (x) for the stenosis (83) at t = 0.045 s for the reference solution (black dashed line), HR (blue circle), HR-LS (green 
square) and HR-S (red triangle) for Sh = 1 × 10−2 and �G = 30%; Left: N = 100; Right: N = 1600. For N = 100 and N = 1600, all solutions are comparable, 
and for N = 1600, HR, HR-LS and HR-S converge towards the reference solution. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 13. Wave propagation: Flow rate Q (x) for the stenosis (83) at t = 0.045 s for the reference solution (black dashed line), HR (blue circle), HR-LS (green 
square) and HR-S (red triangle) for Sh = 1 × 10−2 and �G = 60%; Left: N = 100; Right: For N = 100, HR is less accurate than HR-LS and HR-S, and for 
N = 1600, HR, HR-LS and HR-S converge towards the reference solution. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

These results are coherent with those of subsection 5.2.1. Indeed, when studying the step configuration, we showed that 
contrary to HR-LS and HR-S, HR overestimates the amplitude of the reflected wave and underestimates the amplitude of the 
transmitted wave when a large discontinuous variation of the artery’s geometrical and mechanical properties is considered 
(�G = {30%,60%}). As the stenosis is a smooth variation of the cross-sectional area at rest A0 and of the arterial wall 
rigidity K , discontinuous variations of the arterial wall’s geometrical and mechanical properties occur at each cell interface 
and the amplitude of these variations decreases with the number of cells N . Hence, for �G = {30%,60%} and N = 100, 
the local discontinuous variations of the artery’s properties are large enough for HR to be inaccurate. On the contrary, for 
N = 1600, the local discontinuous variation of the artery’s geometrical and mechanical properties are sufficiently small for 
HR to be as accurate as HR-LS and HR-S.

We have studied the wave capturing behavior of HR, HR-LS and HR-S. We showed that for arbitrary large smooth or 
discontinuous variations of the artery’s cross-sectional area at rest A0 and arterial wall rigidity K , both HR-LS and HR-S 
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are able to compute the expected reflected and transmitted waves. On the contrary, HR is unable to correctly compute 
reflected and transmitted waves when large discontinuous variations of the artery’s properties are considered. In particular, 
HR overestimates the reflected wave and underestimates the transmitted wave. Therefore, HR-LS and HR-S are good choices 
to compute wave reflections and transmissions in low-Shapiro flow regimes. In the following subsection, we will analyze 
the behavior of the different well-balanced methods in large network computations, where multiple effects come into play.

6. A realistic example: stenosis of the iliac artery in a 55 arteries network

We study the response at the systemic level of a model network to the presence of a pathology. Indeed, the observed 
pressure and flow waveforms in the systemic network are the superposition of multiple reflected and transmitted waves, 
generated at each arterial bifurcation and dampened and diffused by the viscosity of the blood and the arterial wall. The 
presence of a pathology creates additional reflected and transmitted waves that change the reflection pattern and therefore 
the shape and amplitude of the observed waveforms. When such pathologies are modeled in the network, a well-balanced 
method is required to take into account the geometrical and mechanical source term induced by the local variations of the 
cross-sectional area and arterial wall rigidity representing the pathology.

In the purpose of performing large network blood flow simulations, we use the arterial network proposed by Sherwin in 
[50] which was adapted from Westerhof [58], describing 55 of the great arteries of the systemic network (human arterial 
network). This model was more recently used by Wang [4] to perform viscoelastic blood flow simulations using different 
numerical methods. The network under consideration is represented in Fig. 14. The parameters of the model were obtained 
using physiological data and in each artery the geometrical and mechanical parameters do not vary with the axial position 
x. Therefore, in the absence of an arterial pathology, a well-balanced method is not required to compute blood flow in the 
considered network. The details of the parameters of the model are not recalled here and we refer the reader to the cited 
publications.

The pathology considered is a stenosis of the right iliac artery (artery 49 in Fig. 14). We consider two possible shapes 
for the stenosis. The first corresponds to a succession of an increasing and a decreasing step and will be referred to as the 
square stenosis. It is defined by the following radius at rest R0 and arterial wall rigidity K⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0 (x) =

⎧⎪⎨
⎪⎩

Rin if x < xs

Rin (1 − �G) if xs < x < xe

Rin if x ≥ xe

K (x) =

⎧⎪⎨
⎪⎩

Kin if x < xs

Kin (1 + �G) if xs < x < xe

Kin if x ≥ xe.

(91)

We choose xs = 6.25 cm and x f = 8.25 cm. The second geometry is the stenosis (83) presented in subsections 5.1 and 5.2.2. 
Its radius at rest R0 and arterial wall rigidity K vary as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0 (x) =

⎧⎪⎨
⎪⎩

Rin if x < xs or x > x f

Rin

(
1 − �G

2

[
1 + cos

(
π + 2π

x − xs

x f − xs

)])
if xs ≤ x ≥ x f

K (x) =

⎧⎪⎨
⎪⎩

Kin if x < xs or x > x f

Kin

(
1 + �G

2

[
1 + cos

(
π + 2π

x − xs

x f − xs

)])
if xs ≤ x ≥ x f .

(92)

We choose xs = 5.5 cm and x f = 9.5 cm. We will refer to this stenosis as the cos stenosis. The cos stenosis is twice as 
long as the square stenosis to match the deformation area of the square stenosis. However, the maximal amplitudes of both 
configuration are the same and are proportional to �G .

In [59], the authors studied a similar pathological network and showed that the presence of the stenosis has a noticeable 
impact on the global hemodynamics for large values of �G . To that effect, we choose �G = 65%.

The results presented in this section are obtained using a time step �t = 5 × 10−5 and mesh size �x = 0.2 cm and 
are compared to results obtained with the 55 arteries network without the pathology. This network will be referred to 
as the “Sane” network and does not require the use of any well-balanced method. We focus on four measurement points 
corresponding to typical measurement points used by medical practitioners during surgery. These points are situated in the 
middle of the following arteries, and the numbers indicated correspond to the numbering of the arteries in Fig. 14: the Left 
Subclavian II (20), Left Femoral (45), Right Femoral (51) and Right External Iliac (49), before the stenosis. Furthermore, as 
the pressure P is the most common and simple variable to measure in vivo, we present only pressure waveforms in the 
following.

In Fig. 15, we compare the pressure waveforms obtained using HR, HR-LS and HR-S for the cos stenosis. The results 
obtained using HR-LS and HR-S are almost identical in the arteries 20 and 45, suited far from the stenosis, but also in the 
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Fig. 14. Scheme of the 55 arteries network proposed in [50] and used in this article. The numbered segments represent arteries described in the model. 
Each of the 55 arteries is characterized by a constant cross-sectional area at rest A0, a constant arterial wall rigidity K and a length L. At the end of 
each terminal segment, a constant reflection coefficient is imposed to model the resistive behavior of the distal network that is not taken into account in 
the modeled network. Therefore, a pulse wave propagates in the network starting from the heart and is reflected at each arterial bifurcation and terminal 
artery. The stenosis is represented in red in artery 49.

artery 49, located before the stenosis. In artery 51, situated after the stenosis, small differences exist between the results 
obtained with HR-LS and HR-S, especially during diastole (t = 7.5 s and t = 8 s). Moreover, the results obtained with HR-LS 
and HR-S in arteries 20, 45 and 49 are very close to those obtained with the Sane network, indicating that in these arteries, 
the resistive behavior of the stenosis is negligible compared to the global resistance of the network. However, in artery 51, 
the results obtained with HR-LS and HR-S slightly differ from those obtained with the Sane network, indicating that the 
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Fig. 15. Pressure P in the middle of different arteries of the model network (20, 45, 49, 51) using an inviscid fluid and an elastic wall model. Comparison 
between the sane case (black line) and the cos stenosis using HR (blue circle), HR-LS (green square) and HR-S (red triangle). HR-LS and HR-S are different 
only in artery 51. HR is different from HR-LS and HR-S. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

presence of the stenosis has a local effect, especially during diastole (t = 7.5 s to t = 8 s). HR produces significantly different 
results from HR-LS and HR-S in each artery considered. In arteries 20, 45 and 49, HR overestimates the amplitude of the 
pressure waveform, whereas in artery 51 it underestimates it. These results are in good accord with the observations made 
in Figs. 10 and 13 in subsections 5.2.1 and 5.2.2.

In Fig. 16, we compare the pressure waveforms obtained using HR-LS for the cos and the square stenosis. The results 
indicate that in arteries 20, 45 and 49, there are no significant differences when using either the cos or the square stenosis. 
Only in artery 51 is the influence of the shape noticeable.

In Fig. 15, the effects of the flow viscosity and the wall viscoelasticity are neglected. However, they play an important 
role in the global hemodynamics and need to be taken into account to obtain an accurate description of pressure and flow 
waves in a network. In Fig. 17, we present similar results to those obtained in Fig. 15, but now viscous and viscoelastic 
effects are taken into account. For the implementation of the viscous and viscoelastic terms, we refer the reader to [4]. The 
results indicate that viscosity and viscoelasticity have a dissipative and diffusive effect and in the presence of such effects, 
the results obtained with HR-LS and HR-S overlap, even in artery 51. However, HR still overestimates the amplitude of the 
pressure waves in arteries 20, 45 and 49 and underestimates it in artery 51.

The results presented in this section indicate that the pressure waveform is sensitive to the choice of the well-balanced 
method. Even though HR-LS, HR-S have comparable behaviors, the results obtained with these methods are very different 
from those obtained with HR. On the contrary, changing the shape of the pathology has little effect on the shape and 
amplitude of the pressure waveforms. The small differences between the results are erased when blood viscosity and wall 
viscoelasticity are taken into account, due to the damping and diffusion behavior of the fluid and wall viscosities. Overall, 
HR-LS and HR-S behave similarly and produce satisfying results.

7. Conclusion

We introduced two well-balanced hydrostatic reconstruction techniques for blood flow in large arteries with varying 
geometrical and mechanical properties. The low-Shapiro hydrostatic reconstruction (HR-LS) is a simple and efficient well-
balanced reconstruction technique, inspired from the hydrostatic reconstruction technique (HR) proposed in [24,12]. It 
accurately preserves low-Shapiro number (equivalent of the Froude number for shallow water equations and the Mach 
number for compressible Euler equations) steady states that may occur in large network simulations and are the appro-
priate conserved properties at discontinuities of the geometrical and mechanical properties of the artery. The subsonic 
hydrostatic reconstruction (HR-S), introduced in [26] and adapted here to blood flow, exactly preserves all subcritical steady 
states. We performed a series a numerical computations to compare the properties of HR, HR-LS and HR-S. In all numerical 
computations, HR was the least accurate method and was unable to correctly compute wave reflection and transmission 
when large variations of the artery’s geometrical and mechanical properties were considered. HR-S proved to be exactly 
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Fig. 16. Pressure P in the middle of different arteries of the model network (20, 45, 49, 51) using an inviscid fluid and an elastic wall model. Comparison 
between the sane case (black line), the square stenosis (red square) and the cos stenosis (blue triangle) using HR-LS. Changes with the shape of the 
pathology are visible only in artery 51. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 17. Pressure P in the middle of different arteries of the model network (20, 45, 49, 51) using a viscous fluid and a viscoelastic wall model. Comparison 
between the sane case (black line) and the cos stenosis using HR (blue circle), HR-LS (green square) and HR-S (red triangle). Viscosity and viscoelasticity 
erase the differences between HR-LS and HR-S, which are now identical even in artery 51. HR is still different from HR-LS and HR-S. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

well-balanced for all low-Shapiro number steady states and the most accurate reconstruction technique. We showed that 
HR-LS is well-balanced only for steady states at rest, but provides satisfactory approximations of low-Shapiro steady states. 
HR-LS is also able to capture wave reflections and transmissions for arbitrary large variations of the artery’s geometrical 
and mechanical properties, which is an essential property to compute realistic flow and pressure waveforms. We have also 
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evaluated the sensitivity of the model to well-balanced methods and to the shape of the pathology in a 55 arteries network 
simulation. We showed that the model is not sensitive to the geometry of the pathology. However, important differences 
were observed between HR and the other well-balanced methods, namely HR-LS and HR-S, due to the fact that HR is unable 
to capture wave reflection and transmission. Finally, we observed that the small differences between HR-LS and HR-S are 
erased when adding viscous and viscoelastic effects, which are required to obtain realistic pressure and flow waveforms. 
This analysis allows us to conclude that both HR-LS and HR-S are adequate well-balanced methods to compute blood flow 
in large arteries with varying cross-sectional area at rest and arterial wall rigidity. However, in large networks where many 
arteries present variations of their geometrical and mechanical properties, the extra iterations required by HR-S increase the 
computational cost compared to HR-LS. We therefore recommended using HR-LS in this case, as it is a good compromise 
between simplicity, numerical accuracy and efficiency. In future works, we will investigate further the properties of HR-LS 
and propose an extension of the method to higher order.

Acknowledgements

The authors are grateful to thank F. Bouchut and E. Audusse for their helpful remarks and comments.

References

[1] L. Euler, Principia pro motu sanguinis per arterias determinando, in: Opera Posthuma Mathematica et Physica Anno, 1844, pp. 814–823.
[2] T. Pedley, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, 1980.
[3] J. Alastruey, A.W. Khir, K.S. Matthys, P. Segers, S.J. Sherwin, P.R. Verdonck, K.H. Parker, J. Peiró, Pulse wave propagation in a model human arterial 

network: assessment of 1-D visco-elastic simulations against in vitro measurements, J. Biomech. 44 (12) (2011) 2250–2258.
[4] X. Wang, J.-M. Fullana, P.-Y. Lagrée, Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model, Comput. Methods 

Biomech. Biomed. Eng. 18 (15) (2015) 1704–1725.
[5] L.O. Müller, E.F. Toro, A global multiscale mathematical model for the human circulation with emphasis on the venous system, Int. J. Numer. Methods 

Biomed. Eng. 30 (7) (2014) 681–725.
[6] E. Boileau, P. Nithiarasu, P.J. Blanco, L.O. Müller, F.E. Fossan, L.R. Hellevik, W.P. Donders, W. Huberts, M. Willemet, J. Alastruey, A benchmark study of 

numerical schemes for one-dimensional arterial blood flow modelling, Int. J. Numer. Methods Biomed. Eng. 31 (10) (2015).
[7] J. Alastruey, K. Parker, J. Peiró, S. Sherwin, Analysing the pattern of pulse waves in arterial networks: a time-domain study, J. Eng. Math. 64 (4) (2009) 

331–351.
[8] M.T. Politi, A. Ghigo, J.M. Fernández, I. Khelifa, J. Gaudric, J.M. Fullana, P.-Y. Lagrée, The dicrotic notch analyzed by a numerical model, Comput. Biol. 

Med. 72 (2016) 54–64.
[9] P.-Y. Lagrée, An inverse technique to deduce the elasticity of a large artery, Eur. Phys. J. Appl. Phys. 9 (02) (2000) 153–163.

[10] V. Martin, F. Clément, A. Decoene, J.-F. Gerbeau, Parameter identification for a one-dimensional blood flow model, in: ESAIM: Proceedings, vol. 14, EDP 
Sciences, 2005, pp. 174–200.

[11] L. Dumas, P. Boutouyrie, E. Bozec, An optimal reconstruction of the human arterial tree from Doppler echotracking measurements, in: Proceedings of 
the 14th Annual Conference Companion on Genetic and Evolutionary Computation, ACM, 2012, pp. 517–522.

[12] O. Delestre, P.-Y. Lagrée, A well-balanced finite volume scheme for blood flow simulation, Int. J. Numer. Methods Fluids 72 (2) (2012) 177–205.
[13] P. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms, in: Nonlinear Hyperbolic Problems, Springer, 1987, pp. 41–51.
[14] A. Bermúdez, M.E. Vázquez, Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids 23 (8) (1994) 1049–1071.
[15] L. Gosse, A.-Y. LeRoux, Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes, C. R. Math. Acad. Sci. 323 (5) (1996) 543–546.
[16] J.M. Greenberg, A.-Y. LeRoux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal. 33 (1) 

(1996) 1–16.
[17] E.F. Toro, Shock-Capturing Methods for Free-Surface Shallow Flows, Wiley, 2001.
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