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a b s t r a c t 

We propose an arterial network model based on one-dimensional hemodynamic equations to study the 

behavior of different vascular surgical bypass grafts in the case of an arterial occlusive pathology: a 

stenosis of the Right Iliac artery. We investigate the performances of three different bypass grafts (Aorto- 

Femoral, Axillo-Femoral and cross-over Femoral) depending on the degree of obstruction of the stenosis. 

Numerical simulations show that all bypass grafts are efficient since we retrieve in each case the healthy 

hemodynamics downstream of the stenosed region while ensuring at the same time a global healthy cir- 

culation. We analyze in detail the behavior of the Axillo-Femoral bypass graft by performing hundreds 

of simulations where we vary the values of its Young’s modulus [0.1–50 MPa] and radius [0.01–5 cm]. 

Our analysis shows that Young’s modulus and radius of commercial bypass grafts are optimal in terms 

of hemodynamic considerations. Our numerical findings prove that this model approach can be used to 

optimize or plan patient-specific surgeries, to numerically assess the viability of bypass grafts and to 

perform parametric analysis and error propagation evaluations by running extensive simulations. 

© 2017 IPEM. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Arterial diseases such as stenoses are frequent clinical patholo-

ies, and their prevalence is evaluated from 3% to 10% in the global

opulation with a significant growth from 15% to 20% in persons

ver 70 years old [1] . Stenoses correspond to the partial or total

bstruction of an artery and can cause symptoms going from in-

ermittent claudication to severe ischemia. These symptoms result

rom a decrease in blood supply as the diseased vessel providing

ascularization is narrowed or occluded. When untreated, stenoses

an have severe consequences and can lead to the amputation of

he stenosed member, especially when they occur in the arteries

f the lower members, such as in the Iliac arteries. 

When the symptoms are too severe or when medical treatment

ails, surgery is necessary to restore blood flow downstream of the

tenosed member. This can be done by angioplasty stenting, where

he obstructed segment is replaced by a prosthesis (stent) during

n endovascular substitution surgery. An alternative solution con-

ists in inserting a bypass graft to redirect the flow of blood from

 healthy artery to bypass the obstructed vessel and restore blood

ow downstream of the stenosis. In both cases, the mechanical

ole of these grafts or conduits is to replace or bypass vessels that
∗ Corresponding author. 
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ave become occluded or severely obstructed by a disease process

2] . 

Numerical studies following local endovascular graft replace-

ents have been reported previously (e.g., [3,4] ). We propose to

tudy instead extracorporeal bypass graft procedures. To do so,

e consider a detailed model of the systemic network which

resents a stenosis of the Right Iliac artery. In this pathological

ase, the most common bypass graft configurations are: Aorto-

emoral, Axillo-Femoral and cross-over Femoral, defined by the

ombination of the name of the healthy or donor artery (Aorto for

orta, Axillo for Axillary and cross-over for the opposite artery, the

eft Femoral Artery) and the name of the receptor artery, in our

ase the Right Femoral artery which follows distally the narrowed

ite. 

The aim of this communication is to use a one-dimensional

1D) model to compute blood flow in each segment of the consid-

red model network before and after extracorporeal bypass graft

urgery. To help clinicians optimize surgical repair, we evaluate the

iability of each bypass graft by computing the flow rate and pres-

ure downstream of the stenosed member, which is an a posteri-

ri evaluation of the quality of the surgery. Clinicians often prefer

he Aorto-Femoral bypass graft. However, for weak patients who

annot tolerate the aortic clamping required to insert the Aorto-

emoral bypass graft, the preferred solution is an extra-anatomic

xillo-Femoral bypass graft [5] . Furthermore, it has the short-

st graft survival time among the three previously named bypass

rafts [6,7] . We therefore study in detail the optimization of the

http://dx.doi.org/10.1016/j.medengphy.2017.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/medengphy
http://crossmark.crossref.org/dialog/?doi=10.1016/j.medengphy.2017.02.002&domain=pdf
mailto:jose.fullana@upmc.fr
http://dx.doi.org/10.1016/j.medengphy.2017.02.002
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geometrical and mechanical characteristics of the Axillo-Femoral

bypass graft. We hope that this numerical approach will be used

in the future to define the optimal parameters of new prosthesis

and help clinicians plan surgeries. 

Here, we present a numerical model and model arterial net-

work, as applied to the study of flow through three different ar-

terial bypass graft configurations, along with the results of a para-

metric study of the Axillo-Femoral bypass graft. We propose only

hemodynamic predictions based on fluid mechanics equations, re-

gardless of biological phenomena and their consequences. Never-

theless, we are aware that short term graft failures can be caused

by infections or hemorrhages, while long-term failures are the re-

sult of intimal hyperplasia of the graft site, with a proliferation and

a migration of vascular smooth muscle cells near the arterial wall

[6] . 

2. Numerical model 

To compute the hemodynamics in an artery, we use a set of

one-dimensional (1D) equations expressed in terms of the flow

rate Q , the cross-sectional area A and the internal average pres-

sure P in the artery. This 1D system of equations results from the

integration of the Navier–Stokes equations for an incompressible

Newtonian fluid over the cross-sectional area of the artery, leading

to the following mass and momentum 1D conservation equations 

∂A 

∂t 
+ 

∂Q 

∂x 
= 0 , (1)

∂Q 

∂t 
+ 

∂ 

∂x 

(
Q 

2 

A 

)
+ 

A 

ρ

∂P 

∂x 
= 2 πν

[
r 
∂u x 

∂r 

]
r= R 

, (2)

where u x is the axial velocity, ρ is the fluid density and ν is

the kinematic viscosity of the fluid. We set ρ = 1 g / cm 

3 and ν =
3 . 5 10 −2 cm 

2 / s , which are typical values for blood. The internal

pressure P is related to the cross-sectional area A through the fol-

lowing relationship 

P = P ext + β( 
√ 

A −
√ 

A 0 ) + νs 
∂A 

∂t 
, (3)

under the assumption that the arterial wall is thin, isotropic, ho-

mogeneous, incompressible and that it deforms axisymmetrically

with each circular cross-section independently of the others. The

parameter β describes the elastic behavior of the wall 

β = 

√ 

πEh 

(1 − η2 ) A 0 

, 

and the parameter νs its viscoelastic behavior, that we describe us-

ing a Kelvin–Voigt model [8] 

νs = 

√ 

πρφh 

2 ρ(1 − η2 ) 
√ 

A 0 A 

. 

Young’s modulus E , the Poisson ratio η, the viscoelastic coefficient

φ and the arterial thickness h are given in Table A.1 in Appendix A .

More details can be found elsewhere [9] . By approximating the

friction drag by −C f Q/A and using the expression (3) for the pres-

sure P , we can re-write the momentum equation (2) as 

∂Q 

∂t 
+ 

∂ 

∂x 

(
Q 

2 

A 

+ 

β

3 ρ
A 

3 
2 

)
= −C f 

Q 

A 

+ C v 
∂ 2 Q 

∂ 2 x 
. (4)

We set C f = 22 πν as was computed from coronary blood flow in

[10] and we define C v = 

Aνs 
ρ . 

From a mathematical point of view, the system of Eqs. (1) –(4)

can be decomposed in a hyperbolic subproblem (transport equa-

tion) and a parabolic subproblem (viscoelastic source term). To

obtain the numerical solution of both subproblems, we introduce
 mesh in the axial direction by dividing each artery in a se-

ies of cells of size 	x . We then define the discrete time t n =
 	t, where 	t is the time step. Using this decomposition of the

pace and time domains, we discretize the hyperbolic subprob-

em with a MUSCL (monotonic upwind scheme for conservation

aw) finite volume scheme and the parabolic subproblem with a

rank–Nicolson scheme. We compute the numerical solution using

 code developed in our laboratory, written in C++ and parallelized

ith OpenMP. The numerical implementation of the full viscoelas-

ic nonlinear system has been validated by comparing the com-

uted solutions to analytic solutions of the linearized system and

o experimental data [9,11] . 

The network used in the numerical simulations is constructed

y connecting different arterial segments together. These connec-

ions take place at branching points. As an example, we consid-

red a simple branching problem: a single parent vessel connected

o two daughter arteries. In this configuration, there are six un-

nowns at the iteration n + 1 (numerically speaking, n refers to

ime t n and n + 1 to time t n +1 ): A 

n +1 
p and Q 

n +1 
p for the outlet of

he parent artery and A 

n +1 
d 1 

, Q 

n +1 
d 1 

, A 

n +1 
d 2 

and Q 

n +1 
d 2 

for the inlets of

he two daughter arteries. These quantities are function of the val-

es at the iteration n . To determine these unknowns, we impose

he basic laws of conservation at the branching point, that is the

onservation of mass flux 

 

n +1 
p − Q 

n +1 
d 1 

− Q 

n +1 
d 2 

= 0 , 

nd the continuity of total pressure 

1 

2 

ρ

(
Q 

n +1 
p 

A 

n +1 
p 

)2 

+ P n +1 
p − 1 

2 

ρ

( 

Q 

n +1 
d i 

A 

n +1 
d i 

) 2 

− P n +1 
d i 

= 0 . 

he pressures P are expressed as a function of the cross-sectional

rea A using the constitutive relation (3) . By matching at the

ranching point the incoming and outgoing characteristics of the

yperbolic subproblem, we obtain the last three equations we need

o complete the resolution of the branching point problem. Energy

osses should be taken into account due to the complex flow in the

ranching sites but, in practice, these losses have only secondary

ffects on the pulse waves [8] , therefore we neglect them. 

To drive the flow through the network, we prescribe inlet and

utlet boundary conditions. These boundary conditions are: (i) an

mposed physiological flow rate at the inlet of the ascending aorta

nd (ii) reflection coefficients imposed at the outlet of each termi-

al segment and characterizing the resistance of the vascular bed

hat is not taken into account in our model. These values are given

n the last column of Table A.1 in Appendix A . The input flow rate

ignal we use in the numerical simulations is 

(t) = 

{
Q max sin ( 2 π

T 
t) if t ≤ T / 2 ;

0 . if t > T / 2 . 

here T is the period of the heart cycle. To define the maximum

ow rate Q max , we introduce the ejection fraction EF , defined as 

 F = 

E DV − E SV 

E DV 

× 100 , (5)

here EDV is the End Diastolic Volume and ESV is the End Systolic

olume. Healthy people typically have an EF between 50% and 65%.

n the contrary, people with heart muscles damages (principally

n the myocardium) have a low EF . The ejected volume V e = EDV −
SV during one period is computed by integrating Q ( t ) over one

eriod 

 e = Q max 
T 

π
. (6)

inally we have 

 max = E F π
E DV 

, (7)
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Fig. 1. Arterial tree. (a) “Healthy” network. (b) Pathological network. (c) “Repaired” network. The pathological network (b) is modeled by narrowing the cross-sectional area 

of the Right Iliac artery (number 50, green) and the extracorporeal bypass graft by an elastic tube (purple). In each segment, a 1D model of fluid flow with viscoelastic wall 

is solved numerically. The flow is imposed by given heart pulses, with a realistic reflection coefficient at the end of each terminal arteries. Table A.1 presents the geometrical 

and mechanical data used in numerical computations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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nd we can now define Q max , for a given period T and a given EDV

s a function of EF . With this approach we propose a simple heart

odel that allows us to define a pathological heart by reducing

F . This behavior is physiologically meaningful if in the case of a

athological heart, the system reacts by either increasing EDV by

xpanding the muscle fibers or by reducing the period T by in-

reasing the cardiac rhythm. 

. Numerical methods and results 

In this section we present the numerical protocol and detail the

umerical results obtained with the healthy network, the patho-

ogical network presenting an obstruction of the Right Iliac artery

nd the pathological network treated with three different bypass

rafts (Axillo-Femoral, Femoral–Femoral and cross-over Femoral

ypass grafts). 

The numerical protocol is the following: 

1. We first simulate blood flow in a healthy network ( Fig. 1 (a)).

We use the computed numerical data as the target blood flow

we compare the other numerical results to; 

2. We then build the pathological network by narrowing the

cross-sectional area of the Right Iliac artery ( Fig. 1 (b)). As we

record all hemodynamic variables everywhere in the network

for different degrees of obstruction of the stenosis, we are able
to observe the global changes depending on the degree of ob-

struction; 

3. We finally build three repaired networks by introducing in the

pathological network the Axillo-Femoral, Femoral–Femoral and 

cross-over Femoral bypass grafts using elastic tubes inserted

between the donor and the receptor arteries of each bypass

graft ( Fig. 1 (c) for the Axillo-Femoral, the other two are pre-

sented in Fig. 3 ). We then compare the numerical results ob-

tained with the three repaired networks to those obtained with

pathological and healthy networks. 

The key points of clinical repair are first the ability of the by-

ass graft to restore blood flow in the previously non-perfused re-

ion (here the network downstream of Right Femoral artery, num-

er 52 in Fig. 1 ), and second, ensuring that the repair does not ill-

alance the rest of the hemodynamic circulation. In the following,

oth key points are systematically for each repaired network. 

.1. Healthy state 

The healthy network we consider represents the principal ar-

eries of the great circulation (55 segments). It is used in the lit-

rature as the basic model of the systemic network. Its topology

s presented in Fig. 1 (a), where every artery is given a number

ID) useful to understand the numerical results. Each artery of the
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healthy network is described by geometrical and mechanical pa-

rameters adapted from [12] and presented in Table A.1 . Compared

to Sherwin et al. [12] , we have added a viscoelastic term to the

wall model. This viscoelastic term exists in physiological condi-

tions and is very important from the hemodynamic point of view

[8,9] . Without it, high frequency components would be present in

the pulse wave signal [9] . In the literature on 1D network models,

this viscoelastic term is usually not included as its coefficients are

hard to evaluate experimentally. Here, we use the work of Armen-

tano et al. [13] , where the viscosity of the aortic walls of dogs was

modeled by a Kelvin–Voigt model and where the values of φ range

between 3 . 8 ± 1 . 3 × 10 3 Pa s and 7 . 8 ± 1 . 1 × 10 3 Pa s . Hence, in all

numerical simulations we assume φ = 5 × 10 3 Pa s to calculate the

coefficient C v . 

The flow in each arterial segment is computed using the 1D nu-

merical model presented in the previous section. The simulations

are performed over 10 heart periods. Any data we present is taken

from the final period to ensure that a permanent state is reached,

where each heart period is identical to the next. The recorded

data for the healthy network contains the values of the blood flow

rate Q healthy , the cross-sectional area A healthy and the blood pres-

sure P healthy in every artery and at every recorded time of the final

period. These numerical results are the target values we use from

now on to evaluate the severity of the pathological situation and

to assess the restorative properties of the bypass grafts. 

3.2. Pathological case 

3.2.1. Numerical protocol 

We model the stenosis by narrowing the cross-sectional area

of a portion of the Right Iliac artery (number 50 in Fig. 1 (b)).

The length of the occlusion is 5 cm and the degree of obstruc-

tion is directly related to the ratio of the cross-sectional area of

the stenosed artery A % over the cross-sectional area of the healthy

artery A healthy . We define this ratio as I s = 

A healthy −A % 
A healthy 

× 100 . Four

control sites are chosen to evaluate the hemodynamical influence

of the stenosis on the flow rate and pressure waveforms. Two are

located in the lower legs, in the Right Femoral artery (number 52)

and in Left Femoral artery (number 46). The other two are lo-

cated in the arms, in the Right Subclavian artery (number 7) and

in the Left Subclavian artery (number 21). The Right Femoral artery

(number 52) is the principal assessment point of our numerical

study as the flow rate passing through it characterizes the leg’s

perfusion and therefore the degree of ischemia. The other control

sites (Left Femoral, Left and Right Subclavian) are used in clinical

routines to evaluate if a bypass graft surgery is successful. 

3.2.2. Results 

Fig. 2 (a) shows the variation with the degree of obstruction I s 
of the blood flow rate Q averaged over the final period at the four

previously defined control sites. The first observation is that un-

der 60 –70% of obstruction there is no significant variation of flow

rate with respect to the healthy state ( I s = 0% ). This behavior is

well known in the medical community (i.e. renal arteries in pigs

and human carotid arteries [14,15] ). Above 70% of obstruction, the

flow rate drastically decreases in the Right Femoral artery (num-

ber 52) due to the obstruction of its proximal artery, the Right Il-

iac artery (number 50). We note that for an occlusion of 90% there

is almost no blood flow in the Right Femoral artery (number 52).

Conversely, the flow rate moderately increases in the other control

sites to compensate for the reduction of flow rate in the network

distal to the stenosis. This as a clear example of how we can moni-

tor global variations in the network caused by a local perturbation.

Fig. 2 (b) presents the time evolution of the blood flow rate Q

over the final period in the Right Femoral artery (artery 52). These
esults are correlated to those of Fig. 2 (a) but provide additional

nformation: first, as expected, the flow rate decreases in average

s the ratio I s increases; second the positions of the maximum

nd minimum peaks are shifted, due to a time shift in the trav-

ling waves; third the maximum amplitude decreases significantly

s the ration I s increases and we observe that for I s = 70% the am-

litude drops by 30% and for I s = 80% it drops by 60%. For I s = 90% ,

he amount of blood perfusion in the leg is minimal and the wave-

orm is a flat line. This last point indicates that as the degree of

bstruction I s increases, the signal loses its pulsatility and flattens.

.3. Bypass grafts 

.3.1. Numerical protocol 

We study here the three most commonly used bypass grafts to

reat a stenosis of the Right Iliac arteries: the Axilo-Femoral (AxF)

here the donor artery is the Axillary artery (artery 7), the cross-

ver Femoral (FF) where the donor artery is the opposite Com-

on Femoral artery (artery 44) and the Aorto-Femoral (ArF) where

he donor artery is the Abdominal Aorta (artery 39). Each bypass

raft is connected to the pathological network using two connec-

ion points: the proximal anastomosis, connecting the bypass graft

o the donor artery, and the distal anastomosis, linking the bypass

raft to the receptor artery. For each of these three bypass grafts,

he distal anastomosis is located downstream of the stenosis, in

he distal part of the Right Iliac artery (artery 50). In Fig. 3 we

epresent the topology of the three different pathological network

reated with a bypass graft. 

Each bypass graft we study is made of the same composite

aterial which is constituted principally of polyethylene tereph-

halate (Dacron). From the literature [16] , we obtain their me-

hanical and geometrical characteristics, that is a Young’s mod-

lus equal to 9 × 10 6 Pa , an internal diameter of 0 . 8 cm and a

hickness of 0 . 05 cm . The length L of each bypass graft depends

n the geometric distance between the proximal and distal anas-

omoses: Axillo-Femoral, 40 cm , cross-over-Femoral, 20 cm and

orto-Femoral, 20 cm . 

To assess the performances of each bypass graft, we define

hree control sites where we compare the healthy, pathological and

epaired data. The first is located in the Right Femoral artery (num-

er 52), downstream of the stenosis and the distal anastomosis,

nd is identical to the control site used previously to analyze the

athological network. The second and third control sites are re-

pectively situated in the upstream and downstream segments of

he proximal anastomosis. 

.3.2. Results 

For each bypass graft we first study the predicted perfusion

emodynamics in the first control site located downstream of

he stenosis, in the Right Femoral artery (number 52). Fig. 4 (a)

resents the evolution with the degree of obstruction I s of the

ime-averaged blood flow rate in the pathological network (same

s Fig. 2 (a) for the artery 52) and in the three repaired networks

btained using the AxF, ArF and FF bypass grafts. Fig. 4 (b) shows

he temporal evolution of the blood flow rate over the final heart

ycle for I s = 90% . These figures should be compared to Fig. 2 (a)

nd (b). We observe in Fig. 4 (a) that for all three bypass grafts

onfigurations, we retrieve in average the blood flow rate of the

ealthy case for every value of I s considered. Fig. 4 (b) indicates

hat the repaired waveforms are similar to the target healthy one

lthough the amplitudes of the peaks are a slightly underesti-

ated. The delay in the position of the maximum and minimum

ow rate peaks is caused by a change in the length of vessel trav-

led by the wave starting from the heart. Overall we retrieve for

ll three bypass graft configurations the target average blood flow

ate as well as the approximate shape of the waveform. From the
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Fig. 2. (a) Flow rate averaged over a cycle as function of the obstruction degree I s for the following arteries: Right Femoral, (number 52), Left Femoral, (number 46), Right 

Subclavian (number 7) and Left Subclavian, (number 21). As the ratio I s increases, the flow rate drops in the Right Femoral artery, distal to the stenosis, whereas the flow rate 

increases in all other segments to compensate this drop. (b) Instantaneous flow rate as function of time over a cycle in the Right Femoral artery (number 52) for different 

degree of obstruction. As the ratio I s increases, the waveform loses its pulsatility and flattens and the average flow rate drops. 

Fig. 3. Sketch of three bypasses with the donor artery: (left) Axillo-Femoral (AxF) and donor artery, Right Axillary artery (number 7), (center) cross-over-Femoral (FF) and 

donor artery, Left Femoral artery (number 44) and (right) Aorto-Femoral (ArF) and donor artery, Abdominal Aorta (numer 39). 

Fig. 4. (a) Averaged flow rate over a cycle as function of the degree of obstruction I s (Artery 52: Right Femoral) (b) instantaneous flow rate as function of time over a cycle 

(Artery 52: Right Femoral) for healthy, pathological with I s = 90% and for the three bypasses. We observe that for all three bypass graft configurations, we are able to recover 

the target healthy flow rate (average values and waveform) distal to the stenosis. 



44 A.R. Ghigo et al. / Medical Engineering and Physics 43 (2017) 39–47 

Fig. 5. Cross-over Femoral bypass graft: average flow rate over a cycle in the op- 

posite Femoral artery (Artery 44). Upstream of the proximal anastomosis, the flow 

rate increases to properly vascularize the bypass graft, depending on the degree of 

obstruction I s . Downstream of the proximal anastomosis, we recover the healthy 

( I s = 0% ) flow rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Aorto-Femoral bypass graft: average flow rate over a cycle at the donor 

artery (Artery 39). Upstream of the proximal anastomosis, the flow rate remains un- 

changed since blood flow passing through the bypass graft to vascularize the right 

leg was already supplied by the Aorta in the healthy case. Downstream of the prox- 

imal anastomosis, the flow rate decreases with the degree of obstruction I s since 

now only the blood supplying the left leg is passing downstream of the proximal 

anastomosis. 

Fig. 7. Axillo-Femoral bypass graft: averaged flow rate over a cycle at the donor 

artery (number 7). Upstream of the proximal anastomosis, the flow rate increases 

to properly vascularize the bypass graft, depending on the degree of obstruction 

I s . Downstream of the proximal anastomosis, we recover the healthy ( I s = 0% ) flow 

rate. 
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analysis of Fig. 4 we conclude that all three bypass graft are suc-

cessful in retrieving the healthy flow rate in the first control site

distal to the obstructed segment (Right Femoral artery 52). 

We complete our study by analyzing the time-averaged blood

flow rate in each donor artery. In the subsequent numerical results

we focus on the remaining two control sites: the upstream and

downstream segments of the proximal anastomosis, which differ

from one bypass graft configuration to the next. We expect that

each bypass graft will supply the missing blood flow rate to the

diseased lower leg (Right Femoral artery 52) whilst maintaining a

healthy perfusion in the donor site (downstream segments of the

proximal anastomosis). 

For the FF bypass graft the donor artery is the opposite Femoral

artery (Left Femoral artery, number 44 in Fig. 1 ). Fig. 5 presents

the evolution of the time-averaged blood flow rate with the de-

gree of obstruction I s in the two control sites, upstream and down-

stream of the proximal anastomosis. We observe that upstream of

the donor site the flow rate increases proportionally to the degree

of obstruction. Indeed the donor artery must know supply blood

to both its downstream segment and the stenosed member and

therefore increases its flow rate, in comparison with the healthy

case ( I s = 0% ). The downstream blood flow rate does not change

compared to the healthy case ( I s = 0% ) indicating that the opposite

lower leg, downstream of the proximal anastomosis, is correctly

supplied. We note that for a severe stenosis (obstruction of 90%)

the upstream blood flow rate is twice the basal one. 

For the ArF bypass graft the donor artery is the Abdominal

Aorta (artery 39), the principal path carrying blood to both lower

legs. Fig. 6 presents the evolution of the time-averaged blood flow

rate with the degree of obstruction I s in the two control sites,

upstream and downstream of the proximal anastomosis. We ob-

serve that upstream of the proximal anastomosis, the blood flow

rate does not change with the degree of obstruction I s , contrary to

the FF bypass graft configuration. Indeed, in the healthy configura-

tion the Abdominal Aorta already carries blood the Right Femoral

artery, therefore no compensation mechanism is required upstream

of the donor site. Conversely we observe that the downstream of

the proximal anastomosis, the blood flow rate decreases as the de-

gree of obstruction increases, in comparison to the healthy config-

uration ( I s = 0% ). Indeed, since the blood that supplies the stenosed

member (Right Femoral artery 52) now flows through the bypass

graft, only the blood supply for the left leg remains downstream of

the donor site. This behavior shows that the bypass graft is indeed

carrying blood the stenosed member. Finally, we note that in ab-

sence of stenosis ( I s = 0% ) the downstream blood flow is symmet-
ically shared between the two legs and that for a severe stenosis

 I s = 90% ) the downstream blood flow rate is half the basal one. 

Fig. 7 presents the evolution for the AxF bypass graft of the

ime-averaged blood flow rate with the degree of obstruction I s in

he two control sites, upstream and downstream of the proximal

nastomosis. The results are identical to those obtained with the FF

ypass graft ( Fig. 5 ). The same analysis can be performed and we

onclude that this bypass graft configuration correctly supplies the

tenosed member while maintaining the healthy flow rate down-

tream of the donor site. We also note that for an obstruction of

0% the upstream blood flow rate is twice the basal one. 

These results show that for all three bypass graft configurations,

he target behaviors are obtained and the bypass graft surgery is

uccessful. 

.4. Optimization 

Of the three bypass grafts considered here, the AxF has the

ighest chance of graft failure. Indeed, the AxF is the longest by-

ass graft. Moreover, the AxF bypass graft surgery is performed on

atients who are not healthy enough to survive the more invasive

urgical procedures required to implement the FF or ArF bypass

rafts. 
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Fig. 8. Contour plot for the normalized time-averaged flow rate Q 
Q healthy 

as function 

of the Young modulus E and the radius R for a stenosis of I s = 90% . The red circle 

corresponds to the actual values of the Young modulus E and the radius R used 

in numerical simulations, which are situated in an optimal zone (100%). When the 

radius decreases, the resistance of the tube increases and therefore less flow is by- 

passing through the bypass graft. When Young’s modulus decreases, the tube be- 

comes more compliant and stores more flow. Both behaviors reduce the quality of 

the bypass graft. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 9. Contour plot for the normalized peak to peak flow rate Q max −Q min 

Q healthy 
max −Q healthy 

min 

Q healthy 

Q 
as 

function of the Young modulus E and the radius R for a stenosis of 90% . The red 

circle corresponds to the actual values of the Young modulus E and the radius R 

used in numerical simulations. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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For these reasons we choose to perform a detailed analysis to

etermine the optimal mechanical (the Young modulus E ) and geo-

etrical (the radius R ) parameters of the AxF bypass graft. In order

o give arguments for discussion we perform hundreds of simula-

ions where we vary the values of the Young modulus [0.1–50 MPa ]

nd radius R [0.01–5 cm ] of the AxF bypass graft. As before, we use

s a target the healthy data in the Right Femoral artery (number 52

n Fig. 1 ). 

Fig. 8 presents a log–log scale contour plot of the normalized

ow rate Q 
Q healthy 

in the AxF bypass graft obtained for different val-

es of the Young modulus E and the radius R in a pathological net-

ork with I s = 90% . The red circle in the middle of Fig. 8 indicates

he actual values of the bypass graft’s Young’s modulus E and ra-

ius R . For these values the normalized flow rate Q 
Q healthy 

≈ 100%

ndicating that the healthy flow rate is restored in average down-

tream of the stenosis. Starting from this point we analyze the re-

ults by moving along the horizontal and vertical directions, that

s for E constant and varying R (horizontal) and for R constant and

arying E (vertical). 

For a constant Young’s modulus E , we analyze the effect of

hanging the radius R of the bypass graft. Moving along the hor-

zontal direction towards the left starting from the red circle, the

adius R decreases. Consequently the hydraulic resistance of the

ypass graft increases leading to a decrease of the normalized flow

ate Q 
Q healthy 

. Moving now towards the right, the radius R increases.

ven though for a large range of values of Young’s modulus E the

alue of Q 
Q healthy 

is close to 100%, it is clear that as the radius in-

rease the blood volume inside of the bypass also increases. This

esults in a decrease of the flow rate distal to the proximal anas-

omosis and could lead to the ischemia of the right hand. Increas-

ng the radius R also implies decreasing blood flow velocity in the

ypass graft which results in a smaller shear rate along the by-

ass. This increases aggregation and coagulation processes which

re key factors in the onset of graft failure. From a physiological

nd mechanical point of view for a given value of Young’s modu-

us E , the optimal radius R should be taken from a Q 
Q healthy 

≈ 100%

egion and be as small as possible to ensure an optimal distal and

roximal blood perfusion. 
For a constant radius R , we analyze the effect of changing

oung’s modulus E of the bypass graft. Moving along the verti-

al direction towards the top or the bottom starting from the red

ircle, Q 
Q healthy 

≈ 100% for every value of Young’s modulus E . How-

ver, the bypass graft’s Young’s modulus E should be taken as

lose as possible to the arteries’ Young’s modulus since elasticity

umps lead to impedance discontinuities and therefore higher re-

ected pressure waves. Moreover, if the bypass graft’s elasticity is

oo small, the bypass graft will become more compliant and inflate,

ncreasing the blood volume inside the bypass graft. Conversely, if

he bypass graft’s elasticity is too large, high pressure peaks will

e generated due to increased wave reflections. 

Fig. 9 presents a log–log scale contour plot of the normalized

eak to peak flow rate 
Q max −Q min 

Q 
healthy 
max −Q 

healthy 
min 

Q healthy 

Q in the AxF bypass graft

btained for different values of the Young modulus E and the ra-

ius R in a pathological network with an obstruction degree of

0% . This quantity measures the pulsatility of the flow rate sig-

al (and consequently the pressure signal). We observe that both

igs. 8 and 9 are similar, and the previous analysis of Fig. 8 can

e applied. Nevertheless, Fig. 9 provides additional information es-

ecially in the region of large radii. For a fixed Young’s modu-

us E , increasing the radius significantly decreases the value of
Q max −Q min 

Q 
healthy 
max −Q 

healthy 
min 

Q healthy 

Q . We previously described this situation as a

orrelation between an increase of radius and an increase of the

lood volume inside the bypass graft. We prove here that this in-

rease in blood volume in the bypass graft reduces its quality as

he signal loses its pulsatility. 

. Conclusion 

We presented a model network comprising 55 arteries in which

e modeled blood flow using a 1D fluid–structure system of equa-

ions. We performed simulations of this complex nonlinear dissi-

ative system in a healthy and a pathological network presenting

 stenosis of the Right Iliac artery. We then computed blood flow

n a repaired network where we considered the three classical by-

ass grafts used to treat a stenosis of the Iliac artery. Our numeri-

al results showed that all three bypass grafts are able to retrieved

he healthy hemodynamics downstream of the stenosed member

hilst maintaining a global healthy circulation. 
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Table A.1 

Arterial network: data adapted from [12,13] . 

l A 0 β C v 
ID Name (cm) (cm 

2 ) (10 6 Pa/cm) (10 4 cm 

2 /s) R t 

1 Ascending aorta 4.0 6.789 0.023 0.352 –

2 Aortic arch I 2.0 5.011 0.024 0.317 –

3 Brachiocephalic 3.4 1.535 0.049 0.363 –

4 R.subclavian I 3.4 0.919 0.069 0.393 –

5 R.carotid 17.7 0.703 0.085 0.423 –

6 R.vertebral 14.8 0.181 0.470 0.595 0.906 

7 R. subclavian II 42.2 0.833 0.076 0.413 –

8 R.radius 23.5 0.423 0.192 0.372 0.82 

9 R.ulnar I 6.7 0.648 0.134 0.322 –

10 R.interosseous 7.9 0.118 0.895 0.458 0.956 

11 R.ulnar II 17.1 0.589 0.148 0.337 0.893 

12 R.int.carotid 17.6 0.458 0.186 0.374 0.784 

13 R. ext. carotid 17.7 0.458 0.173 0.349 0.79 

14 Aortic arch II 3.9 4.486 0.024 0.306 –

15 L. carotid 20.8 0.536 0.111 0.484 –

16 L. int. carotid 17.6 0.350 0.243 0.428 0.784 

17 L. ext. carotid 17.7 0.350 0.227 0.399 0.791 

18 Thoracic aorta I 5.2 3.941 0.026 0.312 –

19 L. subclavian I 3.4 0.706 0.088 0.442 –

20 L. vertebral 14.8 0.129 0.657 0.704 0.906 

21 L. subclavian II 42.2 0.650 0.097 0.467 –

22 L. radius 23.5 0.330 0.247 0.421 0.821 

23 L. ulnar I 6.7 0.505 0.172 0.364 –

24 L. interosseous 7.9 0.093 1.139 0.517 0.956 

25 L. ulnar II 17.1 0.461 0.189 0.381 0.893 

26 Intercoastals 8.0 0.316 0.147 0.491 0.627 

27 Thoracic aorta II 10.4 3.604 0.026 0.296 –

28 Abdominal aorta I 5.3 2.659 0.032 0.311 –

29 Celiac I 2.0 1.086 0.056 0.346 –

30 Celiac II 1.0 0.126 0.481 1.016 –

31 Hepatic 6.6 0.659 0.070 0.340 0.925 

32 Gastric 7.1 0.442 0.096 0.381 0.921 

33 Splenic 6.3 0.468 0.109 0.4 4 4 0.93 

34 Sup. mensenteric 5.9 0.782 0.083 0.439 0.934 

35 Abdominal aorta II 1.0 2.233 0.034 0.301 –

36 L. renal 3.2 0.385 0.130 0.481 0.861 

37 Abdominal aorta III 1.0 1.981 0.038 0.320 –

38 R. renal 3.2 0.385 0.130 0.481 0.861 

39 Abdominal aorta IV 10.6 1.389 0.051 0.358 –

40 Inf. mesenteric 5.0 0.118 0.344 0.704 0.918 

41 Abdominal aorta V 1.0 1.251 0.049 0.327 –

42 R. com. iliac 5.9 0.694 0.082 0.405 –

43 L. com. iliac 5.8 0.694 0.082 0.405 –

44 L. ext. iliac 14.4 0.730 0.137 0.349 –

45 L. int. iliac 5.0 0.285 0.531 0.422 0.925 

46 L. femoral 44.3 0.409 0.231 0.440 –

47 L. deep femoral 12.6 0.398 0.223 0.419 0.885 

48 L. post. tibial 32.1 0.4 4 4 0.383 0.380 0.724 

49 L. ant. tibial 34.3 0.123 1.197 0.625 0.716 

50 L. ext. iliac 14.5 0.730 0.137 0.349 –

51 R. int. iliac 5.0 0.285 0.531 0.422 0.925 

52 R. femoral 44.4 0.409 0.231 0.440 –

53 R. deep femoral 12.7 0.398 0.223 0.419 0.888 

54 R. post. tibial 32.2 0.442 0.385 0.381 0.724 

55 R. ant. tibial 34.4 0.122 1.210 0.628 0.716 
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However, little is known about the evolution of the hemody-

namics in a bypass graft when its geometrical and mechanical

characteristics are changed. We therefore studied the optimization

of the geometrical and mechanical characteristics of the Axillo-

Femoral bypass. Indeed, this bypass graft is used on unhealthy

weak patients who cannot sustain other types of bypass graft surg-

eries and because it has the smallest graft survival time of the

three studied bypass grafts. The optimization results ( Figs. 8 and

9 ) indicated that the mechanical characteristic of the bypass grafts

used by clinicians are optimal and allow to retrieve the healthy cir-

culation in the pathological network. Moreover, the numerical find-

ings showed that choosing another set of parameters would lead to

diminished performances of the bypass graft. 

Besides the numerical approach, our numerical findings over

an “averaged patient” proved that numerical hemodynamic pre-
ictions could be used to optimize or plan surgeries for specific

atients, under the conditions that the pathologies were well de-

ned and the physiological parameters known. Another important

oint is that the numerical tool is very fast in terms of comput-

ng time, and is therefore suited to computational intensive sim-

lations such as parametric analyses and error propagation tasks,

nd for the evaluation of new bypass procedures. 
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ppendix A. Wall model and geometrical and mechanical 

arameters of the network 

Table A.1 presents the name (ID), name, length, neutral cross-

ectional area A 0 and mechanical parameters used in the network. 
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