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We investigate the flow of water in a two-dimensional laboratory aquifer recharged by
artificial rainfall. As rainwater infiltrates, it forms a body of groundwater which can exit
the aquifer only through one of its sides. The outlet, located high above the aquifer bottom,
drives the flow upwards. Noting that the water table barely departs from the horizontal, we
linearize the boundary condition at the free surface, and solve the flow equations in steady
state. We find an approximate expression for the velocity potential, which accounts for
the shape of the streamlines, and for the propagation of dye through the aquifer. Based on
this theory, we calculate the travel time of water through the experiment, and find that its
distribution decays exponentially, with a characteristic time that depends on the shape of
the aquifer. We find that the hydrodynamic dispersion that occurs at the pore scale does
not matter much for this distribution, which depends essentially on the geometry of the
groundwater flow.

Key words: porous media, dispersion, mixing

1. Introduction

An aquifer is a porous rock or deposit saturated with water. In most geological settings,
groundwater is in mechanical contact with the atmosphere through the pores of the
overlying soil. The aquifer is then said to be ‘unconfined’, and the free surface of the
groundwater body is called the ‘water table’ (Ingebritsen & Sanford 1999). Unconfined
aquifers are recharged by precipitations. Rainwater infiltrates into the soil, and percolates
through the unsaturated zone until it reaches the water table (Kirchner, Feng & Neal 2000).
This groundwater then flows through the aquifer, and eventually emerges into streams to
form surface runoff.
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The time rainfall needs to travel through the aquifer controls the chemical weathering
of the porous rock, and the propagation of dissolved contaminants towards the drainage
network (Kirchner et al. 2000; Godsey et al. 2010; Maher 2010; Rempe & Dietrich 2014).
As it travels through the aquifer, a parcel of groundwater gradually spreads under the
combined action of three processes: (1) molecular diffusion, which results from thermal
fluctuations at the molecular scale; (2) hydrodynamic dispersion, which results from
velocity fluctuations at the pore scale; and (3) advection by the average velocity of
groundwater, which varies at the scale of the aquifer (Saffman 1959; De Marsily 1986;
Charlaix, Hulin & Plona 1987). The travel time of water through the aquifer results from
the combination of these processes, which, in its turn, depends on the geometry and scale
of the groundwater flow (Le Borgne et al. 2007; Dentz et al. 2011).

Field measurements, based on isotopic ratios or conservative tracers, reveal that the
mean travel time of water typically ranges from a few months to millennia (Gleeson et al.
2016; Cartwright et al. 2017). Over such a long time, runoff balances recharge, and one
may consider that the flow is in steady state (Cardenas 2007).

In nature, most aquifers extend much further horizontally than vertically, which makes
the groundwater flow amenable to the shallow-water approximation. Combined with
Darcy’s law (Darcy 1856), the latter provides a simplified description of the flow, in
the form of the Dupuit–Boussinesq equation (Dupuit 1863; Boussinesq 1903). This
theory, which neglects the vertical component of the flow, consistently accounts for the
fluctuations of the water table caused by intermittent rainfall (Brutsaert & Nieber 1977;
Troch et al. 2013; Guérin, Devauchelle & Lajeunesse 2014; Guérin et al. 2019). When
averaged over a sufficiently long time, however, these fluctuations vanish, and the average
water table conforms to the steady-state Dupuit–Boussinesq equation (Guérin et al. 2019).
On average, one then finds that the water table mirrors the land’s surface, with summits
far from rivers, and valleys that line the drainage network (Petroff et al. 2011; Devauchelle
et al. 2012).

In reality, however, the stream that drains a catchment often lies above the base of
the aquifer. Groundwater must therefore rise to reach the outlet (Lehr 1963), and the
vertical component of the resulting flow violates the Dupuit–Boussinesq approximation
(Powers, Kirkham & Snowden 1967; Read 1993; Haria & Shand 2004; Bresciani, Davy
& de Dreuzy 2014). In this configuration, the velocity potential that drives the flow obeys
the Laplace equation, the solution of which crucially depends on the boundary conditions
(Polubarinova-Kochina 1962). One often assumes that the flow is bounded by a horizontal
impervious layer at its base, while impervious boundaries represent the water divides on
its sides (Toth 1963). The groundwater pressure must also match the atmospheric one
along the water table. This last boundary condition, however, is more challenging than the
others: the position of the water table is not specified a priori, and needs to be solved for.

Turning the similarity between the water table and the land surface into a boundary
condition, Toth (1963) assumed that the water-table elevation is proportional to that of
the land surface, and set the groundwater pressure accordingly. Mathematically, this is a
Dirichlet condition: the value of the potential is specified at the boundary (Farlow 1993).
The resulting flow is then entirely determined by the land’s topography: groundwater sinks
below hills, and rises towards valleys (Toth 1963; Cardenas 2007).

This hypothesis, although leading to realistic-looking flows, is nevertheless unjustified.
In reality, the water table freely adjusts its shape to accommodate the rainfall input,
and there is no reason to believe that, in doing so, it follows the shape of the land’s
surface exactly. Instead of specifying the water table a priori, one must solve the flow
equations to get it (Polubarinova-Kochina 1962), and this free-boundary problem requires
not one, but two boundary conditions at the water table. In addition to setting the
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Flow and residence time in a two-dimensional aquifer
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Figure 1. Experimental set-up and notations. The aquifer is made of glass beads (shaded area) piled between
two vertical glass plates (black solid lines) separated by a gap of width W = 5 cm. Its length and depth are
L = 90 cm and H = 62 cm, respectively. A series of 24 capillary tubes (diameter 1.2 mm, length 50 cm)
placed above the tank simulate rainfall, by distributing water uniformly over the aquifer’s surface.

groundwater pressure, one must also account for the flux of rainwater that reaches the
water table (Powers et al. 1967). Mathematically, this is a Stefan problem: the values of
both the potential and its derivative are specified at the boundary, the position of which
must be solved for (Rubinstein 2000). One thus needs to solve the Laplace equation inside
a domain that is a priori unknown.

How does the aquifer’s geometry influence such a flow? Is it possible to infer this
geometry based on the residence time of water in the aquifer? Inspired by Guérin
et al. (2014), we address these questions in a laboratory experiment. We begin with the
description of the experimental set-up (§ 2). We then focus on the steady-state regime
(§ 3). We derive an analytical solution for this regime and compare it to experimental
streamlines (§ 4). We then compute the travel time of water, and show how the aquifer’s
aspect ratio affects it (§ 5). Finally, we estimate the magnitude of hydrodynamic dispersion
in our experiment (§ 6).

2. Laboratory aquifer

2.1. Set-up
At its simplest, an unconfined aquifer consists of a homogeneous porous medium, the
upper surface of which is in contact with the atmosphere. Inspired by Guérin et al. (2014),
we reproduce this configuration in a narrow tank formed by two vertical Plexiglas® plates
(90 cm × 92 cm), separated by a gap of width W = 5 cm (figure 1). This tank is filled
with glass beads of size either 1 or 3 mm, which form an artificial aquifer bounded by
an impermeable bottom. An impervious vertical wall closes the left side of the tank,
mimicking the drainage divide of a catchment. We generate an artificial rain with an array
of 24 capillary tubes evenly spaced above the tank. These tubes (diameter 1.2 mm, length
50 cm) uniformly distribute water over the aquifer’s surface, with a standard deviation of
approximately 3 %.

We want to investigate the flow in a deep aquifer. To generate it, we bound the right-hand
side of the aquifer with an impervious wall extending up to H = 62 cm above the aquifer’s
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Run Rainfall input, Qin Rainfall rate, R Ratio R/K
no. (mL s−1) (cm s−1) (−)

1 6.3 1.4 × 10−2 1.5 × 10−3

2 12.5 2.8 × 10−2 3.1 × 10−3

3 5.0 1.1 × 10−2 1.2 × 10−3

4 16.7 3.7 × 10−2 4.1 × 10−3

5 10.3 2.3 × 10−2 2.5 × 10−3

Table 1. Experimental parameters. The aquifer, made of 3 mm glass beads, has a hydraulic conductivity
K = 9.1 ± 0.3 cm s−1, and a permeability k ≈ 9.3 × 10−9 m2. The pore size is dp ∼ √

k ≈ 0.1 mm.

bottom (figure 1). The remaining height (30 cm) is covered with a permeable vertical grid,
which retains the glass beads, while allowing water to seep out. The aquifer’s outlet thus
lies high above its bottom. The corresponding aspect ratio is H/L ≈ 0.7, where L = 90 cm
is the length of the aquifer. The thinness of the set-up (W/L ≈ 0.05), and its cross-wise
invariance, ensure that the flow remains virtually two-dimensional.

When the grid that maintains the beads in the aquifer is directly in contact with the
atmosphere, surface tension induces a pressure jump, which might affect the pressure field
in the aquifer. To mitigate this inconvenience, we spread a soft plastic sheet over the outer
side of the grid. This device maintains a thin film of water at atmospheric pressure over
the grid surface, thus eliminating the effect of surface tension.

2.2. Method
Before each experimental run, we fill the aquifer with water until it overflows. After a
few tens of minutes, the discharge at the aquifer’s outlet has virtually vanished; the water
table is then horizontal, and intersects the outlet. Starting from this initial condition, we
switch on the artificial rain. An electromagnetic flowmeter (Kobold MIK 0.05–1 L min−1,
accuracy 2 %) measures the rainfall input, Qin, from which we deduce the rainfall rate
R = Qin/(LW). The latter then remains constant during the entire experiment.

As the rain falls on the aquifer’s surface, it infiltrates into the porous medium, and
seeps down until it reaches the water table, which deforms to accommodate this input. The
asymmetry of the boundaries causes it to bend down towards the outlet (figure 1). As the
resulting pressure field drives water towards the outlet, the aquifer’s discharge increases,
until it eventually reaches steady state, and balances the rainfall input (Q = RLW).

A bucket collects the water that exits the aquifer. It lies on a scale which measures
its weight every 0.1 s with a precision of 1 mg. The water discharge Q is the derivative
of the bucket weight with respect to time. As water drips from the outlet, the discharge
delivered to the bucket fluctuates around its average. As a result, the standard deviation
of the steady-state discharge is approximately 0.3 mL s−1, a value that is small compared
with the range of discharge explored in our experiments (table 1).

Once the flow is steady, we inject small volumes of blue dye in the aquifer, and track
their motion to trace the groundwater streamlines. We shall discuss the shape of these
streamlines in § 3. Before we do so, however, we assess how the depth of our aquifer
affects its response to rainfall, as compared to the shallow aquifer of Guérin et al. (2014).

2.3. Transient
Guérin et al. (2014) used an experiment similar to the present one, but for the position
of the outlet which, in their set-up, lies right on the bottom of the aquifer (H = 0).
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Flow and residence time in a two-dimensional aquifer
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Figure 2. Discharge at the outlet of our deep experimental aquifer (blue line) and of a shallow one (black
dashed line, Guérin 2015). Light colour: raw signal; dark colour: average over 10 successive data points. Vertical
dotted line: beginning of rainfall. Both aquifers are 5 cm wide and 90 cm long; they are made of the same 1 mm
glass beads, and are submitted to similar rainfall inputs: Qin = 7.9 mL s−1 for the deep aquifer and 8.3 mL s−1

for the shallow one.

In the following, we refer to this configuration as the ‘shallow aquifer’ because the water
table remains close to the bottom.

For comparison with Guérin et al. (2014), we first use the same glass beads (diameter
ds = 1 mm) and rainfall rate (Qin ≈ 8 mL s−1). Following the procedure of the previous
section, we then record the time series of the discharge, often called hydrograph in this
context. Less than five seconds after the beginning of rainfall, the discharge of our aquifer
increases abruptly (figure 2). After a characteristic time of 10 to 15 seconds, it saturates,
and reaches steady state. In the shallow aquifer of Guérin et al. (2014), the transient is
surprisingly longer: it lasts several minutes (figure 2). The geometry of the flow also
changes: the deformation of the water table is much smaller in the deep aquifer (a few
millimetres) than in the shallow one (10 to 20 centimetres).

The difference between our observations and those of Guérin et al. (2014) results from
the boundary condition at the outlet. In the shallow aquifer, the flow is virtually parallel to
the aquifer’s bottom. According to the Dupuit–Boussinesq approximation, the discharge
is then proportional to the water depth. The water level must therefore rise significantly
before the flow can transport an amount of water that matches the input: it is this swelling
that takes time. By contrast, the flow through a deep aquifer is free to develop a vertical
component instantly, which allows water to flow through the whole aquifer right from
the beginning of the rainfall event. The large volume of groundwater that an increase of
pressure can mobilize thus allows the flow to respond instantly.

Unfortunately, the structure of this transient, two-dimensional flow is out of our reach
in our experiment. In the next section, we focus instead on the steady state, which we
visualize with dye. To this end, we substitute 3 mm glass beads for the 1 mm ones, as they
prove more convenient to track the propagation of the dye.

3. Streamlines

Once the flow is in steady state, we inject small parcels of blue dye into the aquifer,
at different locations along its surface, and monitor their propagation. The dye consists
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of a mixture of deionized water (90 %) and food colouring (Matfer, 10 %). Its density
(997 kg m−3) is close to that of pure water; we therefore assume that it behaves as a
passive tracer. To inject it in the aquifer, we use a set of six hypodermic needles, each of
them connected to a syringe through a flexible pipe. The syringes are placed on a press
(SPLab06, Schenchen Baoding), which allows us to simultaneously inject small volumes
of blue dye (3 mL) at six different locations, regularly spaced along the surface of the
aquifer (figure 3).

Entrained by the flow, the parcels of dye then travel through the aquifer. A camera facing
the set-up records an image of their position every 15 seconds (figure 3). A light panel,
placed behind the aquifer, increases the contrast of the image.

We estimate the porosity of the aquifer by comparing the weights of a reference volume
of beads successively filled with air and water. We find a porosity s ∼ 0.4, as expected for
the random close packing of spheres (Andreotti, Forterre & Pouliquen 2013). Following
Lobkovsky et al. (2004), we also measure the hydraulic conductivity of the aquifer using
two communicating vessels connected by a Darcy column filled with 3 mm glass beads,
and saturated with water. The release of a finite volume of water in one of the vessels
induces a pressure gradient in the Darcy column, which drives a flow that tends to
equilibrate the water levels in the vessels. The discharge then relaxes exponentially. The
characteristic time of this relaxation depends on the hydraulic conductivity K of the pack
of beads. Using this method, we find K = 9.1 ± 0.3 cm s−1, from which we deduce the
permeability of our aquifer, k = νK/g ≈ 9.3 × 10−9 m2, where g is the acceleration of
gravity, and ν the kinematic viscosity of water. Finally, we estimate the pore size from the
permeability: dp ∼ √

k ≈ 0.1 mm. This value is approximately 10 times smaller than the
bead diameter, as observed in previous experiments (Souzy et al. 2020).

In total, we performed five experimental runs, varying the rainfall input between 5 and
16.7 mL s−1 (table 1). We observed the same behaviour during each run: at first, each
parcel of dye is slowly entrained downwards, until it eventually reaches the deepest point
of its trajectory (figure 3 and supplementary material, movie 1 available at https://doi.
org/10.1017/jfm.2021.221). It then accelerates as it rises towards the surface and exits the
aquifer through the outlet. As it moves through the aquifer, the parcel barely diffuses in the
direction perpendicular to the flow. On the contrary, it rapidly spreads along the streamline,
a manifestation of the well-known anisotropy of hydrodynamic dispersion in porous media
(Saffman 1959).

The travel time of a dye parcel depends on the position of its injection point (figure 3 and
supplementary material, movie 1). In an aquifer made of 3 mm glass beads and receiving
a rainfall input Q = 6.3 mL s−1, a parcel injected 11.4 cm away from the outlet leaves the
aquifer within 3 minutes. The same volume of dye, injected 87.3 cm away from the outlet,
needs approximately 3 hours to reach the outlet. The course of a rain drop through the
aquifer thus strongly depends on its landing point.

To better illustrate this phenomenon, we merge all the pictures that record the
propagation of the dye (approximately 700 images) into a single one by keeping, for each
pixel, its darkest value over the course of the experiment. The resulting image reveals
the trajectories of each dye parcel in the form of six blue stripes, the width of which
is that of the parcel. Each of the two edges of a stripe corresponds to a streamline
(figure 4). The curvature of the streamlines confirms that the flow is two-dimensional.
The flow even becomes essentially vertical near the upper surface of the aquifer, where the
streamlines head downwards. As groundwater enters deeper in the aquifer, its trajectory
gradually curves inwards, and reaches its maximum depth. Groundwater then rises towards
the aquifer’s outlet, where all the streamlines converge. The vertical component of the
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t = 7689 s 10 cmt = 4949 s

t = 2512 st = 944 s

t = 441 st = 183 s

t = 30 st = 0 s

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

Figure 3. Propagation of parcels of dye through the aquifer during run no. 1 (table 1, time indicated on each
snapshot). Dye parcels are injected through the surface of the aquifer at distance � = 87.3, 72.7, 57.6, 42.5,
27.4, and 11.4 cm from the outlet. The aquifer, made of 3 mm glass beads, receives a rainfall input Qin =
6.3 mL s−1. Black dashed lines: streamlines after (4.11). White dots: position of the dye parcels after (5.1).
Theory has no adjustable parameters.

flow is specially strong for the streamlines that originate far from the outlet. As a
result, the further a streamline starts from the outlet, the deeper its excursion below the
surface.
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10 cm

Figure 4. Trajectories of the parcels of dye revealed by merging 700 pictures (figure 3) into one, keeping at
each point the darkest pixel. Experimental conditions are those of figure 3. Black dashed lines: streamlines
after (4.11).

In the next section, we derive an approximate analytical expression for the streamlines,
and compare it to our observations.

4. Hydraulic head and stream function

4.1. Flow equations
Our experimental aquifer is made of a homogeneous and isotropic porous material. The
Reynolds number of the flow is Re = Udp/ν, where ν is the kinematic viscosity of water,
and U its typical velocity in the aquifer. Based on the propagation of the dye in our
experiment, we find that the latter varies in the range 10−2 cm s−1 to 4 × 10−1 cm s−1,
so that Re varies between 10−2 and 0.4. Groundwater thus flows according to the simplest
version of Darcy’s law:

q = −K∇
(

p
ρg

+ y
)
, (4.1)

where q, ρ and p, are the flux of water, its density and pressure, respectively. The
horizontal and vertical coordinates, x and y, are measured with respect to the position of the
aquifer’s outlet (figure 1). In steady state, combining Darcy’s law and the incompressibility
condition yields the Laplace equation,

∇2φ = 0, (4.2)

where φ = p/ρg + y is the hydraulic head.
To solve it, we must complement (4.2) with boundary conditions. We first assume that

the flow does not vary across the experiment; the two Plexiglas® plates thus confine it
to a vertical plane. The three walls bounding the aquifer are impervious, and the normal
velocity of groundwater vanishes along them:

∂φ

∂n
= 0, (4.3)

where n denotes the direction of the normal to the wall.
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Flow and residence time in a two-dimensional aquifer

We now turn our attention to the water table, y = h(x). It is the surface where the
pressure is atmospheric. Arbitrarily setting the latter to zero, this definition translates into

φ = y (4.4)

at the free surface (y = h(x)).
When rain falls, the water table deforms to accommodate the input of water. One

must therefore deduce its shape from the flow equations: it is part of the solution. This
free-boundary problem thus requires an additional boundary condition, which is just the
water balance across the water table (Van de Giesen, Parlange & Steenhuis 1994). In steady
state, the latter reads

∂φ

∂y
− ∂φ

∂x
∂h
∂x

= R
K

(4.5)

at the free surface (y = h(x)), where the rainfall rate R and the hydraulic conductivity K
have units of velocity.

The Laplace equation (4.2), subjected to the boundary conditions (4.3), (4.4) and (4.5),
describes how rainfall drives the flow of groundwater through the aquifer in steady state.
In the absence of rainfall (R = 0), the water table does not deform (h = 0). In this trivial
case, the pressure is hydrostatic (φ = 0) and the groundwater remains still.

4.2. Weak rainfall
We could not find any closed-form solution of the system (4.2), (4.3), (4.4) and (4.5).
Fortunately, in our experiments, the rainfall rate is much smaller than the hydraulic
conductivity, and the ratio of the two, R/K, never exceeds 4.1 × 10−3 (table 1). The same
observation often applies in nature, where the average recharge rate is typically much
smaller than the conductivity of unconfined aquifers (Haitjema & Mitchell-Bruker 2005;
Guérin et al. 2019). The ratio of these two quantities is therefore a small parameter, with
respect to which we may linearize (4.5). When this ratio is vanishingly small (R/K � 1),
the water table is virtually horizontal, and its deformation barely visible (1 cm at most in
our experiment). Accordingly, we now linearize the boundary condition at the free surface
(4.5) around the hydrostatic solution (h = 0, φ = 0, Dagan 1964):

∂φ

∂y
= R

K
in y = 0. (4.6)

In the weak-rainfall regime, the flow obeys the Laplace equation (4.2) with boundary
conditions (4.3) and (4.6). As anticipated, the elevation of the water table, h, drops out
of the equations at this order: we no longer need to solve a Stefan problem. We solve
this linear system using complex analysis (Polubarinova-Kochina 1962). An advantage of
doing so is that it provides simultaneously the hydraulic head φ and the stream function
ψ . Accordingly, we introduce the complex coordinate z = x + iy (with i2 = −1), and look
for an analytical function Φ(z) = φ(z)+ iψ(z) that satisfies the boundary conditions. The
stream function ψ , like the hydraulic head φ, are rescaled with the hydraulic conductivity
K (they both have units of length).

Along the impervious walls (x = 0, x = −L, and y = −H), (4.3) translates into

ψ = 0, (4.7)

where we have set the arbitrary constant of the stream function to zero. Using the
Cauchy–Riemann relations, we rewrite (4.6) in terms of the stream function, and integrate
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Figure 5. First three modes of the complex velocity potential (4.11) in an aquifer of aspect ratio a = 1. (a–c)
Dimensionless stream function Kψ/(RL) at the free surface (y = 0). (d– f ) Streamlines (black dashed line) and
hydraulic head (blue shading, normalized to 1).

the result along the x-axis:

ψ = −RL
K

(
1 + x

L

)
in y = 0. (4.8)

This condition, together with (4.7), means that the stream function is discontinuous at
the outlet. This discontinuity is an inevitable consequence of the linearization of the free
surface, which reduces the aquifer outlet to a point (§ 4.3). As expected for the stream
function, the amplitude [ψ] of this discontinuity is the discharge of the aquifer, which
matches the rainfall input: KW[ψ] = Q = RLW.

The flow of groundwater in our aquifer thus obeys (4.2) with boundary conditions (4.7)
and (4.8). To solve this system, we first note that any periodic function of the form

Φk(z) = RL
K

cosh
[

kπ
(

iz
L

− a
)]
, (4.9)

where k is an integer, satisfies boundary condition (4.7) in an aquifer of aspect ratio a =
H/L (figure 5). Equation (4.9) is not the solution of our problem, however, as it does not
fulfil the kinematic condition (4.8) at the water table. Fortunately, our problem is now
linear, and we may look for its solution in the form of a series of periodic modes:

Φ(z) =
∞∑

k=1

CkΦk(z), (4.10)

where Ck are real constants. We now need to find the Ck coefficients for which the series
converges to boundary condition (4.8) at the surface.

Noting that, for each mode k, the stream function ψk reduces to a cosine at the surface,
we use a Fourier transform to compute the Ck coefficients. This is tantamount to finding
the Fourier series of the saw-tooth function – a textbook problem (Farlow 1993). We thus
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–0.35

0

y/
L

x/L

–1.0 –0.5 0

–1.0 –0.5 0

x/L
–1.0 –0.5 0

x/L

xstart /L xstart /Lxstart /L
10–3

100

103
T

ra
ve

l t
im

e 
(τ

∗ )
Aspect ratio 0.35 Aspect ratio 0.7 Aspect ratio 1.4

−0.6 0 0.6

Hydraulic head

(e)

(b)(a) (c)

(d ) ( f )

Figure 6. Steady-state flow in aquifers of aspect ratio a = 0.35, 0.7 (as in our laboratory experiment) and 1.4,
respectively, after (4.11). (a–c) Dimensionless travel time of rainwater, τ ∗, as a function of relative landing
position, xstart/L. Solid blue line: numerical approximation (§ 5.2). Black dashed line : expansion near the
outlet, (5.2). (d– f ) Streamlines (black dashed lines) and hydraulic head (blue shading).

find the expression for the complex velocity potential in the form of a Fourier series:

Φ(z) = −2
RL
K

∞∑
k=1

cosh (kπ(iz/L − a))
kπ sinh(kπa)

. (4.11)

The imaginary part of this velocity potential yields the stream function ψ(x, y), the
contours of which are streamlines. To draw them, we need to (1) define a numerical
grid over the aquifer’s extent, (2) evaluate the stream function on this grid, (3) extract
the contours of this function. Accordingly, we start by building a triangular mesh of the
aquifer, using the internal mesher of FreeFem++ (Hecht (2012), Python routines available
online: https://github.com/odevauchelle/pyFreeFem). Based on (4.11), we then evaluate
the stream function on this mesh. Finally, we use the Matplotlib library to extract its
contours, which are the streamlines (figure 6). The accuracy of this procedure depends on
the mesh size δ�, and on the truncation of the series (4.11). This truncation generates large,
high-frequency oscillations near the singularity, an instance of the Gibbs phenomenon,
which we attenuate with the Lanczos σ factors (Hamming 1973, p. 534). By trial and
error, we opt for δ�/L = 1.25 × 10−2 and 100 modes, a good trade-off between accuracy
and computation speed.

The streamlines corresponding to each mode of the velocity potential (4.11), when
plotted individually, divide the water table between regions where water enters the aquifer,
and regions where water seeps out of it (figure 5); the incoming flux balances the outgoing
one exactly. The summation of a large number of modes preserves this mass balance,
but distributes the flux differently. Rainfall uniformly enters the aquifer through the
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water table, and all the streamlines converge towards a point sink, through which the entire
discharge exits the aquifer (figure 6). The mass balance then requires that the flow velocity
diverges at the outlet, thus creating a mathematical singularity. We shall characterize this
singularity in the next section.

The streamlines that correspond to (4.11) are consistent with our experimental
observations (figure 6). Oriented downward near the water table, they gradually curve
as they plunge into the aquifer. Eventually, they rise towards the aquifer’s outlet, where
they all converge. Streamlines are especially bent near the two stagnation points located in
the bottom corners of the aquifer.

A more quantitative comparison with the experiments reveals that the streamlines drawn
on figure 4 after (4.11) consistently reproduce the travel of the dye through our laboratory
aquifer. This linearized theory even accounts for the thinning of the dye parcel near the
bottom of the aquifer (figure 4). These observations support the use of the weak-rainfall
approximation in our experiments.

Under this approximation, the intensity of rainfall affects only the norm of the
groundwater velocity, leaving the geometry of the flow unchanged. The shape of the
streamlines depends solely on the aspect ratio of the aquifer, a = H/L. Not surprisingly, we
find that the streamlines approach the horizontal as we decrease the latter (figure 6). Yet,
even for a very shallow aquifer, the vertical component of the flow remains predominant
near the outlet and near the divide, in contradiction with the Dupuit–Boussinesq
approximation (figure 6d).

As the water table bulges to accommodate the rainfall input, the volume of water stored
in the aquifer increases. In steady state, the intensity of rainfall thus controls the volume of
water the aquifer stores above the outlet. One can easily measure this quantity by collecting
all the water that seeps out of the experiment after the rain has stopped. It is therefore
tempting to calculate this volume by integrating the elevation of the water table above the
outlet along the aquifer’s length:

Ve = W
∫ 0

−L
h(x) dx. (4.12)

In the present theory, we use the boundary condition (4.4) to find the water-table elevation
at the free surface, h(x) ≈ φ(x, y = 0). As one might expect, near the drainage divide,
the water table lies above the outlet (h > 0). It decreases towards the outlet, however, and
eventually plunges below it (h < 0), as the singularity associated with the exit condition
takes over the flow (§ 4.3). Although unrealistic, this mathematical behaviour makes it
possible for (4.12) to yield a vanishing or even negative volume. In fact, integrating
this equation, we find that the positive and negative contributions of h compensate for
each other exactly (appendix A). Regardless of the rainfall rate or the aquifer’s aspect
ratio, the volume stored during rainfall always vanishes. Thus, although the weak-rainfall
approximation faithfully represents the flow streamlines, it cannot account for the water
stored in the aquifer during rainfall. The estimation of this volume requires to solve the
original, non-linear Stefan problem.

Our experiments, like the linear theory, are limited to the weak-rainfall regime. At
large rainfall rates, we expect that the deformation of the water table will eventually
break the linear approximation, thus changing the flow geometry. However, this non-linear
regime is beyond the scope of the present paper, and the capacity of our experimental
set-up.
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Figure 7. (a) Flow in an infinitely deep aquifer. (b) Asymptotic regime near the singularity at the aquifer
outlet. Black dashed line: streamlines (linearly spaced); blue shading: hydraulic head. θ is the inclination of the
streamlines with respect to horizontal.

4.3. Flow near the outlet
The series expansion of § 4.2 becomes singular near the outlet. To characterize this
singularity mathematically, we could expand the modes of the series as z approaches zero,
but we would then find that nested series expansions obscure the issue. Instead, we propose
here a longer route that, hopefully, offers a clearer view of the singularity.

The flow near the aquifer’s outlet should be insensitive to the position of the bottom wall.
Taking advantage of this, we consider an infinitely deep aquifer, by sending the bottom
wall to infinity (H → ∞). The problem then reduces to the Laplace equation (4.2) with
boundary condition (4.6) at the water table, while boundary condition (4.7) applies only
along the right and left walls. Using conformal mapping (Polubarinova-Kochina 1962), we
find that the velocity potential then reads (figure 7a)

Φ −→
H→+∞

Φdeep = 2
π

RL
K

[
log (1 − exp(iπz/L))− iπ

( z
L

+ 1
)]
. (4.13)

The corresponding streamlines resemble that of an aquifer of finite depth, except near the
drainage divide where they go down to infinity (figure 7a).

Near the outlet, the flow is also insensitive to the left wall. Accordingly, sending the
latter to infinity, or, equivalently, expanding (4.13) about z = 0, yields the expression of
the velocity potential near the outlet:

Φ −→
z→0

Φoutlet = RL
K

[
2
π

log
( z

L

)
+ i

]
. (4.14)

As expected for a point sink in a Laplacian field, the velocity potential diverges
logarithmically, with a prefactor proportional to the ratio of the discharge per unit width,
Q/W = RL, to the conductivity K (figure 7b). The corresponding streamlines form spokes
converging towards the outlet, in agreement with the trajectory of the dye parcels in
our experiment (figure 4). This flow pattern is independent of the prefactor in (4.14).
In addition, not too close to the exit grid, the flow is also insensitive to the details of
the outlet’s geometry. Transposed into a natural setting, this observation means that the
river’s shape does not affect the far field of the groundwater flow, although it may add to
the pressure head a constant, which depends on the water level in the river.
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The spoke pattern formed by the streamlines, and their even spacing, means that the
flux of water is uniformly distributed around the outlet. The same observation holds at the
surface of the aquifer: since the rainfall is uniform, streamlines are evenly spaced there
too. The water-mass balance then imposes a linear relation between the inclination of a
streamline near the outlet, θ (figure 7b), and its entry point into the aquifer, xstart (figure 6):

xstart = −2θ
π

L. (4.15)

One sometimes uses a series of boreholes to measure how the chemical composition of
groundwater changes with depth (Haria & Shand 2004). Equation (4.15), if it holds in the
field, would allow us to relate this depth to the path of groundwater through the aquifer.

Now that we have established a mathematical description of the streamlines, we turn our
attention to the time it takes for a fluid parcel to travel along them. Most likely, the outlet
singularity, which concerns only the end of the travel, will barely affect this travel time.

5. Travel time

5.1. Travel of a parcel of dye
On average, fluid parcels travel along the streamlines at a velocity equal to the flux of water
divided by the aquifer porosity, q/s (Guyon, Hulin & Petit 2001). Accordingly, the time
that a particle needs to move between two points of complex coordinates z0 and z1 reads:

t = s
K

∫ z1

z0

dl
|∇φ| , (5.1)

where the integral follows the streamline that connects z0 and z1 (l is the distance along
this streamline).

The travel time computed from (5.1) only takes into account the advection by the flow.
In reality, the velocity of water varies significantly within a single pore, and between pores
(Saffman 1959). The dispersion thus induced is visible in our experiment: the parcels of
dye spread out along their path (figure 3). We shall discuss how this dispersion influences
the distribution of travel times in § 6. First, however, we ignore its influence, and compute
the travel time associated with advection only.

Using (5.1), we compute numerically the positions of the six parcels of dye injected in
our experimental aquifer as a function of time. To do so, we extract the shape of the six
streamlines that originate from the injection points (§ 4.2). We then evaluate the hydraulic
head along their course, compute the magnitude of its gradient, and evaluate integral (5.1)
numerically. This procedure yields the travel time as a function of the position along the
streamline. It accounts for the motion of the parcels, without any free parameter, but cannot
represent their spreading (figure 3). Encouraged by this observation, we now investigate
how this travel time depends on where a raindrop lands.

5.2. Travel times
Where a raindrop lands sets the origin, xstart, of the streamline along which it will travel
underground. We may therefore calculate the travel time τ of a raindrop by integrating
numerically (5.1) along this streamline, as in the previous section. In practice, however,
the existence of three singular points – two stagnation points on the left and right corners
of the aquifer bottom, and a singularity at the outlet – complicates this calculation. To deal
with this problem, we build a mesh of the aquifer that skirts the two stagnation points and
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Figure 8. Mesh (grey triangles) of an aquifer skirting the two stagnation points and the aquifer outlet (grey
disks). Black dotted lines: streamlines (logarithmically spaced). Blue shading: hydraulic head. The aquifer
aspect ratio is a = 0.5. For illustration, we set the radius of the quarter-circles to ε/L = 0.1 and the maximum
mesh size to δ�/L = 0.025. In practice, travel times are calculated with ε/L = 0.05 and δ�/L = 0.0125.

the aquifer outlet (figure 8). To do so, we trim three corners off the mesh along circles of
radius ε. Some of the streamlines cut through these circles. Equation (5.1) provides the
contribution to the travel time of the segments located outside the corresponding disks.
To complete the calculation, we need to work out the travel time through the disk that
surrounds each singularity.

Replacing the velocity potential with its expression near the outlet (4.14) in (5.1), we
compute the time water takes to cross the disk surrounding the outlet (figure 8):

τoutlet = π

4
sL
R

( ε
L

)2
. (5.2)

The radial symmetry of the logarithmic singularity makes τoutlet independent of the
direction along which the streamline approaches the outlet.

We now turn our attention to the two stagnation points (figure 8). To compute the
integral in (5.1), we first note that |∇φ| = |Φ ′| and dl = |dz| = |dΦ|/|Φ ′|, where ′ denotes
the complex derivative. Along a streamline, the stream function is constant, while the
hydraulic head decreases, so |dΦ| = −dφ. Combining all these expressions, we rewrite
(5.1) as

τs = − s
K

∫ φout

φin

dφ
|Φ ′|2 , (5.3)

where φin and φout are the values of the hydraulic head at the entry and exit points of
the disk, respectively. Near a stagnation point, the velocity potential is dominated by the
first mode of (4.11). Taking advantage of this, we approximate the velocity potential by
this mode only. Expanding the latter near the stagnation point, we obtain the following
expression for the velocity potential:

Φs = φc

[
1 − π2

2

(
z − zs

L

)2
]
, (5.4)

where zs is the position of the stagnation point (zs = −L − iH in the lower-left corner and
zs = −iH in the lower-right one). The hydraulic head at the stagnation point, φc, is that of
the far field, namely φc = �(Φ(zs)).
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Writing the derivative of the potential (5.4) as a function of the potential Φs itself,
namely

Φ ′
s = −

√
2π
φc

L

√
1 − Φs

φc
, (5.5)

allows us to turn the curvilinear integral (5.3) into a classical one. Integrating the latter over
φ, we find that the time spent by a fluid parcel inside the disk surrounding a stagnation
point reads

τs = sL
R

sinh(πa)
2π

∣∣∣∣asinh
(
φin − φc

ψ0

)∣∣∣∣ , (5.6)

where ψ0 defines the streamline along which the water parcel travels.
We can now evaluate the travel time of water through the aquifer by adding to integral

(5.1) the contributions of the outlet (5.2) and, if need be, that of the two stagnation points
(5.6). The accuracy of this calculation depends on the radius of the quarter-circles, ε, and
on the maximum mesh size δ�. By trial and error, we choose δ�/L = 1.25 × 10−2 and
ε = 0.05.

The mean travel time of water in the aquifer is the ratio of the volume of water it
contains to its discharge: 〈τ 〉 = saL/R (Zwietering 1959; Nauman & Buffham 1983). This
expression, which resembles a simple definition, is actually an exact consequence of the
water-mass balance, combined with Green’s theorem (appendix B). In the following, we
rescale all travel times with this average, thus introducing the dimensionless travel time
τ ∗ = τ/〈τ 〉.

Figure 6(a–c) shows the dimensionless travel time τ ∗ of a raindrop as a function of
its landing point, xstart, for several values of the aquifer’s aspect ratio. We find that τ ∗
increases continuously with the distance |xstart| that separates the landing point from the
aquifer outlet. A careful examination of its variation reveals two singularities: the travel
time vanishes near the outlet, and diverges near the divide. We shall derive the asymptotic
expressions that account for these regimes in § 5.3. Before that, however, we compare our
theory to the travel time of dye in our experiment.

To estimate this travel time, we use the images that record the propagation of the dye
(§ 3), and decompose each of them into their hue, saturation and value in the range [0, 255].
We select pixels with a saturation above 40 to ensure that their hue is well-defined, and
retain the ones that fall into the hue range that corresponds to the colour of the dye
([80, 130]). This procedure yields a series of well-contrasted pictures, where the parcels
of dye are highlighted. Using these images, we measure the time at which the front of
each parcel reaches the aquifer outlet, and the time at which its rear end finally leaves it.
We then estimate the average travel time of the parcel as the mean of these two times,
τ . Their difference corresponds to the exit duration, Δτ , which we use as an estimate
of the measurement dispersion. In fact, the latter results from pore-scale dispersion, a
phenomenon we shall address in more detail in § 6. Figure 9 compares our experiments to
the theory. Although the latter only accounts for the advection by the flow, we find that it
matches our observations. Encouraged by this result, we now examine the two asymptotic
regimes that represent the behaviour of the travel time near the singularity, and near the
outlet.

5.3. Asymptotic regimes
When a rain drop lands near the outlet, its travel is dominated by the singularity that
accelerates the flow towards the exit point. According to (5.2), the duration of this travel
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Figure 9. Dimensionless travel time of a parcel of dye, τ ∗, as a function of the distance to the outlet −xstart/L
(lower axis). Upper axis: streamline inclination at the outlet, θ . Blue markers: experimental runs (table 1).
Vertical error bars indicate the exit duration, Δτ/〈τ 〉; horizontal ones indicate initial width of the parcel.
Coloured lines: theoretical travel times after § 5.2 for aspect ratios a = 0.35 (green), 0.7 (blue, our laboratory
experiment) and 1.4 (orange).

decreases as the square of the distance that separates its landing point from the outlet:

τ ∗ = π

4a

(xstart

L

)2
. (5.7)

Figure 10(a) shows that our experiment conforms to this asymptotic behaviour.
To the contrary, the travel time diverges near the left-hand wall of the aquifer, which

simulates a drainage divide (figure 6a–c). To account for this behaviour, we note that a
streamline originating near the divide remains close to the walls along its entire course
(figure 6d– f ). In this region, the velocity potential is dominated by the first mode of
(4.11). Taking again advantage of this observation, we approximate the velocity potential
by its first mode, Φ1, and use (5.3) to calculate the corresponding travel time. Following a
procedure similar to the one applied to the stagnation points in § 5.2, we find the following
expression for the travel time near the drainage divide (appendix C):

τ ∗ ≈ −sinh(πa)
πa

[
log

(
1 + xstart

L

)
− log

(
4

1 + cosh(πa)

)]
, (5.8)

which is a good approximation of the actual travel time (figure 10b). As expected, (5.8)
features, at leading order, the logarithmic divergence that is the signature of the stagnation
points. It also bears the mark of the aspect ratio of the aquifer, which affects both the
prefactor of the logarithm, and the additive constant.

5.4. Distribution of travel times
In our experiment, rain falls uniformly onto the aquifer’s surface. We may thus write the
probability density function (PDF) of travel times as:

f (τ ∗) = −1
L

dxstart

dτ ∗ . (5.9)
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Figure 10. Travel times through a rectangle aquifer. (a,b) Dimensionless travel time, τ ∗, as a function of
distance to outlet, −xstart/L, and distance to divide, (L + xstart)/L. Coloured lines: theoretical travel times,
after § 5.2. Black dashed lines: asymptotic regimes (5.7) and (5.8). Blue markers: experimental data (same
symbols as in figure 9), vertical error bars indicate the exit duration, Δτ/〈τ 〉, horizontal ones indicate the
initial width of the parcel. (c,d) Probability density functions (PDF) of travel times, f (τ ∗), for several aspect
ratios. Black dashed line: asymptotic regimes (5.10) and (5.11).

This expression is but a recasting of the function that relates the travel time of a drop of
water to its landing spot.

We approximate (5.9) numerically, based on the results of § 5.2, and plot it for different
values of the aspect ratio (figure 10c). The resulting distributions diverge at the origin.
From there, they gradually decrease at a rate which depends on the aspect ratio of the
aquifer.

Short travel times correspond to raindrops entering the aquifer near the outlet.
Accordingly, the expression of the travel time near the outlet (5.7), combined with (5.9),
yields the short-time behaviour of the PDF:

f (τ ∗) ∼
( a
π

)1/2
τ ∗−1/2. (5.10)
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Flow and residence time in a two-dimensional aquifer

This expansion consistently represents the short-time behaviour of the numerical PDF
(figure 10c). The divergence of the latter at short times is a consequence of the acceleration
of the flow near the outlet.

Long travels, on the contrary, correspond to raindrops entering the aquifer near the
drainage divide. Streamlines originating from this area entrain their water near the two
stagnation points, where it lingers for a logarithmically long time. Accordingly, we now
combine the travel time near the drainage divide (5.8) with (5.9). We find that the tail of
each PDF decreases exponentially, according to

f (τ ∗) ∼ 4πa
sinh(πa)(1 + cosh(πa))

exp(−τ ∗/τ ∗
c ), (5.11)

with a characteristic dimensionless time

τ ∗
c = sinh(πa)

πa
. (5.12)

Again, this expansion accords with the numerical PDF (figure 10d). As anticipated, the
characteristic time τ ∗

c increases with the aquifer’s aspect ratio: deep aquifers induce long
travels. In particular, τ ∗

c tends to infinity for an infinitely deep aquifer, whereas it tends
towards 1 for a shallow one (a = 0). In short, the tail of the travel-time distribution depends
primarily on the aspect ratio of the aquifer.

Although it only accounts for the advection by the flow, the above theory proves
a fair representation of our experiment: this approximation suffices to reproduce the
travel of individual parcels of dye (figures 3 and 9). In reality, however, the pore-scale
hydrodynamic dispersion affects the travel time of groundwater. In the next section, we
evaluate the magnitude of its contribution.

6. Hydrodynamic dispersion

Hydrodynamic dispersion gradually spreads a parcel of dye as it travels along its streamline
(figure 3). In terms of travel time, this spreading becomes a dispersion time, Δτ , defined
as the time separating the moment when the front of the parcel reaches the aquifer’s outlet,
from the moment it has left it entirely. In § 5.2, we estimated this dispersion time, together
with the average travel time, for each parcel of dye in our experiment. We now compare
these two quantities, and find that the ratio of the dispersion time to the average travel
time varies in the range Δτ/τ ≈ 0.4–1.3: hydrodynamic dispersion indeed affects the
propagation of dye through the aquifer (figure 11).

Our measurements also reveal that the ratio of the dispersion time to the travel time,
Δτ/τ , decreases with xstart (figure 11). The relative influence of hydrodynamic dispersion
therefore decreases with the length of the travel. We now interpret this observation with
scaling arguments. The time necessary for a parcel of dye to cross the aquifer’s outlet
scales like Δτ ∼ �p/U, where �p is the length of the parcel when it reaches the outlet,
and U is the characteristic velocity at which the parcel travels along the streamline.
Assuming that the length of a streamline is proportional to the position of its origin,
−xstart, this velocity scales like U ∼ −xstart/τ. As the pore-scale dispersion spreads the
parcel, the length of the latter scales like �p ∼ √

Dτ ,where D is the dispersion coefficient.
Neglecting molecular diffusion, this coefficient is the product of the fluid velocity U and
a dispersion length λ (D = λU, Hillel 2003). In a homogeneous aquifer, this dispersion
length is proportional to the pore size, dp. Combining these four equations, we find that
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Figure 11. Relative dispersion, Δτ/τ , as a function of the distance to outlet rescaled with pore size −xstart/dp
(lower axis). Upper axis: streamline inclination near the outlet, θ . Blue markers: experimental data (table 1).
Black dashed line: (6.1) fitted to data.

Δτ/τ decreases with the distance xstart according to

Δτ

τ
≈

(
λ

−xstart

)1/2

. (6.1)

A fit of (6.1) to our data consistently reproduces the evolution of the ratio Δτ/τ in our
experiment, with λ ≈ 1288 dp ≈ 12.9 cm, a value close to that measured in sand columns
(De Marsily 1986).

Equation (6.1) indicates that the relative importance of hydrodynamic dispersion at the
pore scale with respect to advection at the aquifer scale is essentially governed by the ratio
of the dispersion length, λ, to the distance, xstart, that separates the landing point of the
raindrop from the aquifer’s outlet.

7. Conclusion

The experiments presented in this paper reveal the flow pattern in a deep, unconfined
aquifer recharged by rainfall. Since the outlet stands high above the aquifer’s bottom,
groundwater needs to go up to reach it, which breaks down the Dupuit–Boussinesq
approximation. We find an analytical expression of the velocity potential, in the form of
an infinite series of modes, which accounts for the shape of the experimental streamlines.
This linear theory represents correctly the travel of water through the aquifer, provided
that the intensity of rainfall is much less than the aquifer’s conductivity, a condition often
met in nature (Haitjema & Mitchell-Bruker 2005).

The underground fate of a raindrop depends on where its enters the aquifer. A raindrop
that lands near the outlet flows out almost immediately. On the contrary, the trajectory of
a drop fallen near the drainage divide reaches down to the bottom of the aquifer, before
it rises up towards the outlet. The duration of this long travel is further increased by the
stagnation points that drainage divides generate. These stagnation points control the tail of
the travel-time distribution, which we find to decrease exponentially, with a characteristic
time that depends on the aquifer’s aspect ratio.
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Our theory bears similarity to the model of Toth (1963). Like us, Toth restricts his
analysis to small deformations of the water table, and linearizes the boundary condition
at the free surface accordingly. However, whereas our theory explicitly accounts for the
rainfall rate that recharges the aquifer, Toth (1963) imposes the elevation of the water
table. Assuming that the latter inherits its shape from the land above it, he represents it
with an uniform slope modulated by a sinusoidal wave (Toth 1963, equation (5d)). The sine
mimics the hills and depressions of the land surface, while the slope represents the regional
gradient. If the latter vanishes, the solution found by Toth (his equation (6)) coincides
with the first mode of equation (4.11) of the present paper. As this mode dominates the
flow far below the water table, both models yield the same trajectory for a droplet fallen
near the drainage divide. Toth’s model can therefore account for the tail of the travel-time
distribution. Closer to the surface, however, Toth’s model departs from the present theory,
and, therefore, cannot represent the faster paths we observe in our experiment.

Our estimate of the travel time only takes into account advection by the flow. In reality,
hydrodynamic dispersion affects the distribution of travel times. Our experiments indicate
that the magnitude of this effect depends on the ratio of a dispersion length, proportional
to the pore size, to the length of the streamline. In the field, these lengths most likely
differ by several orders of magnitude, and we thus speculate that pore-scale dispersion is
negligible.

Near the aquifer’s outlet, the streamlines flow radially, with an inclination that depends
on the location of their origin. This result, if it holds in nature, provides a simple method to
reconstruct the distribution of travel times through an aquifer. Indeed, a series of boreholes,
drilled at different depths near the edge of a river, would collect groundwater travelling
along different streamlines. Sampling water in each borehole and measuring the time it
spent underground, based on isotopic ratios or conservative tracers, could thus yield the
distribution of travel times through the aquifer. One might then infer the aquifer’s effective
depth from the characteristic time of the distribution’s tail.

Our experiments are based on the measurement of the position and size of dye
parcels travelling through the aquifer. Such measurements are hardly possible in the field.
Instead, one usually injects a chemical tracer into a well, and records the evolution of its
concentration in another downstream one. The breakthrough curve, i.e. the time series
of the concentration in the second well, is then used to infer the flow within the aquifer
(Gelhar, Welty & Rehfeldt 1992). In our experiment, the absorption of light by the dye
might, in principle, allow us to follow its distribution in the aquifer. This method would
allow us to produce breakthrough curves, and to compare them with field measurements.

Finally, our experiments reveal that the reaction of the water table to rainfall is
considerably faster in a deep aquifer than in a shallow one. This observation calls for an
investigation of the stormflow regime, which is crucial to flood forecasting (Guérin et al.
2019). Our experiments suggest that this regime mobilizes the entire volume of the aquifer
instantly, but a theory of this dynamical regime remains to be established.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2021.221.
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Appendix A. Volume of groundwater stored in the aquifer

During rainfall, the water table bulges, and the volume of water stored in the aquifer
increases. In steady state, the volume of water that the aquifer stores above the outlet
reads

Ve = W
∫ 0

−L
h(x) dx, (A1)

where h(x) is the elevation of the water table with respect to the outlet. At leading order,
it is the hydraulic head at y = 0: h(x) = φ(x, y = 0). The stored volume is therefore

Ve = W
∫ 0

−L
φ(x, y = 0) dx. (A2)

To calculate this integral, we first rewrite it in terms of the complex potential,

Ve = W�
{∫ 0

−L
Φ(z) dz

}
. (A3)

Taking advantage of the Cauchy integral theorem, we evaluate this integral along a contour
that follows the aquifer’s walls:

Ve = �
{∫ −L(1+ia)

−L
Φ(z) dz +

∫ −Lia

−L(1+ia)
Φ(z) dz +

∫ 0

−Lia
Φ(z) dz

}
. (A4)

As only the second integral has a finite real part, the stored volume simplifies into

Ve = �
{∫ −Lia

−L(1+ia)
Φ(z) dz

}
. (A5)

Using (4.11), we rewrite this integral as

Ve = −2
RL
K

∞∑
k=1

1
kπ sinh(kπa)

∫ 0

−L
cos

(
kπx

L

)
dx, (A6)

which yields

Ve = 0. (A7)

In the weak-rainfall approximation, the volume of water stored in the aquifer during rainfall
is zero. This, of course, is only a first-order result. To find how much water a deep aquifer
can accommodate in steady state, we need to return to the original, non-linear Stefan
problem.
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Flow and residence time in a two-dimensional aquifer

Appendix B. Mean travel time of water in the aquifer

As the flow is in steady state, we can attribute an age a to each point in our aquifer, that
corresponds to the time it takes for water to travel from the surface to this point. The mean
travel time of groundwater is the flux of age through the contour Γ that bounds the aquifer,
normalized by the outlet discharge, Q = RLW:

〈τ 〉 = W
Q

∮
Γ

aq · n dl, (B1)

where l is the distance along the contour of the aquifer. Using Gauss’s theorem, we rewrite
(B1) as

〈τ 〉 = W
Q

(∫∫
Σ

q · ∇a dΣ −
∫∫

Σ

a∇ · q dΣ
)
, (B2)

where Σ is the flow domain, that is, a vertical section of the aquifer of area aL2 (figure 1).
As a parcel of groundwater travels through the aquifer, its age a increases with time

according to
Da
Dt

= ∂a
∂t

+ v · ∇a = 1, (B3)

where v = q/s is the average velocity of the parcel (Davis & Bentley 1982; Varni &
Carrera 1998). In steady state, the above equation becomes

q · ∇a = s. (B4)

Combining (B2), (B4) and the incompressibility condition (∇ · q = 0), we finally get
the expression of the mean travel time:

〈τ 〉 = saL
R
. (B5)

The mean travel time is therefore equal to the volume of water in the aquifer divided by its
discharge (Zwietering 1959; Nauman & Buffham 1983). It is independent of the aquifer’s
shape.

Appendix C. Expansion of the travel time near the drainage divide

A streamline originating near the divide remains close to the walls, where the velocity
potential is dominated by the first mode of (4.11) (figure 6d– f ). We therefore approximate
the velocity potential by Φ1, and use (5.3) to express the dimensionless travel time:

τ ∗ = − 2R
aLK

∫ φout

φin

dφ1

|Φ ′
1|2
, (C1)

where we integrate along the streamline. Here, we invoked the symmetry of the first mode,
and integrated between the origin of the streamline, zin = −L + δ, and its mid-course
point, zout = −L/2 + i(δ − H), where δ � L is the distance separating the origin of the
streamline from the divide.

ExpressingΦ ′
1 as a function ofΦ1, we turn the above curvilinear integral into a classical

one:

τ ∗ = −2 sinh(πa)
πa

∫ φr,out

φr,in

dφr

|Φr||2 +Φr| , (C2)

where we introduced the rescaled potential Φr = φr + iψr = cosh(π(iz/L − a))− 1. The
bounds of this integral are the values of φr in zin and zout.

917 A13-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

22
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
95

.1
32

.5
4.

16
3,

 o
n 

23
 A

pr
 2

02
1 

at
 1

5:
44

:3
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2021.221
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


V. Jules and others

Near the stagnation point, both φr and ψr are small. At leading order, the integrand
I(φr, ψr) of (C2) becomes:

I ≈ I0 = 1
2|Φr| = 1

2
√
φ2

r + ψ2
r
. (C3)

As expected, this expression is not integrable whenψr vanishes: the travel time diverges as
the flow line approaches the stagnation point. Using the above expression only, the integral
of (C2) has a closed-form expression, namely

τ ∗
0 = −sinh(πa)

πa

(
asinh

(
φr,in

ψr

)
− asinh

(
φr,out

ψr

))
, (C4)

which diverges logarithmically as ψr vanishes, or equivalently, as the landing point of a
raindrop approaches the divide:

τ ∗
0 ≈ −sinh(πa)

πa
log

(
1 + xstart

L

)
. (C5)

The logarithmic divergence (C5) accounts for the behaviour of the travel time near the
divide, but only within an additive constant, τ ∗

1 . To calculate this constant, we subtract the
singularity from the leading order integrand:

I − I0 = 2 − |2 +Φr|
2|Φr||2 +Φr| . (C6)

By design, this quantity does not diverge as ψr vanishes, and we thus approximate it with

I − I0 ≈ − sign(φr)

2(2 + φr)
. (C7)

Integrating the latter between φr,in = cosh(πa)− 1 and φr,out = −1 (the former is
positive, and the latter negative) yields the constant we are looking for:

τ ∗
1 = sinh(πa)

πa
log

(
4

1 + cosh(πa)

)
. (C8)

Adding (C5) and (C8) yields the expansion of the travel time near the drainage divide,
(5.8).
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