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Abstract. Using a continuum Navier-Stokes solver with the µ(I) flow law implemented to model the viscous
behavior, and the discrete Contact Dynamics algorithm, the discharge of granular silos is simulated in two
dimensions from the early stages of the discharge until complete release of the material. In both cases,
the Beverloo scaling is recovered. We first do not attempt a quantitative comparison, but focus on the
qualitative behavior of velocity and pressure at different locations in the flow. A good agreement for the
velocity is obtained in the regions of rapid flows, while areas of slow creep are not entirely captured by the
continuum model. The pressure field shows a general good agreement, while bulk deformations are found
to be similar in both approaches. The influence of the parameters of the µ(I) flow law is systematically
investigated, showing the importance of the dependence on the inertial number I to achieve quantitative
agreement between continuum and discrete discharge. However, potential problems involving the systems
size, the configuration and “non-local” effects, are suggested. Yet the general ability of the continuum
model to reproduce qualitatively the granular behavior is found to be very encouraging.

1 Introduction

Granular matter is a well-known example of complex ma-
terial able to flow like a viscous fluid or resist shear stress
like a solid, and evolving from one state to the other over
a distance of typically few grain diameters. During the
discharge of a silo, this property is responsible for the co-
existence of rapid dilute flow in the vicinity of the outlet,
dense slower shear in the higher parts of the bulk, and
static regions at the bottom of the container. In some in-
stances, when the outlet can accommodate only few par-
ticles diameters, arching —the formation of highly loaded
force chains— occurs above the orifice, whereby flow is
stopped, or made intermittent [1, 2].

Silos are widely used in geo-technical or agro-technical
applications, for which the full understanding of the dis-
charge dynamics and its reliable modeling are critical [3,4].
Meanwhile, the variety of behaviors exhibited in a silo
justifies the large academic interest granted to the sub-
ject. As a result, much understanding has been gained on
the silo phenomenology, from “why hour glasses tick”, to
the Beverloo scaling for the discharge rate or the shape
of the free surface [5–8]. Because of the specificity of its
behavior, the granular silo is a stringent test for contin-
uum modeling of granular matter [9–12]. The fact that the
silo outlet may be of a little number of grains size, hence
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threatening the validity of a continuous approach, forms
a first complication: indeed, uninterrupted flows may be
obtained for outlet size as small as 5 grain diameters [13].
While the modeling of the intermittent flow regime is
hardly accessible to continuum modeling, it is not clear
that well-developed flows over such small length-scales are
well captured either [14]. The main difficulty however is
the existence of static and rapidly flowing zones simulta-
neously. This requires a unified picture of what is often de-
scribed as solid-like and fluid-like behaviors, each of them
forming a challenge of its own. The solid-like behavior
of granular matter is characterized by the small domain
of elastic response, a plastic threshold whose dependence
on the grains properties and packing history is unclear,
and important force fluctuations which may compromise
the validity of a continuum picture at the scale of few
grain diameters [15, 16]. The fluid-like behavior also has
its share of difficulty, and offers a wide variety of compli-
cated behaviors depending on the system geometry. They
have recently benefited from important progress with the
formulation of the µ(I) flow law [17–19]. Achieving a con-
tinuum picture of a system as complete as the granular si-
los requires a reliable physical modeling of both fluid-like
and solid-like properties. This may be undertaken either
by generalizing elasto-plastic approaches to rapidly mov-
ing zone [9,20], or by considering the system as a viscous
flow with areas of infinite viscosity [11, 21]. The first ap-
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proach was applied in [10] to the initial stages of the silo
discharge, where stress and velocity fields were found to
match those observed in DEM simulations. Therefore, the
plastic part of the deformations (namely developed flow)
was chosen to obey the µ(I) flow law. In this contribution,
we adopt the fluid approach, namely we approximate the
granular matter as a viscous material flowing following
fluid mechanics equations. As in [11,19,21], and following
the choice of [10], we adopt the µ(I) flow law to describe
the viscous behavior of the granular matter [17]. Doing so,
we are able to simulate in two dimensions all the stages of
the silo discharge, from the onset to the complete release
of the material. Comparison with discrete simulations of
granular silos are carried out. In both cases, the Beverloo
scaling is recovered. Adjusting rheological parameters to
make discrete and continuum discharge coinciding being
non-trivial, we do not attempt a quantitative comparison
first, but focus on the qualitative behavior of velocity and
pressure at different locations in the flow. A good agree-
ment is obtained in the regions of rapid flows, while areas
of slow creep are not entirely captured by the continuum
model. The pressure field shows a general good agreement,
and bulk deformations in the two approaches are found to
be very similar. The influence of the parameters of the
µ(I) flow law is systematically investigated, showing the
importance of the dependence on the inertial number I to
achieve quantitative agreement between continuum and
discrete discharge, and allowing discussion on the limita-
tions of the model. Finally, the effect of the spatial mesh
refinement and the effect of the boundary conditions in
the case of the continuum model are studied and found to
be weak.

2 Modeling discrete and continuum granular

silos

2.1 A continuum model for granular flows

Defining mean viscous properties for granular flows that
would be able to describe the sharp transition between
rapid flow, creep motion and quasi-static state (observed
for instance in the silo configuration, in avalanches on
erodible beds, and in all transient flows) has proven a long-
lasting obstacle to efficient modeling of granular flows. The
most obvious difficulty is to characterize the divergence of
the viscosity, or jamming transition. A strategy to by-
pass this difficulty is to forego the explicit definition of
the viscosity and to rely instead on the frictional prop-
erties of granular matter which relate pressure and shear
stress: τ = µP , where µ is the effective friction of the
material and P the pressure. Assuming that shear rate
and shear deformation are collinear (which is the case in
simple flow configuration like chute flows, but less obvi-
ous in more complex configuration like silos of collapsing
columns [21,22]), a relation can be derived between shear
rate and shear stress which can be used as a substitute for
viscosity:

τ =
µP

‖γ̇‖ γ̇, (1)

where γ̇ and ‖γ̇‖ are the shear rate and the norm of the
shear rate, respectively. This strategy was first successfully
applied for a simple flow configuration, and later in more
complex configurations, including the silo [10,11,19,21,23].
This strategy is also adopted in this work.

According to relation (1), a constant friction model
(µ = cst), as simple as it is, will nevertheless lead to a
non-trivial viscous behavior, showing shear-thinning prop-
erties and a dependence on the local pressure. This case
is addressed in section 6.1. In this contribution however,
we are interested is assessing the performances of the
µ(I) flow law. Established on the basis of experimental
and numerical works in various simple flow configura-
tions (planar shear, couette flow, chute flows and rotating
drums (see [17] and references therein)), it has since led to
the successful recovery of granular dynamics in more test-
ing situations: 3D chute flow with rough side walls [19],
the early stage of the discharge of a granular silo [10],
or the collapse of granular columns under gravity [21] for
instance.

The µ(I) flow law implemented in this work is identical
to that used in [19]: µ is a function of the non-dimensional

number I = d‖γ̇‖/
√

P/ρ, where d is the mean grain di-
ameter and ρ the density, following the dependence

µ = µs +
∆µ

1 + I0/I
, (2)

where µs, ∆µ and I0 are constants [19]. Based on pre-
vious work comparing the rapid flow of discrete granu-
lar systems and their continuum counterpart in the col-
umn collapse configuration [21], we first chose µs = 0.32,
∆µ = 0.28 and I0 = 0.4. The influence of the value of
these parameters is specifically addressed in sect. 6.1.

The dependence of the friction properties on the non-
dimensional number I (whose relevance to granular flows
was also discussed in [24]) conveys the fact that the local
dynamics of the grains rearranging under a given pres-
sure when submitted to a given macroscopic deformation
reflects in the dissipation properties. It describes a depen-
dence on the dynamics, according to which the frictional
properties of the flow vary between two extremal values:
a smaller one corresponding to static state and a larger
one corresponding to rapid flow. The precise shape of the
dependence itself, as observed in experiments and simula-
tions, may be questioned: in [25] for instance, a power-law
dependence is proposed. In this contribution, the sensitiv-
ity of the results to the shape of the increase of µ with I
(eq. (2)) is not investigated. Rather, we discuss in detail
the implication of the dependence, and its role in the abil-
ity of the continuum model to reproduce the outcome of
discrete simulations (sect. 6.1).

More elaborate rheological models may account for
non-local effects [26,27] or incorporate explicitly the gran-
ular micro-structure [28]. These aspects are not included
in the present discussion. We will see however that, in spite
of its simplicity, the µ(I) flow law leads to the recovery of
a large part of the granular silo phenomenology, which we
reproduce using discrete numerical simulations.
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Fig. 1. (Color online) Discrete silo simulated by Contact Dynamics (left) and continuum silo simulated by Gerris (right); the
outlet size is L, the silo width is W ; S1, S2 and H1 are cross-sections along which velocity and pressure are analyzed.

2.2 The visco-plastic silo using a Navier-Stokes solver

The continuum simulations were performed using the
Gerris flow solver in two dimensions, which solves the
Navier-Stokes equation for a bi-phasic mixture applying
a Volume-Of-Fluid approach [29,30]. The existence of two
fluids translates numerically in different viscosity and den-
sity on the simulation grid following the advection of the
volume fraction representing the proportion of each fluid.
In our case, one fluid stands for granular matter (char-
acterized by the coefficient of internal friction µ) and the
other stands for the surrounding air. In [21], we estab-
lished that the dynamics of a rapid granular layer is not
affected by the surrounding fluid if the latter has a density
and viscosity small enough relatively to those of the gran-
ular layer; accordingly, we chose a ratio of 10−2 between
the density and viscosity of the two fluids. The position of
the interface between the two fluids is solved in the course
of time based on the spatial distribution of their volume
fraction. The Navier-Stokes equations

∇ · u = 0,

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇ · (2ηD) + ρg

are thus solved for a two-phase flow, namely granular mat-
ter and air, with a variable fraction function c

∂c

∂t
+ ∇ · (cu) = 0,

ρ = c ρgrains + (1 − c)ρair,

η = c ηgrains + (1 − c)ηair.

As explained in subsect. 2.1 (relation (1)), the viscosity
ηgrains of the granular matter is approximated by mean of
the friction properties [19,23]

ηgrains = min

(

µ(I)P

D2

, ηmax

)

, (3)

where µ is the effective coefficient of friction of the gran-
ular flow, P is the local pressure and D2 is the second
invariant of the strain rate tensor D: D2 =

√

DijDij . For
large values of D2, the viscosity is finite and proportional
to µ and P ; when D2 reaches low values, the viscosity
η diverges. Numerically, this divergence is bounded by a
maximum value ηmax chosen to be 104 times the minimum
value of η; we have checked that the choice of ηmax did not
affect the results as long as ηmax is large enough (at least
102 times the minimum value of η).

2.3 The discrete silo using Contact Dynamics

The discrete simulations are performed using the Contact
Dynamics algorithm [31,32]. The grains are perfectly rigid
and obey a strict non-overlap condition at contact. They
interact through a Coulombic friction law, imposing that
the tangential force at contact ft is related to the nor-
mal force at the same contact fn through the inequality
|ft| ≤ µcfn, where µc is the coefficient of friction at con-
tact. A coefficient of restitution e prescribes the amount of
energy dissipated during collisions. In a given configura-
tion, the algorithm finds all the forces compatible with the
constraints, geometrical and frictional, imposed at each
contact. This method has proven a reliable tool to repro-
duce the behavior of granular matter in many configu-
rations. Further details on the numerical method can be
found in [31–33].
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Fig. 2. (Color online) Inner deformations in granular discrete
(left) and continuum (right) silos with W = 180d, and L =
16.9d, for t̄ = t/T0 = 0.06, 0.12, 0.17, 0.26, 0.56 and 0.62, where
T0 is the duration of the discharge. The different colors are
used as tracers.

The simulations discussed in this contribution are per-
formed with a value of the coefficient of restitution set to
e = 0.5, which favor dense flow regimes. The value of the
coefficient of friction is set to µc = 0.5 (glass beads have a
coefficient of friction of about 0.2, and sand grains have a
coefficient of friction that may vary a lot, but 0.5 is con-
sistent). The influence of these two parameters on the flow
characteristics was not investigated. Instead, we focus on
the silo’s geometrical characteristics to allow comparison
with the continuum simulations.

2.4 Flow configuration

The flow configuration investigated, using both continuum
or discrete approaches, is a two-dimensional flat-bottomed
silo, of width W , initial filling height H and outlet L (see
fig. 1). The width of the silo is W = 90d or W = 180d;
this corresponds to 8066 and 16240 discrete grains, respec-
tively. The initial filling height is H = 90d, and was not
varied. The grains show a slight size dispersity to avoid or-
dering effect. In the case of discrete simulations, the walls
of the silo are smooth, and contacts between grains and
walls show the same properties (i.e. same coefficients e and

Fig. 3. Normalized volume of granular matter left in the silo as

a function of the normalized time t/
√

d/g for discrete (dashed
line) and continuum (solid line) simulations, for outlet L/d =
8.4, 11.2, 14.1 and 16.9.

µc) as contacts between grains. For the continuum silo, a
zero-pressure condition is imposed at the top boundary
and at the outlet. A no-slip boundary condition is im-
posed at the side walls and at the bottom wall; the effect
of this choice compared to free-slip condition is discussed
in sect. 7.

Considering geometrically perfectly identical contin-
uum and discrete granular silos, we can now compare their
respective behavior during discharge. Figure 2 shows the
inner deformations occurring during the discharge at dif-
ferent moments using colors to trace down the particles
(either grains or fluid volumes). The general agreement be-
tween the two is good. Note that the singularity observed
above the outlet in the continuum case for t/T0 = 0.26
was observed experimentally in [8], and is also visible in
discrete simulations in the shape of a little mounded swell.

3 The discharge rate

Granular silos have the well-known particularity of releas-
ing their stored material at a constant rate. The discharge
process, as a consequence, is independent of the height of
material left in the silo, and thus, seems independent of
the mean pressure inside the silo itself. This particular-
ity is captured by the Berverloo scaling [5], which relates
the discharge rate Q to the silo outlet L according to the
following scaling, provided L is large enough [13,34]

Q = C
√

g(L − kd)N−1/2, (4)

where N is the dimension of the problem, and C and k
are non-dimensional constants. The constant k is classi-
cally interpreted as a volume of exclusion due to steric
constraints applied by the rigid grains, reducing the effec-
tive size of the outlet (L − kd)N−1 by a multiple of the
grain diameter d; a typical value for k is 2 (in the original
paper for instance, Beverloo and co-authors find k = 2.9
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Fig. 4. Normalized discharge rate Q̄ = Q/
√

gd3/2 as a function
of the normalized outlet size L̄ = L/d for silos width W = 90d
and W = 180d, for discrete and continuum simulation with
corresponding Beverloo scalings in solid lines (see eq. (4)).

for sand and k = 1.3 for watercress seeds in an axisymmet-
ric setting). The constant k can also be seen as reflecting
the discharge velocity through the term

√
g(L − kd)1/2,

following variations induced by the viscous properties of
the flow and the shape of the velocity profile at the out-
let [35]. The constant C is typically of 0.5 in 3D [5].

Although the range of validity of the Beverloo scaling is
bounded, small and very large apertures inducing different
behaviors [13], it is surprisingly robust, and was recovered
both numerically and experimentally for a great variety of
granular matter [36–42].

The physical origin of this scaling is often attributed to
the Janssen effect: a pressure screening created by the mo-
bilization of friction forces at the walls prevents the lower
region of the silo to “sense” the pressure state [3, 43–46].
In contradiction to this explanation, experimental works
have shown that the Beverloo scaling holds in configura-
tions where Janssen effect could not be active [39,40]. Re-
cently, continuum simulations of the silo discharge using
the continuum approach applied in this paper suggest that
the Beverloo scaling results from the yield stress prop-
erties of the material [11], in agreement with [47]. This
aspect, still debated, will not be discussed here. Instead,
we compare the discharge of the discrete granular silos
simulated by contacts dynamics and the discharge of con-
tinuum granular silos simulated by the solver Gerris with
the µ(I) flow law, and focus on the consistency between
the two approaches.

3.1 Recovering the Beverloo scaling

In a first set of simulations, we perform series of silo
discharges with W = 90d, and with outlet size L ex-
actly similar in the discrete and the continuum cases, in
order to allow direct comparison. We consider L vary-
ing from L = 5.63d to L = 22.5d. The evolution of
the volume V left in the silo (normalized by the initial
volume V0) is reported in fig. 3 as a function of time

Fig. 5. (Color online) Velocity field for discrete simulation and
continuum simulation with L = 16.8d throughout the discharge
process. The color scale is linear, with an upper-bound value
shown in red color.

(normalized by
√

d/g). For both discrete and continuum
cases, the discharge rate is constant, in agreement with
experimental observation. The normalized discharge rate
Q̄ = Q/

√
gd3/2 can thus be plotted as a function of

L̄ = L/d. For both discrete and continuum silos, we re-
cover the Berverloo scaling (fig. 4)

Q = 1.22
√

g(L − 2.17d)3/2 for discrete, (5)

Q = 1.48
√

g(L − 0.73d)3/2 for continuum. (6)

The Beverloo scaling was recovered in many instances
using discrete simulations [36, 38, 41, 48–50], showing the
robustness of this flow behavior. Observing this typical
granular phenomenology in the case of the discharge of a
viscous flow, though non-Newtonian, is however not triv-
ial [11].

No prior adjustment of the rheological parameters was
made: we use µs = 0.32, ∆µ = 0.28 and I0 = 0.4 for
the continuum simulations, µc = 0.5 and e = 0.5 for the
discrete simulations. Hence we do not expect the two ap-
proaches to coincide quantitatively at this stage. Never-
theless, beside the fact that the continuum discharge is
more rapid for a given L (corresponding to a large pre-
factor C), two important differences can be noted. Ex-
pectedly, the grains rigidity in the discrete case leads to a
lower effective outlet (L − kd): k = 2.17 for discrete sim-
ulations, while k = 0.73 for continuum (see scalings (5)
and (6)). Moreover, for a given outlet size L, the discrete
discharge is more efficient: ≃ 95% of material evacuated,
against ≃ 80% for the continuum discharge.
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Fig. 6. Horizontal and vertical velocity profiles for granular
and continuum silos along cross-sections S1 and S2, and ver-
tical axis H1, rescaled by the velocities maximum values, for
L = 11.2d. (See fig. 1 for localization of sections S1 and S2 and
H1.)

3.2 Influence of the silo’s width

To check the influence of the silo’s width W (mobilization
of friction forces at the walls being often resorted to as
explanation for the Beverloo scaling), we perform series
of simulations with larger silos with W = 180d instead of
W = 90d. As previously, for both discrete and continuum
simulations, we plot the normalized discharge rate Q̄ as
a function of the normalized outlet size L̄ in fig. 4 for
W = 180d, together with the results obtained for W =
90d. We observe that the value of W , at least in the range
considered here, has no effect on the discharge rate. This
result tends to show that the discharge is dominated by
local factors, rather than by the state of the system at the
walls.

The influence of the initial height of material stored
in the silo was not investigated here. While we expect the
latter to have no influence on the silo discharge in the case
of discrete simulations, this is not obvious in the case of
continuum simulations. This aspect was studied in detail

in [11], showing that the influence of initial height in the
continuum silo discharge is weak.

4 The velocity field

From the shape of the Beverloo scaling, and according to
intuition, it seems expected that the discharge velocity
and the velocity field in the bulk of the silo will depend
on the value of the rheological parameters adopted. At
this stage, no prior adjustment was performed to make
the continuum and discrete discharge coinciding quantita-
tively (this non-trivial aspect being discussed in details in
sect. 6.1); hence, quantitative comparison of the velocity
field for the two approaches is not possible straightaway.
However, qualitative comparison of the shape of the veloc-
ity field for different apertures and along different profiles
is possible.

For visual inspection, fig. 5 shows snapshots of the ve-
locity field during the discharge of a discrete and a con-
tinuum silo with W = 180d and L = 16.9d, at different
instants, and using the same color scale. We observe a
reasonable agreement, with the areas of slow shear devel-
oping from the sides of the outlet to the bulk and the free
surface, and the area of rapid flow being confined above
the outlet.

Figure 6 shows the horizontal and vertical velocities
profiles along the cross-sections S1 and S2, as well as along
the vertical axis H1 (see fig. 1 for locating S1, S2 and H1),

for an outlet size L = 11.2d, at T = 10
√

d/g and after
normalization of the horizontal and vertical velocities by
their maximum values Umax and Vmax, respectively. The
shape of the horizontal profiles S1 and S2 reproduces the
shape already observed elsewhere numerically and experi-
mentally [14,37,51]. Continuum and discrete models show
a reasonable qualitative agreement right above the outlet
(profiles along S1), but tend to differ in the area of the
outlet edges, where the velocity decreases towards zero,
and higher in the bulk (profiles along S2). The transition
from a flowing state to a static one is sharper in the con-
tinuum systems, while discrete systems exhibit a larger
area of slow shear before freezing in a static state. Yet,
the area of rapid flow is well reproduced by the contin-
uum model. Figure 7 shows the velocity profiles along the
cross-section S1 for three other cases L = 8.4d, L = 14.1d
and L = 19.7d. The same conclusions apply: the shape of
the rapid flow is well captured by the continuum model,
but areas of slower motion tend to differ.

5 The pressure field

Maps of the pressure field are shown in fig. 8 at different
instants of the discharge for both discrete and continuum
systems. In the discrete case, the pressure is averaged over
squares of 7 grains diameters sides. The following features
are visible for both approaches: a lower pressure above the
outlet, and a maximum of pressure aside the outlet.

The pressure field in a silo is known to obey a non-
trivial distribution due to the presence of confining walls
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Fig. 7. Horizontal (U) and vertical (V ) velocity profiles along the cross-section S1, normalized by their maximum values Umax

and Vmax, respectively, for granular and continuum silos with outlet size L = 8.4d (left), L = 14.1d (middle) and L = 19.7d
(right).

Fig. 8. (Color online) Pressure field for discrete and continuum
simulations with L = 16.8d throughout the discharge process.
The color scale is linear, with an upper-bound value of 0.78ρgH
(in red).

and the existence of a low-pressure condition created by
the outlet [43, 46]. Another factor affecting the pressure
field are the yield stress properties of the material [11]
(this is further illustrated in sect. 6.1); as a consequence,
quantitative comparison of the pressure field in discrete
and continuum silos is not readily possible without ad-
justing the rheological parameters. However, a qualitative
comparison of pressure profiles can be performed. In fig. 9,
pressure profiles along the cross-sections S1, S2 and ver-
tical axis H1 are shown for silos of outlet L = 11.2d, at

T = 10
√

d/g, and for the rheological parameters consid-
ered so far (i.e. µs = 0.32, ∆µ = 0.28 and I0 = 0.4 for
the continuum simulations, µc = 0.5 and e = 0.5 for the
discrete simulations). The result for discrete simulations
is averaged over a larger time-window in order to reduce
(but not supress) the large fluctuations characteristic for
granular matter. These fluctuations are much higher in
the static zone (closer to the walls), where force chains
can form through enduring contacts; areas of rapid flow
(closer to the outlet) where contacts are short-lived, are
much smoother. The pressure field exhibits strong varia-
tions at a given height, with a marked minimum above the
outlet even at a significant distance away from it (as along
section S2). Discrete and continuum simulations share the
following features: a marked dip of pressure above the out-
let, the existence of two high-pressure regions on one and
the other side of the outlet, and a slighter decrease close to
the walls. This coarse but general agreement in the shape
of the profiles endures for different values of L.

6 More on the Beverloo scaling

So far, no attempt was made to maximize the agreement
between continuum and discrete approaches in terms of
their discharge, that is, in terms of the Beverloo scal-
ing. Adjusting appropriately the various rheological pa-
rameters is expected to lead to quantitative agreement
between both. We recall the shape of the friction law
adopted to approximate the continuum viscous behaviour:
µ = µs +∆µ/(1+I0/I), where µs and ∆µ set the value of
the coefficient friction in the static and the highly dynami-
cal limits. Two questions arise naturally from the compari-
son between discrete and continuum granular simulations.
The first question is: Is the dependence of the friction µ
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Fig. 9. Profile of the pressure P (normalized by ρgH) along
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(at time T = 10
√

gd), for the continuum (plain line) and the
discrete (• symbols) simulations of granular silos with L =
11.2d. (See fig. 1 for localization of S1, S2 and H1.)

on the inertial number I a crucial ingredient for repro-
ducing the granular phenomenology? The second question
is: Is it possible to tune efficiently the different parame-
ters to increase quantitatively the agreement? Answering
these points may moreover shed some light on the physi-
cal meaning of the parameters C and k of the continuum
Beverloo scaling Q = C

√
g(L − kd)3/2. To this point, the

effect of the numerical grid over which the continuum flow
is solved is also evaluated.

6.1 Tuning the rheological parameters

It is clear that the yield stress properties of the material
have a strong effect on the pressure field around the out-
let, where both the friction and the shear rate may rapidly
vary [11]. This is illustrated in fig. 10 where the pressure
profiles along the cross-sections S1 and S2 and along the
horizontal axis H1 are plotted for a continuum discharge
using different values of the rheological parameters µs and

∆µ. Increasing the static friction µs decreases the pressure
in the bulk and close to the outlet, thereby decreasing local
pressure gradients (hence affecting discharge velocity). In-
creasing the dependence on the inertial number —namely
increasing ∆µ for a given µs— allows to decrease the pres-
sure only in the areas of higher shear, namely in the area
of the outlet. As we will see in the following, this difference
is of importance in the perspective of adjusting parame-
ters to achieve quantitative agreement between continuum
and discrete granular systems.

In a first series of continuum simulations, we set the pa-
rameter ∆µ to zero: the dependence on the inertial num-
ber is suppressed. The static coefficient of friction µs only
is considered and varied: µs = 0.3, 0.4, 0.5, 0.6, 0.7 and
0.8. For each of these values, the corresponding continuum
discharge is shown in fig. 11 for an outlet size L = 14.1d.
We observe that for moderate values of µs, the discharge
retains its linear shape, with a discharge rate diminish-
ing with increasing µs. However, for larger values of µs,
the discharge loses its linear quality: the flow rate is no
longer constant. In other words, very large values of the
static friction induce a departure from the phenomenol-
ogy observed by Beverloo. This would certainly need pre-
cise characterization; in any case, the agreement with the
granular silo behavior is lost.

In a second set of simulations, we restore the depen-
dence on the inertial number by varying ∆µ, alternatively
set to 0.3, 0.6, 0.9, 1.2 and 1.5, while µs is kept to a
fixed value 0.3. The corresponding discharges are shown
in fig. 12. While the linearity is slightly compromised for
∆µ = 1.5, we observe that tuning ∆µ is more efficient at
slowing down the discharge rate than tuning µs, and pre-
serves the constant discharge rate phenomenology. Hence,
it appears that the dependence on the inertial number I,
by including the shear-thickening properties of granular
flows, allows for a more reliable description of the discrete
granular behavior than a constant friction model does.

The influence of the value of both µs and ∆µ on the
parameters of the Beverloo scaling Q = C

√
g(L−kd)3/2 is

systematically analyzed in fig. 13, using either a constant
friction model (∆µ = 0), or the µ(I) flow law (∆µ �= 0).
We observe that increasing the friction properties slows
down the flow and reduces the effective outlet size, and
that tuning the dynamical friction, that is, using the I-
dependence, allows for a larger amplitude of variations
for the Beverloo scaling, as already stressed. Note how-
ever that in both cases (∆µ = 0 or ∆µ �= 0), a Beverloo
dependence is obtained: as discussed in [11], a frictional
rheology without I dependence is enough to recover the
Beverloo scaling.

One may question the legitimacy of using large values
of the coefficient of friction (between 0.6 and 0.9) in con-
tinuum models, while effective friction measured in gran-
ular systems is rarely beyond 0.5 [17]. In [21] for instance,
quantitative agreement was achieved in the case of the col-
lapse of granular columns using the same set of numerical
parameters as applied here for both continuum (µs = 0.32,
∆µ = 0.28 and I0 = 0.4), and discrete (µc = 0.5, e = 0.5)
simulations. The failure to obtain quantitative agreement
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Fig. 10. Pressure profiles along the cross-sections S1, S2 and H1 for identical continuum silos simulated with different values
of the rheological parameters µs and ∆µ (outlet size L = 11.2d).

Fig. 11. (Color online) Normalized volume of matter left in

the silo as a function of the normalized time t/
√

d/g for contin-
uum simulations with different values of the static coefficient
of friction µs = 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8, with ∆µ = 0.
(L = 14.1d).

in the case of the silo for the same set of parameters sug-
gests a possible dependence of the rheological properties
on the geometrical flow configuration.

6.2 The influence of the numerical grid

So far, little was said about the influence of the size of
the numerical cells over which the Navier-Stokes equation
is solved in space in the continuum case. The Gerris flow
solver uses an adaptive mesh refinement, which allows to
adapt dynamically the resolution to the features of the
flow. For the continuum simulations discussed so far, the
width W is divided in 64 computation cells in the bulk,
refined to 256 at the bottom, so that the outlet size is
defined using 16 to 72 computation cells (see illustration
in fig. 1). The size ∆x of the numerical cells necessarily
impacts on the spatial variations of shear rate and pressure
and thus will reflect, to a certain extent, in the viscous
properties of the granular flow. This may in turn affect the
system mean’s behavior, for instance the discharge rate
and the corresponding Beverloo scaling. To quantify this
effect, we perform a series of simulations with varying ∆x,
corresponding to 32, 64, 128 and 256 computation cells in

Fig. 12. (Color online) Normalized volume of matter left in the

silo as a function of the normalized time t/
√

d/g for continuum
simulations with µs = 0.3 and different values of ∆µ = 0.3,
0.6, 0.9, 1.2 and 1.5 (L = 14.1d). The inset graph shows the
corresponding µ(I) dependence.

the bulk, respectively refined to 64, 128, 256 and 512 at the
bottom of the silo. For each of these meshes, the flow rate
is measured for outlet sizes between L = 5d and L = 22d,
as reported in fig. 14. We observe that ∆x implies only
marginal variations from a single Beverloo dependence.
The effect of the numerical parameter ∆x remains weak
compared to the effect of the physical parameters µs, ∆µ
and L.

7 Influence of the boundary conditions

The boundary condition at the walls in all continuum sim-
ulations presented so far are no-slip boundary conditions.
Although convenient, this may contradict the observation
of slip velocities at rigid walls in a variety of experimen-
tal settings. In [52], discrete simulation shows that the slip
velocity for dense granular flows obeys a Navier condition,
with a dependence on the friction properties of the con-
tacts. Without entering this degree of description at this
stage, one may nevertheless speculate whether a free-slip
velocity condition is more suited than a no-slip condition,
and whether this change of boundary conditions would
significantly affect the flow.



Page 10 of 12 Eur. Phys. J. E (2014) 37: 5

Fig. 13. Parameters k and C of the Beverloo scaling Q̄ =
C(L̄ − k)3/2 as a function of the friction parameters µs and
∆µ of the µ(I) flow law µ = µs + ∆µ/(1 + I0/I).

To clarify this aspect, we perform a continuum dis-
charge with a free-slip condition for the velocity at both
side walls, and compare it with the case of a no-slip con-
dition. The volume left in the silo as a function of time
for both cases is shown in fig. 15: the two evolutions
are virtually indistinguishable. In the course of the dis-
charge, velocity profiles remain essentially identical (not
shown); this can be explained by the fact that velocities
at the walls are zero in silo settings, hence not affected
by slip/no-slip conditions. Pressure profiles show marginal
differences only. At the onset of the discharge, the no-slip
condition induces a lower pressure at the walls closer to
the bottom than the free-slip condition does. This effect
endures until the end of the discharge, although in a lesser
extent; yet it has no consequence on the pressure field in
the vicinity of the outlet and in the flow area. More in-
terestingly, the difference of boundary conditions affects
the shape of the free surface close to the walls all through
the discharge: the no-slip condition induces a convex tail
of material adhering to the walls, when the free-slip con-
dition has a nearly flat free surface in this area, more in
accordance to the observation of granular systems. Far
from the walls however, the shape of the free surface is
identical for both boundary conditions.

We can thus conclude that the boundary conditions at
the walls do not affect the essential features of the contin-
uum silo discharge. This is expected since the flow char-
acteristics in a silo are dictated by the local condition
created by the outlet, while velocities are small or zero far
from that region. It appears that the silo configuration is
poorly suited to address in detail the relevance of free-slip,
no-slip or mixed conditions at walls, and that other flow
geometries would certainly give more information on the
influence of boundary conditions when simulating contin-
uum granular flows.
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Fig. 14. The Beverloo dependence for a continuum silo dis-
charge simulated with different mesh refinement.

8 Conclusion

Applying a continuum Navier-Stokes solver with the µ(I)
flow law implemented to model the viscous behavior of
dense granular flows, we simulate the discharge of the
granular silo from the early stages of the discharge un-
til complete release of the material. Discrete simulations
of the same system using the Contact Dynamics algo-
rithm are performed to allow for systematic comparison
between the two approaches. Discharge rate, velocity field
and pressure field are addressed. In a first step, we do not
attempt to adjust the rheological parameters to achieve
quantitative agreement between continuum and discrete
discharge rates, but focus on qualitative aspects. Analyz-
ing the shape of the velocity field at different locations in
the flow, we find that continuum and discrete approaches
show a good qualitative agreement in the areas of rapid
flow, but tend to differ in the area of slow shear, namely
near the outlet edges or in the bulk: the transition from a
flowing state to a static one seems sharper in the contin-
uum model. Focusing on the shape of the pressure profiles,
the agreement also appears fairly good. Discrete and con-
tinuum simulations share the following features: a marked
dip of pressure above the outlet, the existence of two high-
pressure regions on one and the other side of the outlet,
and a slight decrease close to the walls. The Beverloo scal-
ing is recovered for both discrete and continuum systems.
The influence of the rheological parameters of the µ(I)
flow law on the parameters of the Beverloo scaling is sys-
tematically investigated, while the effect of the numerical
resolution mesh is also quantified and found to be weak.

Adjusting the rheological parameters of the contin-
uum model to match quantitatively the discrete behav-
ior reveals however some potential problems. While the
dependence on the inertial number, which is the key in-
gredient of the friction law implemented in the contin-
uum model, is found to increase the ability of the lat-
ter to mimic discrete flows, the values of the continuum
friction parameters needed to achieve quantitative corre-
spondence between the two approaches are larger than the
typical values measured in granular flows. In [21], quanti-
tative agreement was achieved in the case of the collapse
of granular columns using the set of numerical parameters
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Fig. 15. (Color online) Top graph: discharge of the continuum
silo (L = 14.1) in the course of time for a no-slip condition and
a free-slip condition at walls. Snapshots: map of the pressure at
different instants t1, t2, t3 and t4 for no-slip (left) and free-slip
(right) conditions.

applied here for continuum and discrete simulations. The
failure to obtain quantitative agreement in the case of the
silo for the same set of parameters suggests a possible de-
pendence of the flow properties on the geometrical flow
configuration. Such known dependences include the width
and height of a confined chute flow for instance [53, 54].
Likewise, the effect of the size of the silo would deserve
further investigation, particularly in the case of small sys-
tems [55]. The existence of “non-local” effects, causing the
friction to depend on the state of the system elsewhere
rather than being a purely local property, may also pos-
sibly account for the discrepancy between continuum and
discrete simulations [26]. Their recent implementation in
the case of steady flows leads to improved agreement be-
tween discrete and continuum granular systems, and allow
for including systems size effects [27,55]. They are thus ex-

pected to allow for an improvement of the performances
of the continuum model in the case of the silo configura-
tion, specifically in areas of slow shear, and form a likely
perspective of this work. At this stage however, we may
conclude that the general ability of the continuum µ(I)
flow law to reproduce the main features of the discharge
of a granular silo is very encouraging.

The first author acknowledges financial support from the Eu-
ropean Reseach Program FP7 IEF grant n◦ 297843.
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