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Abstract. Granular material flowing on complex topographies are ubiquitous in industrial and geophysical

situations. Even model granular flows are difficult to understand and predict. Recently, the frictional rheology

μ(I) -describing the ratio of the shear stress to the normal stress as a function of the inertial number I, that
compares inertial and confinement effects- allows unifying different configurations of granular flows. However

it does not succeed in describing some phenomenologies, such as creep flow, deposit height, ... Is it attributable

to the rheology, to non-local effects, ...? Here, we consider a thin layer of grains flowing steadily and uniformly

on a rough incline, when the input mass flow rate is suddenly stopped. We focus on the arrest dynamics by using

both experimental and numerical approaches. We measure the height and surface velocities of the granular layer

during the long-time stopping dynamics and we compare our experimental results with computations of depth-

averaged equations for a fluid of rheology μ(I).

1 Introduction

In order to be able to predict flows of divided matter en-

countered in the nature or in the industry, a first step is to

gain in the understanding of small-scale controlled flows

of model grains [1]. We study here a model gravitational

flow of grains over an inclined plane, that is quasi one

dimensional at first order [2]. We compare experimental

results obtained with macroscopic hard frictional spheres

and numerical results of depth-averaged equations in 1D

of a thin continuous flow of frictional rheology μ(I) [2–

4]. This relates the friction coefficient μ, equal to the ratio

of the shear stress τ and the normal stress P, to the iner-

tial number I, depending on the shear rate γ̇ and the pres-

sure P:
μ(I) =

τ

P
, with I =

γ̇d
√

P/ρ
, (1)

d and ρ being the diameter and the density of grains. This

friction coefficient allows to describe the dissipation oc-

curring in the granular flow. Another way to write it,

introducing a non Newtonian viscosity η, is [5]: τ =

η γ̇, with η = μ(I)P/γ̇. Predictions from the rheology μ(I)
were already compared to some steady flows and some un-

steady flows, such as spreading of a small volume of grains

over an incline [6, 7], initiation of granular surface flows in

a narrow channel [8], or granular column collapses [5, 9–

11]. The arrest of flowing grains was also studied in the

case of a dam break [11] or flow over a slope [12, 13].

Here we focus on the stopping dynamics of a steady uni-

form flow over an incline when the mass flow rate vanishes

suddenly.
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Figure 1. The reservoir aperture of an inclined plane can be

suddenly closed to let the steady granular flow relax towards a

static deposit

2 Experiments

The slope of a plane (Figure 1), 2m long and 40cm wide,

with polyethylene plates for side walls, can be chosen at a

fixed angle θ. The aperture of a reservoir of grains at the

top of the plane can be opened or closed quickly, allowing

for the release or the arrest of a steady uniform granular

flow. A gate allows to adjust the aperture thickness hgate in

order to control the mass flow rate. The bottom surface of

the plane is made rough by covering it with sand-paper of

roughness about 200μm. This boundary condition should

allow for a zero slip velocity at the bottom. Grains are

spherical glass beads of diameter d = 200 ± 50μm. This

set-up allows for steady flows propagating at a constant

velocity for some range of slope angles (25◦ ≤ θ ≤ 35◦)
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and aperture thicknesses (5mm≤ hgate ≤ 30mm). When

opening the reservoir aperture, a granular front flows down

the slope at constant velocity u0 with a steady shape h(x −
u0t) [14, 15]. Behind the front, the layer has a uniform

height h0. How this steady uniform flow stops when the

aperture is suddenly closed?

Height profiles are measured thanks to laser profilome-

try: one laser sheet illuminates transversally the surface

at a low incident angle, giving the temporal evolution of

height h(t) at a given position. About 1% of grains are

dyed, allowing for the measurement of the surface veloc-

ity us(t) using a particle imaging velocimetry algorithm.

To this aim, movies of size 1280x720pixels with a spatial

resolution of about 4pixels/mm at a frequency of 30Hz are

recorded. It is possible to infer the mean behaviour of the

granular flow from surface kinematics h and us(t), thanks
to the zero slip velocity at the bottom, and assuming that

the whole layer flows and is sheared. However this might

be not true during the stopping dynamics.

3 Numerical simulations

In order to get predictions on the stopping of a flow for a

frictional rheology μ(I), we solve numerically 1D depth-

averaged equations [6]:

∂h
∂t

+
∂

∂x
(hu) = 0, (2)

∂

∂t
(hu) + α

∂

∂x
(hu2) = hg cos θ (tan θ − μ(I) − ∂h

∂x
), (3)

using the open source Navier-Stokes code initiated by S.

Popinet (Basilisk) [16]. The streamwise and vertical co-

ordinates are x and z, h is the thickness of the layer, u
denotes the depth-averaged streamwise velocity and g is

the gravity acceleration. The granular layer is assumed to

be thin enough, transversally uniform, and at a constant

solid fraction φ ≈ 0.60 (incompressible). The shape factor

α =
∫ h
0

u2(z)dz/(hu2) is taken equal to α = 1, despite re-

cent results that demonstrate the relevance to make other

assumptions [15]. The right hand side terms of Eq. (3) are

the gravity along the slope, the friction and the pressure

gradient. The friction term can be interpreted either as a

basal friction [6] or as the averaged internal friction over

the thickness [17]. The friction μ(I) [4] is expressed as:

μ(I) = μ0 +
Δμ

I0/I + 1
, (4)

where μ0 = 0.41, Δμ = 0.35 and I0 = 0.38 were

measured from experiments of uniform and steady flows

and successfully compared with data of non uniform flow

fronts for the same set-up [15]. The inertial number I in

the depth-averaged approach is computed for α = 1 as:

I =
ud

h
√
φgh cos θ

. (5)
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Figure 2. Space-time diagram showing the time evolution of

one line of pixels taken along the streamwise direction x. The

red and green lines indicate the velocity of the front and of the

arrest wave respectively
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Figure 3. Time evolution of height h(t) during the arrest of a

flow when closing the reservoir gate from experiments at a con-

stant slope angle θ = 27◦ for different thicknesses h0 = 4mm,

6mm and 8mm (a) and at a constant initial height h0 = 6mm at

different slope angles θ = 25◦, 27◦, 29◦ (b) in linear and loga-

rithmic scales

4 Transient stopping dynamics

4.1 Typical phenomenology

The typical phenomenology of the transient stopping dy-

namics of a steady uniform granular flow is depicted in

Figure 1 and shown in Figures 2 and 6 for experiments

and simulations respectively. First a steady uniform flow

over the incline is generated. Second the aperture gate is
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Figure 4. Time evolution of normalized height (h(t) − hstop)/h0

and normalized surface velocity us(t)/u0 for one experiment at

θ = 29◦ and h0 = 6mm in linear and logarithmic scales

suddenly closed, inducing a boundary condition h = 0 at

the gate. This sudden variation of boundary condition cre-

ates a shock wave travelling at a velocity ushock larger than

the front velocity u0, then the height and the velocity de-

crease slowly. Finally, a deposit lays on the rough plane of

uniform height hstop [18, 19]. It is known that hstop(θ) is a
function of the slope angle θ and depends on the properties

of grains and of the bottom surface of the plane.

Another difference lays between experiments and sim-

ulations in the discontinuity of height observed experimen-

tally at the end of the stopping dynamics: just before stop-

ping, the still flowing height is equal to harrest > hstop,

that may be the signature of compressibility of the granu-

lar flow and its compression when stopping. By contrast,

the height in the incompressible simulations continuously

vanishes.

The stopping of the flow can be seen as the propaga-

tion of an arrest wave, defined as the transition between

u � 0 and u = 0. Figure 2 shows a space-time diagram:

the shift of the projected laser sheet is proportional to the

thickness h(t). The granular flow front crosses the im-

age at about t � 20s with a velocity u0 shown by the red

line. The height is uniform after a few seconds. At about

t � 30s, the shock wave generated by the closure of the

gate crosses the image. Then the height decreases slowly

for about 20s, when the arrest wave propagates at a veloc-

ity uarrest, shown by the green line, larger than the front

velocity u0.

4.2 Relaxation dynamics

The height and the surface velocity decrease slowly after

the passage of the shock wave (Figures 3 and ??). Figure 3
shows the height evolution during the stopping for differ-

ent experiments realized at the same slope angle θ = 27◦
but different thicknesses h0 = 4mm, 6mm and 8mm (a)

and for the same uniform height h0 = 6mm but at dif-

ferent slope angles θ = 25◦, 27◦, 29◦ (b). The typical

time for the whole stopping of the granular layer is be-

tween 10s and 100s. It seems that this time depends on

the slope angle θ only, but not on the height h0 or veloc-
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Figure 5. Experimental measurements of the arrest wave: height

of the wave harrest as a function of the deposit height hstop and

velocity of the wave uarrest as a function of harrest

ity u0 of the steady uniform flow. For now, we can not

infer any obvious temporal evolution for h(t) (exponen-

tial or power-law or logarithmic), but deeper studies are

needed. While the height decreases until hstop –the finite

thickness of the deposit–, the surface velocity us(t) con-

tinuously vanishes (Figure 4). The temporal evolution of

h(t) and us(t) are exactly the same, as shown by Figure 4,

where normalized surface velocity us(t)/u0 and normal-

ized height (h(t) − hstop)/h0 have been plotted for one ex-

periment.

We measured systematically the experimental values

of the height harrest and the velocity uarrest of the arrest

wave, shown in Figure 5: it seems that they depend only

on the slope angle θ. Just before stopping, the still flowing

height harrest is not equal to the deposit thickness hstop.

Figure 5a shows that harrest = hstop + δh with δh � 1d.
The fact that the compression δh does not change with the

thickness of the flow but is constant, may indicate that the

arrest of the flowmay not occur as a whole but may happen

through the decrease of the thickness of flowing grains.

Also, harrest and uarrest are correlated.

One advantage of numerical simulations is to get the

whole spatial and temporal evolution of the granular flow

thickness. Figure 6 shows the spatial profile of the granu-

lar layer at different times t in the incline framework h(x)
(a), in the front framework h(x − u0t) (b) and in the shock

wave framework h(x − ushockt) (c). For the present sim-

ulation, the shock wave propagates at a velocity ushock =

2.3u0, approximately twice larger than the front velocity
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Figure 6. Streamwise height profiles from one numerical simu-

lation at different times: h(x) in the incline framework, h(x− u0t)
in the front framework and h(x−ushockt) in the shock wave frame-

work.

u0. The arrest wave and the shock wave have the same ve-

locity: ushock = uarrest but propagate in opposite directions.

As for a Newtonian fluid and for a fluid at constant friction

μ in the case of a dam-break [11], all profiles in the front

framework h(x − u0t) cross at the same point at first order

(Figure 6b). Figure 6c suggests to use the same tools as

for describing the spreading of a dam-break by taking into

account the velocity propagation of the shock wave.

5 Conclusion

We study the long-time stopping dynamics of a steady uni-

form granular flow over a rough incline plane by using ex-

perimental and numerical tools. The stopping dynamics

exhibit the propagation of a shock wave and of an arrest

wave. More investigations are still needed to know more

about the internal dynamics of the flow during the stop-

ping. A possibility would be to measure velocity profiles

through transparent lateral walls, to design a two dimen-

sional flow or to use discrete element methods.

As the local frictional rheology μ(I) does not predict a
static deposit or a height threshold, that is one major lim-

itation of μ(I) until today, alternatives would be to con-

sider a non-local rheology [20, 21], or to write the friction

law as a function of I and h: μ(I, h) [7, 22]. We made
some experiments with a smooth bottom plane. In this

case, there is almost no deposit (hstop � 0), whatever the

slope angle is. However, the flowing and stopping phe-

nomenology are the same as for a rough bottom surface,

suggesting that there is actually shear inside the granular

layer in the steady uniform regime even in the case of a

smooth bottom, that would allow for closer comparisons

with predictions of μ(I) in the stopping regime.
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