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Arthur R. Ghigo, José-Maria Fullana and Pierre-Yves Lagrée

Sorbonne Universités, CNRS and UPMC Université Paris 06, UMR 7190
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Abstract. We performed numerical simulations of blood flow in arteries with

a variable stiffness and cross-section at rest using a finite volume method cou-

pled with a hydrostatic reconstruction of the variables at the interface of each
mesh cell. The method was then validated on examples taken from the lit-

erature. Asymptotic solutions were computed to highlight the effect of the

viscous and viscoelastic source terms. Finally, the blood flow was computed
in an artery where the cross-section at rest and the stiffness were varying. In

each test case, the hydrostatic reconstruction showed good results where other

simpler schemes did not, generating spurious oscillations and nonphysical ve-
locities.

1. Introduction. In this work we are interested in modeling and simulating blood
flow in arteries with varying stiffness and cross-section. The blood flow in the main
arteries of the systemic network is governed by the 3D Navier-Stokes equations
which can be complicated and time-consuming to solve numerically. Fortunately,
using well-known hypothesis valid in the case of blood flow in arteries (long wave
approximation D/λ << 1, axial symmetry ∂θ = 0), this system of equations can be
simplified and then integrated over the cross-section of the artery in order to obtain
a 1D hyperbolic system of equations, similar to the Saint-Venant system for shallow
water flows. Details on the derivation of the model are presented in section (2) and
can also be found in [23, 38]. Finally, we are left with a set of mass and momentum
conservation equations with non dimensionless variables and parameters:

∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+

k

3
√
πρ
A3/2

)
=

A√
πρ

(
∂xA0 −

2

3

√
A∂xk

)
− Cf

Q

A
,

(1)

with A(x, t) = πR(x, t)2 the cross-section area (R is the radius of the artery),
Q(x, t) = A(x, t)u(x, t) the discharge, u(t, x) the mean flow velocity, ρ the blood
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density, Cf the friction coefficient and A0 = k
√
A0 with k(x) the stiffness of the

artery and A0(x) = πR0(x)2 the cross-section at rest.
The vast majority of arteries in the systemic network are tapered, meaning that

the cross-section at rest A0 (x) varies throughout the length of the artery. Similarly,
in the presence of arterial pathologies such as aneurysm or stenoses, the stiffness
k (x) of the arterial wall can vary locally. As for shallow water equations with
topography, the presence of tapper or variable stiffness in an artery modifies the
blood flow, and both behaviors are accounted for in (1) through the source term

A ( ∂xA0 − 2
√
A∂xk/3 ) /

√
πρ. To numerically solve (1), it is necessary, among

other things, to discretize this source term. A naive treatment of the topography
gradients will most likely generate numerical oscillations, therefore the use of the
so-called well-balanced schemes is required to properly balance the fluxes and the
source terms. In the following, we will focus on a specific well-balance method,
called the hydrostatic reconstruction.

We will first present the derivation of the model and its properties, then the
numerical method and in particular the derivation of the well-balanced scheme
applied to the case of blood flow in arteries. We will then validate our method on
examples taken from the literature and verify asymptotic behaviors of the numerical
solution. Finally, we will compute the blood flow in an artery with varying cross-
section and stiffness.

2. Derivation of the 1D blood flow equations. The 1D model for blood flow
equations is derived from the conservative form of the Navier-Stokes equations for
an incompressible fluid with constant viscosity µ:

∂tρ+∇ρu = 0 (2)

∂tρu+∇ · (ρuu+ pI + τ) = 0, (3)

where u is the velocity vector, ρ the density, supposed constant, p the pressure
and τ the stress tensor to be defined. Using the control volume of the Figure 1, we
integrate the Navier-Stokes equations over a volume V of cross-section A surrounded
by a surface S (V = S ∪ A) and of length dz. We define then the average velocity
U and pressure P as

{U,P} =
1

A

∫
∂A

{u, p}dA.

x

S

dx

V

A2A1

Figure 1. Control volume for integration (see text).
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From the mass conservation equation (2) we have:∫
∂V

(∇ρu)dV =

∫
∂S

ρu · ndS +

∫
∂A

ρu · ndA.

We then transform the volume integral using the Green (Divergence) theorem and
writing the surface integral as S ∪ A. The surface element is dS = Rdθdz and the
two terms are written as∫

∂S

ρu · ndS = 2π

∫
ur|RRdx = 2πρ

∫
∂R

∂t
Rdx = ρ

∫
∂A

∂t
dx

and ∫
∂A

ρu · ndA = (ρAU)1 − (ρAU)2 =

∫
d(ρAU) =

∫
∂x

∂ρAU

∂x
,

We retrieve therefore the first equation of our system

∂tA+ ∂x(AU) = 0.

For the conservation of momentum equation (3), the temporal term ∂tρu becomes∫
∂V

∂t(ρu)dV = ρ

∫
∂V

∂tudAdx = ρ

∫
∂x

∂t(UA)dx

and the divergence term∫
∂V
∇ · (ρuu+ pI + τ) =

∫
∂S

(ρuu+ pI + τ) · ndS +∫
∂A

(ρuu+ pI + τ) · ndA.

In the last two integrals the integration over the surface S is∫
∂S

(ρuu+ pI + τ) · ndS =

∫
∂S

(pnx + τrx)dS,

where the term uudS tends to zero. Finally, the integration over the area A gives∫
∂A

(ρuu+ pI + τ) · ndA = [A(ρU2 + P + τxx)]21

= ρ

∫
∂x

∂A(U2 + P/ρ)

∂x
dx.

In terms of the cross-section A and the flow rate Q, we obtained the following
system of equations:

∂tA+ ∂xQ = 0

∂tQ+ ∂x
Q2

A = −Aρ ∂xP − fv.
(4)

The viscous effects are contained in fv which is computed by the integration of the
shear stress at the wall τrx over the internal surface dS. Therefore, it depends on
the exact flow condition. To close the mathematical problem we need a relation
between the pressure P and the cross-section A, P = P (A), called the wall or state

law. For fv = CfQ/A and the state law P = P0 + k (x) /
√
π(
√
A (x, t)−

√
A0 (x)),

which corresponds to the elastic response of the artery, we obtain the proposed
system of equations. (1).
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3. Conservative hyperbolic system and steady states. Considering an artery
with a constant stiffness k and a variable cross-section at rest A0 (x), (1) reduces
to the following system, similar to the shallow water equations with topography:

∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+

k

3ρ
√
π
A3/2

)
=

A

ρ
√
π
∂xA0 − Cf

Q

A
.

(5)

As a reminder, the shallow water system is:
∂th+ ∂xq = 0

∂tq + ∂x

(
q2

h
+
g

2
h2

)
= gh (S0 − Sf ) ,

(6)

with h(x, t) the water height, q(x, t) = h(x, t)u(x, t) the unit discharge, u(x, t) the
mean flow velocity, g the constant of gravity, S0 = −∂xz the opposite of the slope,
z the topography and Sf the friction term (which takes the form of Manning’s,
Stickler’s, Chézy’s, ... empirical friction law).

3.1. Hyperbolic system. The system (5) can be written using the following vec-
torial form:

∂tU + ∂xF (U) = S(U), (7)

where U is the vector of the conservative variables, F (U) is the flux:

U =

(
A
Q

)
, F (U) =

 Q
Q2

A
+

k

3ρ
√
πA3/2

 , (8)

and S(U) is the source term, taking into account the shape of the vessel at rest
A0 (x) and the friction term

S(U) =

 0
A

ρ
√
π
∂xA0 − Cf

Q

A

 . (9)

The analogous term for the shallow water equations is the topography source term.
The gradient of the flux (8) can be written as the product of the Jacobian matrix
J(U) with the partial derivative of the vector of conservative variables U :

∂xF (U) =

 0 1

k
√
A

2ρ
√
π
− Q2

A2

2Q

A

 .∂x

(
A
Q

)
= J(U).∂xU. (10)

When the cross-section A > 0, the Jacobian matrix admits two different real eigen-
values, λ1 and λ2:

λ1 =
Q

A
−

√
k
√
A

2ρ
√
π

= u− c and λ2 =
Q

A
+

√
k
√
A

2ρ
√
π

= u+ c, (11)

with c the Moens-Korteweg wave propagation velocity (for the shallow water equa-
tions (6), c =

√
gh). In this case, the system is said to be strictly hyperbolic,

which is a generalization of the advection phenomenon [18, 45, 30]: a part of the
information concerning the flow propagates at the velocity λ1 and the other part at
the velocity λ2. For blood flow under physiological conditions, we have λ1 > 0 and
λ2 < 0, hence the flow is subcritical.
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3.2. Steady states. Since the works of [3, 2] on the shallow water equations, it is
well known that if a numerical scheme does not preserve steady states at the discrete
level, spurious oscillations and artificial non zero velocities will be generated. The
steady states for the system (5) are obtained when considering a stationary flow
(i.e. there is no evolution in time) and are governed by the following equations:

∂xQ = 0

∂x

(
Q2

2A2
+ b
√
A− b

√
A0 (x)

)
= −Cf

Q

A2
,

(12)

with b = k/(ρ
√
π) constant since we are considering an artery with a constant

stiffness k. Neglecting the viscous friction effects (inviscid flow) by setting Cf = 0,
we obtain the conservation of the discharge and Bernoulli’s law for blood flow: Q = Q0

Q2
0

2A2
+ b
√
A− b

√
A0 (x) = cst.

. (13)

In the literature [8, 37, 44, 6], we can find well-balanced numerical methods able to
preserve the following steady state: q = q0

q2
0

2gh2
+ h+ z (x) = cst ,

(14)

which is the analogous of (13) in the case of the shallow water equations. However,
these methods are complicated to handle due to the occurrence of critical points
when solving (13) or (14). Therefore we chose to focus on simpler steady states
that we call the rest steady states or the “man at eternal rest” equilibrium [13] by
analogy with the “lake at rest” (introduced in [1]) or the hydrostatic equilibrium
for the shallow water equations:{

q = u = 0
∂x(h+ z (x)) = ∂xη = 0 ,

(15)

where η is the water level. In this case we have a hydrostatic balance between the
hydrostatic pressure and the gravitational acceleration. By analogy, we have the
following equilibrium for the blood flow in arteries:{

Q = u = 0

∂x

(
b
√
A− b

√
A0 (x)

)
= 0 .

(16)

Numerical methods able to preserve at least the steady states (16) are said to be
“well-balanced” since the work of [19]. A wide panel of well-balanced methods
has been developed for shallow water equations. Among others we can mention
[29, 24, 39, 27, 16, 25, 1, 11, 36, 17, 4, 22, 5, 20]. In [13], we adapted the hydrostatic
reconstruction introduced in [1] to the system with constant stiffness (5).

We will now present the hydrostatic reconstruction introduced in [1] adapted to
the original system of equations (1) with varying stiffness k(x) and cross-section at
rest A0 (x). By a combination of the mass and momentum equations in (1), under
some regularity assumptions, we have:

∂tu+ ∂x

(
u2

2
+

1√
πρ
k (x)

√
A− 1√

πρ
A0 (x)

)
= −Cf

Q

A2
, (17)
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with A0 (x) = k (x)
√
A0 (x). Considering a stationary flow where the viscous fric-

tion is neglected by setting Cf = 0, we recover Bernoulli’s law (13). The notable
difference is that k is now a function of x. In the case of the “man at rest” equilib-
rium (without artifacts such as [26, 35]) we obtain:{

Q = u = 0

∂x

(
k (x)

√
A−A0 (x)

)
= 0 .

(18)

The fact that now k is a function of x will influence the way the well-balanced
scheme is obtained. In the following section, we will present a well-balanced scheme
for system (1), based on the hydrostatic reconstruction for Saint-Venant/shallow
water equations with variable pressure [5].

4. The numerical method.

4.1. Numerical context. Several numerical methods have been used to solve the
blood flow equations. In [43], they are solved thanks to the Methods of Character-
istics (MOC). In [51, 50], they use a conservative form of the model

∂tA+ ∂x(Au) = 0

∂tu+ ∂x

(
u2

2
+
P

ρ

)
= −Cf Q

A2
,

(19)

with the non-conserved vector (A, u) and equations (19) are solved with a two-step
Lax-Wendroff scheme. In [42], a quasi conservative form of the equations (with
s(U) a source term) 

∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A

)
+
A

ρ
∂xp = s(U) ,

(20)

is solved thanks to a first order explicit in time upwind finite difference scheme.
In [38], they are the first to solve blood flow equations under a conservative form,
thanks to a two-step Lax-Wendroff scheme. The solutions of the equations under
the form (19) using an upwind Discontinuous Galerkin method (used by [49, 48])
and a Taylor Galerkin finite element method (also used in [33, 14, 34]) have been
compared in [41]. A MacCormack finite difference method has been applied in
[15] followed by [40]. Finite volume methods seem to be first used to solve these
equations in [9, 10]. In [13], a well-balanced finite volume method based on the
hydrostatic reconstruction (introduced in [1]) is applied on system (5), and this
method is compared with a Taylor Galerkin method in [46]. We will present in the
following sections the extension of the well-balanced scheme (based on an extension
of the hydrostatic reconstruction) we have used to solve the system (1), which can
be written under the following vectorial form

∂tU + ∂xF (U,Z) = S1(U,Z) + S2(U), (21)

with

U =

(
A
Q

)
, Z =

(
A0

k

)
, F (U, k) =

 Q
Q2

A
+

1

3
√
πρ
kA3/2

 , (22)



1D BLOOD FLOW MODELING AND SIMULATION 75

and the source terms

S1(U,Z) =

 0
A√
πρ

(
∂xA0 −

2

3

√
A∂xk

)  and S2(U) =

(
0

−Cf
Q

A

)
. (23)

4.2. Convective step. For the homogeneous system

∂tU + ∂xF (U,Z) = 0 (24)

which is (21) without source term, an explicit first order in time conservative scheme
can be written as:

Un+1
i − Uni

∆t
+
Fni+1/2 − F

n
i−1/2

∆x
= 0, (25)

where i refers to the cell Ci = (xi−1/2, xi+1/2) = (xi−1/2, xi−1/2 + ∆x) and n to
time tn with tn+1 − tn = ∆t. Uni is an approximation of U :

Uni '
1

∆x

∫ xi+1/2

xi−1/2

U(x, tn)dx ,

and Fi+ 1
2

is an approximation of the flux function F (U,Z) at the cell interface

i+ 1/2

Fni+1/2 = F(Uni , U
n
i+1, Zi, Zi+1).

This numerical flux will be detailed in subsection 4.4.

4.3. Source terms treatment.

4.3.1. Topography source term S1 (U,Z). In the system (21), the term S1 (U,Z) is
involved in the steady state preservation, therefore requires a well-balanced treat-
ment. Following a variant of the hydrostatic reconstruction [5, p.93-94], the vari-
ables are reconstructed locally from (18) on both sides of the interface i + 1/2 of
the cell Ci:

√
Ai+1/2L = max(ki

√
Ai + min(∆A0i+1/2, 0), 0)/k∗i+1/2

Ui+1/2L = (Ai+1/2L, Ai+1/2L.ui)
t√

Ai+1/2R = max(ki+1

√
Ai+1 −max(∆A0i+1/2, 0), 0)/k∗i+1/2

Ui+1/2R = (Ai+1/2R, Ai+1/2R.ui+1)t ,

(26)

with ∆A0i+1/2 = A0i+1−A0i = ki+1

√
A0i+1−ki

√
A0i and k∗i+1/2 = max(ki, ki+1).

In order to help the understanding of the principle of the hydrostatic reconstruc-
tion (26), we present the hydrostatic reconstruction for the shallow water system of
equations (6): 

hi+1/2L = max(hi + zi − zi+1/2, 0)
Ui+1/2L = (hi+1/2L, hi+1/2L.ui)

t

hi+1/2R = max(hi+1 + zi+1 − zi+1/2, 0)
Ui+1/2R = (hi+1/2R, hi+1/2R.ui+1)t ,

(27)

with zi+1/2 = max(zi, zi+1). The water height is reconstructed in a way that
allows to have locally the hydrostatic equilibrium h + z = cst on each side of the
interface i + 1/2. As mentioned in [1], max(., 0) is there to ensure the positivity
of the water height in case of drying and the upwind evaluation of zi+1/2 ensures
that 0 ≤ hi+1/2L ≤ hi and 0 ≤ hi+1/2R ≤ hi+1, which has been proved in [1]
to ensures the positivity of the water height. For blood flow equations with a
constant stiffness k, the corresponding equilibrium writes

√
A−
√
A0 = cst, so

√
A
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(respectively −
√
A0) “plays the role” of h (resp. z), thus in that case the hydrostatic

reconstruction writes:
√
Ai+1/2L = max(

√
Ai −

√
A0i +

√
A0i+1/2, 0)

Ui+1/2L = (Ai+1/2L, Ai+1/2L.ui)
t√

Ai+1/2R = max(
√
Ai+1 −

√
A0i+1 +

√
A0i+1/2, 0)

Ui+1/2R = (Ai+1/2R, Ai+1/2R.ui+1)t .

(28)

As we have −
√
A0 instead of z, we take

√
A0i+1/2 = min(

√
A0i,

√
A0i+1), thus we

have: 
√
Ai+1/2L = max(

√
Ai + min(∆

√
A0i+1/2, 0), 0)

Ui+1/2L = (Ai+1/2L, Ai+1/2L.ui)
t√

Ai+1/2R = max(
√
Ai+1 −max(∆

√
A0i+1/2, 0), 0)

Ui+1/2R = (Ai+1/2R, Ai+1/2R.ui+1)t ,

(29)

with ∆
√
A0i+1/2 =

√
A0i+1 −

√
A0i. We can notice that we recover reconstruction

(29) if the stiffness k is constant in reconstruction (26). For consistency, the scheme
(25) is modified as follows:

Un+1
i = Uni −

∆t

∆x

(
Fni+1/2L − F

n
i−1/2R

)
, (30)

where

Fni+1/2L = Fni+1/2 + Si+1/2L ,

Fni−1/2R = Fni−1/2 + Si−1/2R ,

with

Fni+1/2 = F
(
Ui+1/2L, Ui+1/2R, k

∗
i+1/2

)
,

Si+1/2L =

(
0

P(Ani , ki)−P(Ani+1/2L, k
∗
i+1/2)

)
,

Si−1/2R =

(
0

P(Ani , ki)−P(Ani−1/2R, k
∗
i−1/2)

)
,

and P(A, k) = k (x)A3/2/(3ρ
√
π). Thus blood flow in a artery with varying cross-

section at rest and stiffness is treated in a well-balanced way.

4.3.2. Viscous source term S2 (U). In system (21), the friction term −CfQ/A in
S2 (U) is treated semi-implicitly. This treatment is classical in shallow water sim-
ulations [7, 31] and has proven efficient in blood flow simulation as well [13]. Fur-
thermore, this treatment preserves the “dead man” equilibrium (18). It consists in
using first (30) as a prediction step without friction, i.e.:

U∗i = Uni −
∆t

∆x

(
Fni+1/2L − F

n
i−1/2R

)
,

then applying a semi-implicit friction correction on the predicted values (U∗i ):

A∗i

(
un+1
i − u∗i

∆t

)
= −Cfun+1

i .

Thus we get the corrected velocity un+1
i and we have An+1

i = A∗i .
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4.4. HLL numerical flux. As presented in [13], several numerical fluxes can be
used (Rusanov, HLL, VFRoe-ncv and kinetic fluxes) for numerical simulations of
blood flow in arteries. Details can be found in [5, 12, 13]. In this work we will use
the HLL flux (Harten Lax and van Leer [21]) because it is the best compromise
between accuracy and CPU time consumption (see [12, chapter 2]). It writes:

F(UL, UR, k
∗)

=


F (UL, k

∗) if 0 ≤ c1
c2F (UL, k

∗)− c1F (UR, k
∗)

c2 − c1
+

c1c2
c2 − c1

(UR − UL) if c1 < 0 < c2

F (UR, k
∗) if c2 ≤ 0 ,

with

c1 = inf
U=UL,UR

( inf
j∈{1,2}

λj(U, k
∗)) and c2 = sup

U=UL,UR

( sup
j∈{1,2}

λj(U, k
∗)),

where λ1(U, k∗) and λ2(U, k∗) are the eigenvalues of the system and k∗ = max(kL,
kR).

To prevent a blow up of the numerical values, we impose the following CFL
(Courant, Friedrichs, Lewy) condition:

∆t ≤ nCFL
∆x

max
i

(|ui|+ ci)
,

where ci =
√
ki
√
Ai/(2ρ

√
π) and nCFL = 1.

5. Validation of the method. To validate the well-balanced scheme presented in
the previous sections for blood flow in arteries with varying stiffness k (x) and cross-
section at rest A0 (x), we applied it to different test cases taken from [13], where
arteries with a varying cross-section at rest A0 (x) and a constant stiffness k were
considered. For each of these examples, the rest equilibrium state was: Q = 0 and√
A−
√
A0 = 0 and non-reflecting boundary conditions were set at each end of the

computational domain in the form of homogeneous Neumann boundary conditions.
The hydrostatic reconstruction scheme as well as a naive centered discretization of
the source term were systematically tested to clearly evaluate the benefit of using a
well-balanced scheme. According to [13], several Riemann solvers can be used, but
we only display results obtained using the HLL flux. In the following, we present the
numerical parameters, the analytic solution if it exists and the numerical results.
For further details we refer the reader to [13].

5.1. “The man at eternal rest”. We considered an artery at its equilibrium
state, where there is no flow and the radius of the cross-section at rest R0(x) varies
throughout the artery, as for example in a dead man with an aneurysm. This
equilibrium state is exactly the one well-balanced methods are designed to preserve.
If the topography source term is not treated correctly, non-physical velocity may
be generated.

We used the following numerical values: L = 0.14 m, J = 50 cells, Tend = 5 s,
ρ = 1060 kg.m−3, Cf = 0 and k = 4.0 × 108 Pa.m−1. We used the equilibrium
state as an initial condition, setting Q(x, 0) = 0 and:

R (x, 0) = R0 (x)
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=



R0 if x ∈ [0, x1]

R0 +
∆R

2

[
1 + sin

(
−π

2
+ π

(
x− x1

x2 − x1

))]
if x ∈ ]x1, x2[

R0 + ∆R if x ∈ [x2, x3]

R0 +
∆R

2

[
1 + cos

(
π

(
x− x3

x4 − x3

))]
if x ∈ ]x3, x4[

R0 if x ∈ [x4, L] ,

with R0 = 4.0×10−3 m, ∆R = 1.0×10−3 m, x1 = 1.0×10−2 m, x2 = 3.05×10−2 m,
x3 = 4.95× 10−2 m and x4 = 7.0× 10−2 m. The radius at rest is plotted on Figure
2 left.

The results obtained are presented in Figure 2 right. As expected, a naive cen-
tered discretization of the topography source term results in nonphysical oscillations
of the velocity u (x, t), whereas the well-balanced solution preserves the equilibrium
state.

 0.0036

 0.0038

 0.004

 0.0042

 0.0044

 0.0046

 0.0048

 0.005

 0.0052

 0.0054

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

R
 [m

]

x [m]

R0

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

u 
[m

/s
]

x [m]

Hydrostatic reconstruction
Centered discretization

Figure 2. The “dead man case”: (Left) The radius of the artery
R0 (x); (Right) Comparison of the velocity at time t = 5 s be-
tween an explicit treatment of the source term (dashed line) and
the hydrostatic reconstruction (full line).

5.2. The ideal “tourniquet”. This test case is the equivalent of the dam break
problem for the Shallow Water equations (Stoker’s solution in [12]). We considered
an artery with a constant radius at rest R0, a constant stiffness k and no viscous
friction (Cf = 0), therefore the governing system of equations was (24). Initially, a
tourniquet was applied and then immediately removed. We have a Riemann problem
and the method of characteristics allowed us to compute an analytic solution that
we compared to the numerical solutions. This Riemann problem has been first
introduced in compressible gas dynamic with the Sod tube (for further details we
refer the reader to [28, 32]) and extended to blood flow in [13].

We considered an artery of length L = 8.0 × 10−2 m with x ∈
[
−L2 ,

L
2

]
and

used the following numerical parameters: J = 100 cells, Tend = 5.0 × 10−3 s,
ρ = 1060 kg.m−3 and k = 1.0 × 107 Pa.m−1. We used a perturbation of the
equilibrium state as an initial condition, setting Q(x, 0) = 0 and:

A (x, 0) =


AL =π (R0 + ∆R)

2
if x ∈

[
−L

2
, 0

]
AR =πR2

0 if x ∈
]
0,
L

2

]
,
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with R0 = 4.0× 10−3 m and ∆R = 1.0× 10−3 m.
The results obtained are presented in Figure 3. We can see that the numerical

solution obtained with the well balanced scheme is in good agreement with the
analytic solution presented in [13]. This is also true for the solution obtained using
a centered discretization of the topography source term, which is superposed on the
well-balanced solution, since in this case the source term is null.
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Figure 3. The Tourniquet: (Left) Radius of the artery R (x) at
t = 5 × 10−3 s; (Right) Flow rate of the artery Q(x) at t = 5 ×
10−3s. Comparison between the exact analytic solution (full line)
and the numerical solution obtained with an explicit treatment
of the topography source term and the hydrostatic reconstruction
(dashed lines). The numerical solutions are superposed.

5.3. Wave reflection-transmission of the pulse towards a constriction. In
this section we considered the propagation of a pulse towards constriction. This
configuration is an idealized representation of a transition between a parent artery
and a daughter artery of smaller cross-section. We tested here the ability of the
numerical scheme to capture the propagation of a small perturbation of the equi-
librium state at the beginning of an artery with a varying radius at rest R0(x).
In order to accurately compute the numerical solution, the forward and backward
traveling waves need to be correctly captured as well as the reflected and transmit-
ted waves generated by the abrupt change in topography at the transition point.
To test if these reflections were accurately described, we computed the analytic
reflection and transmission coefficients at the transition point and compared them
to the amplitude of the numerical reflected waves. For further details we refer the
reader to [13].

We considered an artery of length L = 0.16 m and used the following numerical
parameters: J = 1500 cells, Tend = 8.0 × 10−3 s, ρ = 1060 kg.m−3, Cf = 0 and
k = 1.0× 108 Pa.m−1. The constriction was defined by the following radius of the
cross-section at rest:

R0 (x) =


RR + ∆R if x ∈ [0, x1]

RR +
∆R

2

[
1 + cos

(
π
x− x1

x2 − x1

)]
if x ∈ ]x1, x2]

RR if x ∈ ]x2, L] ,

with RR = 4.0 × 10−3 m, ∆R = 1.0 × 10−3 m, x1 = 19
40L and x2 = L

2 . We set
Q(x, 0) = 0 as an initial condition and we defined the initial perturbation as:
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R (x, 0) =

R0(x)

[
1 + ε sin

(
100

20L
π (x− x3)

)]
if x ∈ [x3, x4]

R0(x) else ,

with x3 = 15
100L < x1, x4 = 35

100L < x2 and ε = 5.0×10−3 a small parameter ensuring
that we stayed in the range of small perturbations of the equilibrium state.

The numerical results are plotted in Figure 4. We can see that the propagation of
the pulse as well as the wave reflections and transmissions are accurately described
using the well balanced scheme (Figure 4 left) whereas spurious waves appear with
the centered discretization of the source term (Figure 4 right).
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Figure 4. (Left) Hydrostatic reconstruction; (Right) Centered
discretization of the topography source term. R(x) − R0(x) at
3 time steps: t = 0, t = Tend

4 , t = 3Tend

4 . The straight dashed lines
represent the level of the predicted reflection (Re) and transmission
(Tr) coefficients.

6. Asymptotic solutions for a uniform vessel. In this section we studied the
propagation of a pulse wave in a uniform vessel (k = cst, A0 = cst) and derived
asymptotic solutions of the system of equation (1), following the work of Wang and

al. [47]. Small perturbations
(
εQ̃, A0 + εÃ

)
of the base state (Q = 0, A = A0) were

considered, resulting in the following linearized system of equations:
∂tÃ+ ∂xQ̃ = 0

∂tQ̃+ c20∂xÃ = −Cf
Q̃

A0
,

(31)

where c0 =
√
kR0/ (2ρ) is the Moens-Korteweg celerity.

In the following numerical examples, we only present results obtained for the
hydrostatic reconstruction since we considered a uniform vessel. The numerical
parameters were defined as follows: L = 3 m, R0 = 1.0 × 10−2 m, J = 1500 cells,
Tend = 0.5 s, ρ = 1060 kg.m−3, µ = 3.5 × 10−3 Pa.s and k = 1.0 × 107 Pa.m−1.
The parameters Cf and Cv, respectively the viscous coefficient and the viscoelastic
coefficient, were set according to the desired test case.

Initially, the system was at its equilibrium state
(
Q = 0, A = A0 = πR2

0

)
and an

inflow boundary condition was prescribed as Q (x = 0, t) = Qin (t) with:

Qin (t) = Qc sin(
2π

Tc
t)H

(
−t+

Tc
2

)
, t > 0 ,
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where H(t) is the Heaviside function, Tc the period of the sinusoidal wave and
Qc the maximum amplitude of the inflow wave. We set Qc = 1.0 × 10−6 m3.s−1

and Tc = 0.4 s to insure that only small perturbations from the equilibrium state
were considered. The cross-section at the inlet A(x = 0, t) was reconstructed by
a matching of the outgoing characteristic, technique that takes advantage of the
hyperbolic nature of the problem. A homogeneous Neumann boundary condition
was prescribed at the outlet to simplify the computation of the asymptotic solutions
and to avoid reflections.

6.1. The d’Alembert equation. Following ideas developed in [47], we set Cf = 0
in (31) and we obtained the d’Alembert equation, which admits the following pure

wave solution c0Ã0 = Q̃ = Qin (x− c0t).
In Figure 5, we can see the propagation of a pulse wave without dissipation or

diffusion, as predicted by the analytic solution.
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Figure 5. Pure wave solution: u (x) at time t =
{0.1, 0.2, 0.3, 0.4, 0.5} for the well-balanced scheme. The straight
black dotted line represents the maximum amplitude of the pure
wave solution.

6.2. Dissipation due to the viscosity of the blood. We also investigated the
effect of the blood viscosity on the propagation of the pulse wave and set Cf 6=
0. Starting from the linearized system of equations (31), we considered the small

parameter εf = Tc
Cf

A0
and performed the change of variables ξ = x−c0t and τ = εf t

to place ourselves in the moving frame at slow times to properly capture the effects
of the viscous term. The first order solution obtained in [47] is:

c0Ã0 = Q̃0 = Q̃0 (x− c0t) exp

(
−εf

t

2Tc

)
,

where exp
(
−εf t

2Tc

)
is the exponential envelop of the pure wave solution Q̃0 (x−

c0t). To obtain this asymptotic solution numerically, we set Cf = 40πν = 4.15 ×
10−4 m2.s−1, therefore εf = 0.53.

In Figure 6, we can see the propagation of the pulse with dissipation (or atten-
uation) of its amplitude due to the viscosity of the blood. The straight doted line

represents the exponential envelop exp
(
−εf x

2Tcc0

)
computed previously and is in

good agreement with the decrease in amplitude of the pulse wave. One can note
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that as expected, there is no diffusion, since the wavelength of the pulse does not
change while it propagates in the artery.
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Figure 6. Viscous damping: u (x) at time t =
{0.1, 0.2, 0.3, 0.4, 0.5} for the well-balanced scheme. The straight
black dotted line represents the exponential envelop of the
asymptotic solution.

6.3. Diffusion due to the viscoelasticity of the arterial wall. In this section,
we set the friction coefficient to zero (Cf = 0) and focused on an other important
characteristic of the blood flow in the arteries: the viscoelasticity of the arterial wall.
We chose here to take into account this time-dependent behavior in our governing
system of equations through a very simple lumped model, the Kelvin-Voigt model,
resulting in an additional parabolic term in the governing system of equations:

∂tA+ ∂xQ = 0

∂tQ+ ∂x

(
Q2

A
+

k

3
√
πρ
A3/2

)
= −Cf

Q

A
+ Cv∂

2
xQ ,

(32)

where the viscoelastic coefficient Cν is defined as Cν = 2
3
φh
ρR0

= 1.57 m2.s−1 with

φ = 5000 Pa.s and h = 5.0×10−3 m. The parabolic term was treated by performing
a temporal splitting of the problem. First the purely hyperbolic problem with a non
reflecting boundary condition at the outlet was solved, and its solution was then
used as an initial condition of the parabolic problem. A Crank-Nicolson scheme
coupled with homogeneous Neumann boundary conditions was than used to solve
the parabolic problem.

To correctly capture the behavior of this new viscoelastic term, we defined a
new small parameter εν = Cv

c20Tc
= 8.3× 10−2 and applied the same technique as in

the previous section. From [47] we have the following first order diffusive analytic
solution, which is a solution of the heat equation:

Q̃0(τ, ξ) =

∫ ∞
−∞

Q̃0 (0, η)G (τ, ξ − η) dη

G(τ, ξ) =
1√

2πτc20Tc
e−ξ

2/(2τc20Tc) .

The numerical results for several times and the analytic solution at t = 0.4 s are
presented in Figure 7. We can see that the viscoelastic term induces a diffusion of
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the pulse wave, changing its wavelength, and that the numerical solution at t = 0.4 s
perfectly matches with the asymptotic solution at t = 0.4 s.
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Figure 7. Viscoelastic diffusion: u (x) at time t =
{0.1, 0.2, 0.3, 0.4, 0.5} for the well-balanced scheme (dashed
lines). The black dotted line represents the asymptotic solution at
t = 0.4 s.

7. Real artery simulation. In this section, we focused on simulating the propa-
gation of a pulse wave in a tapered artery of length L = 3 m, where the the radius
of the cross section at rest R0(x) was linearly decreasing from the proximal to the
distal end of the artery:

R0(x) =


RL if x ∈ [0, x1[

RL − (x− x1)∆R if x ∈ [x1, x2[

RL − (x2 − x1)∆R if x ∈ [x2, L[ ,

with RL = 4.0× 10−3 m, ∆R = 1.0× 10−3 m, x1 = 4
20L and x2 = 16

20L. Following

[47], the stiffness of the arterial wall was defined as k(x) = 4
3

Eh
R2

0(x)
with E the

Young’s modulus and h the width of the arterial wall. Therefore we were in a
configuration where R0 and k were varying throughout the length of the artery and
if the well-balanced scheme was not used, spurious waves might have arisen.

We used the following numerical parameters to mimic the geometrical and me-
chanical properties of a real artery: J = 1500 cells, Tend = 0.5 s, ρ = 1060 kg.m−3,
µ = 3.5×10−3 Pa.s, E = 4.0×105 Pa, h = 5.0×10−4 m, Cf = 8πν, φ = 5000 Pa.s

and Cv = 2
3
φh
ρR0

. We used the same initial inflow condition as for the asymptotic

solutions.
The results are presented in figures 8 and 9. We can see that in the absence of

friction and viscoelastic effects (figure 8), if the well-balanced scheme is not used
(figure 8 left) nonphysical reflections appear. On the contrary, the well-balanced
scheme provides a satisfactory numerical solution, where a continuous reflection
phenomena takes place due to the tapering, resulting in a decrease of the amplitude
of the backward traveling wave and an increase of the amplitude of the forward
traveling wave. Indeed, in the case of a tapered artery, the transmission coefficient
Tr > 1 and the reflection coefficient Re < 1. When viscous and viscoelastic effects
are taken into account (figure 9), all phenomena add up and we recognize the effects
of the continuous reflection, the viscous dissipation and the viscoelastic diffusion.
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Figure 8. Tapered artery - Pure wave solution: u (x) at time
t = {0.1, 0.2, 0.3, 0.4, 0.5} for Cf = 0 and Cν = 0: (Left) Centered
discretization of the topography source term; (Right) Hydrostatic
reconstruction.
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Figure 9. Tapered artery: viscous and viscoelastic effects: u (x)
at time t = {0.1, 0.2, 0.3, 0.4, 0.5} for the well-balanced scheme.

Conclusion and perspectives. In this work we have presented a numerical meth-
od based on a well-balanced finite volume scheme for the blood flow equations
with variable wall elasticity. This scheme based on an extension of the hydrostatic
reconstruction gave very good results on several tests, for which classical methods
failed. In further work, we will try to improve the accuracy of the numerical method
by raising the order of the numerical method and to apply this method to real
network modeling.
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[16] T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute

shallow-water equations with topography, Computers & Fluids, 32 (2003), 479–513.
[17] D. L. George, Augmented Riemann solvers for the shallow water equations over variable to-

pography with steady states and inundation, Journal of Computational Physics, 227 (2008),
3089–3113.

[18] E. Godlewski and P.-A. Raviart, Numerical Approximations of Hyperbolic Systems of Conser-

vation Laws, volume Applied Mathematical Sciences 118, Springer-Verlag, New York, 1996.

[19] J. M. Greenberg and A.-Y. LeRoux, A well-balanced scheme for the numerical processing of
source terms in hyperbolic equation, SIAM Journal on Numerical Analysis, 33 (1996), 1–16.

[20] L. Gosse, Computing Qualitatively Correct Approximations of Balance Laws. Exponential-
Fit, Well-balanced and Asymptotic-Preserving, SIMAI Springer Series 2, Springer, Milano,
2013.

[21] A. Harten, P. D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes

for hyperbolic conservation laws, SIAM Review , 25 (1983), 35–61.
[22] J. Hou, F. Simons, Q. Liang and R. Hinkelmann, An improved hydrostatic reconstruction

method for shallow water model, Journal of Hydraulic Research, 52 (2014), 432–439.
[23] T. J. R. Hughes and J. Lubliner, On the one-dimensional theory of blood flow in the larger

vessels, Mathematical Biosciences, 18 (1973), 161–170.

[24] S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms,
M2AN , 35 (2001), 631–645.

[25] T. Katsaounis, B. Perthame and C. Simeoni, Upwinding sources at interfaces in conservation

laws, Applied Mathematics Letters, 17 (2004), 309–316.
[26] R. Kirkman, T. Moore and C. Adlard, The Walking Dead, Image Comics, Berkeley, 2003.

http://www.ams.org/mathscinet-getitem?mr=MR1619497&return=pdf
http://dx.doi.org/10.1016/S0045-7825(97)85625-3
http://dx.doi.org/10.1016/S0045-7825(97)85625-3
http://www.ams.org/mathscinet-getitem?mr=MR1314237&return=pdf
http://dx.doi.org/10.1016/0045-7930(94)90004-3
http://dx.doi.org/10.1016/0045-7930(94)90004-3
http://www.ams.org/mathscinet-getitem?mr=MR2929930&return=pdf
http://dx.doi.org/10.1016/j.jcp.2012.02.031
http://dx.doi.org/10.1016/j.jcp.2012.02.031
http://www.ams.org/mathscinet-getitem?mr=MR2128209&return=pdf
http://dx.doi.org/10.1007/b93802
http://dx.doi.org/10.1007/b93802
http://www.ams.org/mathscinet-getitem?mr=MR2733096&return=pdf
http://dx.doi.org/10.1137/090758416
http://dx.doi.org/10.1137/090758416
http://www.ams.org/mathscinet-getitem?mr=MR2371563&return=pdf
http://dx.doi.org/10.1142/S021820250700256X
http://dx.doi.org/10.1142/S021820250700256X
http://www.ams.org/mathscinet-getitem?mr=MR2466761&return=pdf
http://dx.doi.org/10.1016/j.camwa.2008.05.039
http://dx.doi.org/10.1016/j.camwa.2008.05.039
http://www.ams.org/mathscinet-getitem?mr=MR2665029&return=pdf
http://dx.doi.org/10.1007/978-3-642-04068-9_9
http://dx.doi.org/10.1007/978-3-642-04068-9_9
http://www.ams.org/mathscinet-getitem?mr=MR2038091&return=pdf
http://dx.doi.org/10.1016/j.crma.2003.11.008
http://dx.doi.org/10.1016/j.crma.2003.11.008
http://dx.doi.org/10.1016/j.crma.2003.11.008
http://www.ams.org/mathscinet-getitem?mr=MR3053911&return=pdf
http://dx.doi.org/10.1002/fld.3736
http://dx.doi.org/10.1002/fld.3736
http://dx.doi.org/10.1080/10255840600857767
http://dx.doi.org/10.1080/10255840600857767
http://www.ams.org/mathscinet-getitem?mr=MR2481541&return=pdf
http://dx.doi.org/10.1017/S0022112008004771
http://www.ams.org/mathscinet-getitem?mr=MR1966639&return=pdf
http://dx.doi.org/10.1016/S0045-7930(02)00011-7
http://dx.doi.org/10.1016/S0045-7930(02)00011-7
http://www.ams.org/mathscinet-getitem?mr=MR2392725&return=pdf
http://dx.doi.org/10.1016/j.jcp.2007.10.027
http://dx.doi.org/10.1016/j.jcp.2007.10.027
http://www.ams.org/mathscinet-getitem?mr=MR1410987&return=pdf
http://dx.doi.org/10.1007/978-1-4612-0713-9
http://dx.doi.org/10.1007/978-1-4612-0713-9
http://www.ams.org/mathscinet-getitem?mr=MR1377240&return=pdf
http://dx.doi.org/10.1137/0733001
http://dx.doi.org/10.1137/0733001
http://www.ams.org/mathscinet-getitem?mr=MR3053000&return=pdf
http://dx.doi.org/10.1007/978-88-470-2892-0
http://dx.doi.org/10.1007/978-88-470-2892-0
http://www.ams.org/mathscinet-getitem?mr=MR693713&return=pdf
http://dx.doi.org/10.1137/1025002
http://dx.doi.org/10.1137/1025002
http://dx.doi.org/10.1080/00221686.2013.858648
http://dx.doi.org/10.1080/00221686.2013.858648
http://dx.doi.org/10.1016/0025-5564(73)90027-8
http://dx.doi.org/10.1016/0025-5564(73)90027-8
http://www.ams.org/mathscinet-getitem?mr=MR1862872&return=pdf
http://dx.doi.org/10.1051/m2an:2001130
http://www.ams.org/mathscinet-getitem?mr=MR2044041&return=pdf
http://dx.doi.org/10.1016/S0893-9659(04)90068-7
http://dx.doi.org/10.1016/S0893-9659(04)90068-7


86 O. DELESTRE, A. R. GHIGO, J.-M. FULLANA AND P.-Y. LAGRÉE
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