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Based on results from the literature, a description of sound generation in a recorder is developed.

Linear and non-linear analysis are performed to study the dependence of the frequency on the jet

velocity. The linear analysis predicts that the frequency is a function of the jet velocity. The non-

linear resolution provides information about limit cycle oscillation and hysteretic regime change

thresholds. A comparison of the frequency between linear theory and experiments on a modified re-

corder shows good agreement except at very low jet velocities. Although the predicted threshold

for the onset of the first regime shows an important deviation from experiments, the hysteresis of

threshold to higher regimes is accurately estimated. Furthermore, a qualitative analysis of the influ-

ence of different parameters in the model on the sound generation and regime changes is presented.
VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3672815]
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I. INTRODUCTION

The physics of flute-like instruments has been inten-

sively studied since the pioneer works of Helmholtz1 and

Rayleigh.2 As a first stage, the study of the passive resonan-

ces of the pipe allows a fairly good understanding of the

instrument makers’ choices. This allows a systematic study

of the influence of the bore geometry3,4 and of the precise

holes position and geometry.5

Many studies deal with the resonance frequencies, but the

sounding frequency of the instrument is also affected by the

excitation mechanism, including the blowing conditions. The

excitation part has been successively described by several

authors. Rayleigh and Helmholtz proposed a description in

terms of a force acting on the acoustic field, force that is due

to the injection flow on the pipe edge (the labium).1 Based on

a simplified fluid dynamical description, more recent models

have started to give substantial results comparable with

experiments. These developments, mainly led by Coltman,6,7

Fletcher8,9 and Elder,10 demonstrated that the sounding fre-

quency depends on the blowing pressure. During the same pe-

riod, works in the fields of hydrodynamics were developed,

mostly for edge-tone configurations.11 These significant

improvements in fluid mechanics were applied in sound gen-

eration models of edge-tones and recorder-like instrument by

Crighton,12 Howe,13,14 and Nelson.15

The combination of these different elements allowed

researchers to develop time-domain simulations.16 Different

models, that are based on an accurate description of the jet

behavior, describe the sound generation for different blow-

ing conditions and different window geometries.17 However,

the understanding of the different elements that contribute

to the oscillation in flute-like instruments has now grown to

a point where it becomes difficult to predict the influence of

some specific aspects of the model on the oscillation. This

difficulty arises because the system is looped and a global

resolution of the equations describing and coupling the dif-

ferent elements is lacking. Therefore, it appears interesting

to develop tools that permit understanding of the influence

of changes in the model on the sound prediction.

Such a model can be useful in the design and construc-

tion of the instruments. Even if global resolution could be

expected from direct flow simulations, the use of simplified

descriptions is justified by the need to obtain a numerically

cheap model that permits a systematic variation in parame-

ters, rather than a unique detailed numerical solution for one

particular configuration.

The idea of a lumped description, initially proposed by

Powell,18 was developed later by Mc Intyre,19 Fletcher,9 and

Verge.20 As discussed by Fabre and Hirschberg,21 it became

common to study the different elements (pipe acoustics, jet

behavior, aeroacoustic sources) separately, even if such a

separation is hard to justify. The fact that a lumped model

must at least include two time delays and non-linear terms

made the model’s analysis non trivial. Therefore, most

papers present analysis of the behavior of these models ei-

ther from a linearized or time domain point of view using

step by step time integration of the equations. The paper of

Fletcher9 is an important exception since it provides a solu-

tion of the non-linear problem for prediction of stable limit

cycle oscillation. The linearized model is often used to pre-

dict the onset threshold of oscillation for low blowing pres-

sure, and also to roughly estimate oscillating frequency as a

function of blowing pressure. However, the linearized model

can not predict transients of the oscillating system, and
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therefore can not predict a priori the hysteresis between two

regimes of oscillation observed experimentally, an important

phenomenon for instrument makers and players.

The present paper aims at comparing the predictions of

the linearized and the non-linear models, in terms of oscillat-

ing frequency, including regime changes, and amplitude.

The sound generation mechanism is first outlined by present-

ing each part of the lumped model extracted from the litera-

ture (Sec. II). The solutions of the linearized and non-linear

models are presented in Secs. III and IV. Numerical results

are discussed in Sec. VI in comparison with experimental

data gathered on a modified recorder (Sec. V).

II. SIMPLIFIED MODEL

The auto-oscillation process results from interaction

between an unstable flow, the jet, and an acoustic resonator,

the pipe. Driven by the pressure applied upstream from the

flue, the fluid in the jet travels towards the pipe edge. As

the jet is unstable, perturbations develop from the flue exit

to the pipe edge. The interaction between the unsteady jet

and the pipe edge results into an unsteady force from the

wall on the fluid, which is an aeroacoustic source. The pipe

acts as a resonator and accumulates acoustic energy in stand-

ing waves near the resonance frequencies. The acoustic

waves provide the perturbation of the jet at the flue exit,

closing the auto-oscillating feedback loop. Another element

must be taken into account: vortex shedding occurs at the la-

bium and dissipates part of the acoustic energy accumulated

in the resonator.

As it was done in several previous studies,7,9 the sound-

producing mechanism is divided into five parts. The first part

is the passive response of the pipe using a one-dimensional

approximation. The second part describes the convection

and the amplification of a jet perturbation. The third deals

with the generation of a perturbation of the jet by the acous-

tic field at the flue exit. The fourth addresses the aeroacoustic

sound source at the labium, and the fifth addresses the vortex

losses at the labium.

A. Passive response of the pipe

The description of the recorder is based on an acoustic

model adapted from works of Verge22 and Chaigne.23 The

geometry of the recorder permits a one-dimensional model.

Only the first propagating mode (plane wave) is kept, the

higher modes being evanescent. A simplified geometry of

the recorder is considered as shown in Fig. 1. The model is

made of two bores: a large one representing the pipe where

the waves propagate and a small one representing the sound

source. Following Helmholtz and Rayleigh, the sound source

is seen as a force acting at the entrance of the pipe. This

force will be discussed later, but for now it is formally repre-

sented as a pressure difference Dp. The pressure difference

creates an acoustic flow Qac¼VacSw, with Sw the window

section and Vac the Fourier transform of the acoustic velocity

vac. The acoustic flow depends on both pipe and window

impedances, Zp and Zw:

Pþ ¼ ZpQac; P� ¼ �ZwQac; (1)

where Pþ and P� are complex pressure amplitudes at the

inward and outward sides of the source. The Fourier trans-

form of Dp can be expressed using these complex pressure

amplitudes: DP¼Pþ � P�. The ratio defined as Y¼Vac/DP
is the entrance admittance and provides information about

how the pipe accumulates acoustic energy for a given source

pressure difference. From Eq. (1), one can write

Y ¼ S�1
w ðZp þ ZwÞ�1: (2)

The pipe impedance Zp is related to the radiation impedance

Zr at the passive end according to the expression

Zp ¼
qc0

S
tanh Clþ arg tanh

Zr

Zc

� �� �
; (3)

where c0 is the speed of sound in the air, S the cross section of

the pipe, l the length of the pipe and C ¼ jk (k the wave num-

ber) which includes propagating losses.23–25 The radiation im-

pedance is given by the low frequency approximation:

ZrðxÞ ¼
qc0

S
j
x
c

Dlþ 1

4

xR

c

� �2
 !

; (4)

where x is the pulsation, R the radius of the bore and Dl the

end correction given by Dalmont.26 The window impedance

Zw is calculated in the same way by substituting S, R, and Dl
in Eq. (4) by Sw the section of the window, Rw the equivalent

radius of the window and Dlw the end correction of the win-

dow given by Verge.16 Moreover, the radiation factor 1/4 in

Eq. (4) corresponding to a infinitely thin end is substituted

by the infinite flange factor 1/2.23

Following Chaigne,23 using the notation gi¼ arg tanh (Zi/

Zc) with i¼ l, w, one can write Eq. (2) as

Y ¼ Yc
cosh Clþ glð Þ cos gw

sinhðClþ gl þ gwÞ
; (5)

where Yc¼ S/qc0Sw. From this expression, the resonance

parameters Yn, en, and x n are numerically extracted and one

finally obtains the modal development:

Y ¼
X1
n¼1

jxYn

x2
n � x2 þ jenxnx

; (6)

FIG. 1. One-dimensional representation of a recorder. Dl and Dlw are the

end corrections associated with the radiation impedance Zw and Zr. Zp is the

pipe impedance seen from the window, and DP is the pressure difference

representing the force.
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where Yn, en, and xn are the amplitude, the damping coeffi-

cient and the pulsation of the nth mode, respectively.

Depending on either linear or non-linear analysis, Eq. (5) or

Eq. (6) will be used, respectively. Linear study enables nu-

merical estimation of Eq. (5) whereas non-linear approach

requires a modal description. The modal decomposition

loses information on antiresonance because it is a superposi-

tion of poles, not taking zeros into consideration. However,

the instrument oscillates near the resonances and solutions

are therefore correctly approximated by this decomposition.

The next step is to express the source force as a function

of the acoustic variables. The aeroacoustic description of the

force requires first a description of the jet oscillations.

B. Amplification and convection of perturbations
of the jet

A first approach to study jet dynamics was proposed by

Rayleigh2 and focuses on the linear stability analysis of an in-

finite shear layer. The flow is split into a mean component and

perturbations, the velocity profile U(y) in the downstream

direction Ox is a function of the coordinate of the cross-stream

direction Oy. The velocity perturbation has the components

u and v along Ox and Oy, respectively. The cross stream veloc-

ity perturbation defined as an harmonic propagating function

v¼ v(y) exp[i(xt� ax)] satisfies Rayleigh’s equation:

½UðyÞ � c� d2vðyÞ
dy2

� a2vðyÞ
� �

� d2UðyÞ
dy2

vðyÞ ¼ 0; (7)

which involves the wave number a and the phase velocity

c¼x/a.

As the pulsation x is real (spatial analysis), a is com-

plex, its real part corresponding to dispersion and its imagi-

nary part to amplification. The linear analysis consists in

finding the eigenvalue a associated with the eigenfunction

v(y) for a given x. Rayleigh provided analytical solutions

for piecewise linear velocity profiles. This eigenvalue prob-

lem can be solved numerically for more realistic velocity

profile27 including the traditional Bickley profile. Nolle28

conducted the resolution for a family of profiles:

UðyÞ ¼ U0sech2 y=bð Þk; (8)

which better fit experimental data on organ pipe jets, where

U0 is the centerline velocity and b the half width of the jet

(U(6b)¼U0/2). The integer k enables modification of the

Bickley profile (k¼ 1) to a flatter profile. He also computed

the solution for low frequency pulsation x that are relevant

to musical acoustics.

The information provided by the linear spatial analysis is

that for a given x, the perturbation is convected on the jet at

the phase velocity of perturbation cp¼x/Re(a) with the expo-

nential amplification factor �Im(a). This description is only

valid for small amplitudes of perturbation and for an infinite

jet. In recorder-like instruments, the jet emerges from the flue

exit of height h, crosses the finite extended window over a dis-

tance W and reaches the edge of the labium. For typical value

W/h� 4 found in recorders, it is assumed that the perturbation

does not have room to reach amplitudes which induce strong

non-linear processes. For high Strouhal number defined as

St¼Wf/UB with f the frequency and UB the jet velocity esti-

mated by applying Bernoulli’s law from the pressure reservoir

to the flue exit, the jet will break down into discrete vortices

as described by Holger.11 The linear description is no longer

valid. One can adopt a “discrete vortices” approach arguing

that the jet is surrounded by two shear layers. On each of these

shear layers, the vorticity concentrates into discrete points due

to the shear layer instability.

Moreover, the velocity profile at the flue exit depends

on the history of the flow before it emerges in the window.

As discussed by Ségoufin,29 the flue channel has an impor-

tant effect on the profile. Through Rayleigh’s equation

[Eq. (7)], the jet velocity profile U modifies the wave number

a and even more so the amplification and the phase velocity.

C. Receptivity of the jet

The acoustic field drives the perturbation of the jet flow.

This phenomenon is generally called “receptivity.” It is con-

sidered here that the acoustic field initiates a perturbation of

the jet by acting on the vorticity of the shear layers of the jet.

While the jet crosses the window, the acoustic field is

assumed to be fully defined as a potential flow, and thus the

vorticity of the jet is conserved. The effect of the acoustic

field can be described as a slight displacement of the flow in

the cross stream direction (vac � UB). However, near the

sharp edge of the flue exit, the potential flow becomes singu-

lar and the vorticity can be generated by flow separation.

The initial perturbation of the jet is assumed to be due to the

action of the acoustic field at the flue exit, where the flow

separation occurs.21

Some descriptions of the initial perturbation state that

the motion of the jet at x¼ 0 is opposed to the acoustic dis-

placement in such a way that the displacement of the jet

remains zero at the flue exit. Even if such a description

showed good agreement with experimental data,20,30 it

misses physical grounds since a fluid would oppose a shear

rate rather than a displacement. Moreover, this description

diverges at low frequency. Attempts have been made to pro-

pose a more accurate description of the receptivity based on

the work of Nelson.15 For high Strouhal numbers or thick

jets, i.e., when a discrete vortices description seems more

appropriate, the initialization of a new vortex at the flue exit

is triggered by the change of direction (sign) of the acoustic

velocity.17 There is no simple model for predicting the re-

ceptivity. For this reason, the empirical expression for the re-

ceptivity proposed by de la Cuadra31 based on the Schlieren

visualization of a jet flowing in a transverse acoustical field

is used. The receptivity is assimilated to an equivalent initial

transverse displacement of the jet at the separation point. De

la Cuadra proposed that the initial transverse displacement

of the jet g0, compared with the height of the flue exit h,
depends on the transverse acoustic velocity at the flue exit

vac, compared with the jet velocity:

g0ðtÞ
h
¼ vacðtÞ

UB
: (9)
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The transversal displacement of the jet at a distance x from

the flue exit results from the amplification and the convec-

tion of the initial perturbation, which is described by

gðt; xÞ ¼ eaixg0 t� x=cp

� �
; (10)

where ai and cp are empirical coefficients, corresponding to

the amplification and the phase velocity of a perturbation

along the jet, respectively. De la Cuadra31 proposed a first

order approximation of these parameters: ai¼ b/h and

cp¼ cUB where b� 0.3 is the jet spatial amplification and

c� 0.4 is the relative convection velocity. These values are

the same order as those found in the literature.6,32,33

It is convenient to have a one-dimensional description

of the transverse displacement of the jet rather than a full

two (three) dimensional flow. It is common9,20,31 to describe

the jet in terms of its centerline and its velocity profile only.

In such a description, the initial perturbation is often assimi-

lated to the transverse displacement of the centerline at the

flue exit. This is the approach that will be used here. How-

ever, even if the separation points of the flow are not affected

by the acoustic field, the velocity profile is. Hence, the recep-

tivity phenomenon deserves the development of a more

accurate description as suggested by Blanc.34

The experimental setup used in order to develop Eqs. (9)

and (10) is a simplified copy of a real recorder windway with

different flue channel and flue exit geometries. The modifica-

tion of the flue channel geometry has an effect on the unper-

turbed velocity profile U(y). As mentioned above it modifies

the wave number a and thus ai and cp. Secondly, the flue exit

shape is known to have important effects on the sound pro-

duction. Recorder makers pay extreme attention to this matter.

According to these observations, the use of a first order

approximation for ai¼ b/h and cp¼ cUB represents a drastic

simplification. However, for the sake of having a very basic

model, the effects of the flue exit geometry are ignored and a

unidimensional description of the jet is used. The jet spatial

amplification b and the relative convection velocity c are criti-

cal parameters in the model whose influences on the oscilla-

tion of the system should be systematically investigated.

The linear behavior of the perturbation, Eq. (10), is obvi-

ously no longer valid when the jet breaks into discrete vortices.

For short window opening W such as in the recorder, the approx-

imation presented in Eq. (10) is justified. However, the model

will certainly show some unrealistic behaviors at high Strouhal

number as found in organ pipes at low blowing pressure.

The transverse displacement of the jet at the labium g is

obtained by combining Eqs. (9) and (10):

gðtÞ ¼ heaiW

UB
vacðt� sÞ; (11)

where s¼W/cp is the convection delay. The reduced jet ve-

locity h¼UB/Wf1, where f1 is the first resonance frequency

of the pipe, will be used as control parameter.

D. Jet-labium interaction: Non-linear characteristic

The question of the type of sources involved in the sound

production of flute-like instrument started with the so-called

Helmholtz/Rayleigh controversy.21 They finally agreed that

since the acoustic pressure is small and the acoustic velocity

is large at the window of the instrument, the resonator should

be driven by a force source term.

Coltman6,7 initiated the jet drive model, which is com-

monly accepted in the literature. In the model, the jet labium

interaction is described in terms of air flow. At the labium, the

jet is split in two complementary flows. The flow Qin entering

in the pipe is separated into an average and an oscillating

flow: Qin¼hQin iþQ1, where h˙i indicates averaging over

one period. The outward flow is identically described and its

oscillating part Q2 is complementary to Q1. Both flows Q1

and Q2 are injected at positions close to the edge of the labium

within the small bore of length Dlw corresponding to the

acoustic length of the window in the one-dimensional model

(see Fig. 1). As the acoustic length of the window is small

compared with the wavelength, the air between the two injec-

tion points is assumed to be incompressible. Applying third

Newton’s law on this incompressible air mass, and using a

formal representation of the force in terms of a pressure differ-

ence DpSw lead to the expression of the pressure difference

representing the force which drives the resonator:20

Dp ¼ �qdd

Sw

dQ1

dt
; (12)

where q is the air density, Sw¼W Hw the window section, Hw

the window width, and dd the effective acoustical “distance”

between the two sources. The exact position of the sources,

which determines this distance, is a sensitive parameter of the

model. Assuming that each source is at a distance h behind

the labium, Verge22,35 calculated dd ¼ 4=p
ffiffiffiffiffiffiffiffiffi
2hW
p

with the

help of conformal mapping of the two dimensional acoustic

field.

The flow Qin is related to the jet lateral displacement

g(t) by the following expression:22

QinðtÞ ¼ Hm

ðyoff�gðtÞ

�1
UðyÞdy; (13)

where yoff is the offset between the channel exit and the

edge, as presented in Fig. 2.

FIG. 2. Window geometry of a recorder. A jet emerges from a flue of height

h, and it looks like a Bickley profile jet from far away. It impinges the

labium at distance W from the flue exit.
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The velocity profile U(y) indirectly affects the amplifi-

cation of the perturbation, as previously mentioned. It also

has a direct effect on the system as it determines the non-

linear characteristic of the source through Eq. (13). As

shown by Ségoufin29 and Van Zon,36 when the length of a

straight channel is larger than a critical length, the flow

reaches a fully developed Poiseuille velocity profile. The

channel of the recorder is actually slightly convergent, so the

velocity profile at the end of the channel is expected to be

better approximated by a Nolle profile, Eq. (8). However, a

Poiseuille flow at the flue exit is assumed. At a distance far

enough from the flue exit (few h), because the air is dragged

along the jet by viscous entrainment, there is a gradual

smoothing of the jet profile. Thus, at the labium the velocity

profile is expected to be well approximated by a Bickley pro-

file [k¼ 1 in Eq. (8)]. Following Ségoufin, the centerline ve-

locity U0 is assimilated to the jet velocity UB estimated by

applying Bernoulli’s law between the pressure reservoir and

the flue exit. Under these assumptions, the half width of the

Bickley profile is given by b¼ 2 h/5 if a Poiseuille flow at

the flue exit is assumed.

Using Eqs. (12), (13), and (8) (with k¼ 1), finally yields

to the pressure-displacement characteristic:

DpsrcðtÞ ¼
qddbUB

W

d

dt
tanh

gðtÞ � yoff

b

� �
: (14)

E. Vortex shedding at the labium

The window of the recorder represents a constriction for

the acoustic flow. For large acoustic velocities, the flow sepa-

ration occurs at the labium resulting in the formation of vorti-

ces. The flow separation seen as a free jet37 dissipates energy

that is not recovered by the acoustic field. This mechanism, al-

ready mentioned by Coltman6 and sometimes forgotten in

models, is decisive for the determination of the amplitude of

the steady oscillation.38 The flow separation and the subse-

quent vortices induce a variation of the window pressure23

DplosðtÞ ¼ �
1

2
q

vacðtÞ
avc

� �2

sgnðvacðtÞÞ; (15)

in addition to the driven pressure Dpsrc. The vena contracta

factor avc� 0.6 is here again a sensitive parameter of the

model. The total pressure driving the resonator in the one-

dimensional model is then

DpðtÞ ¼ DpsrcðtÞ þ DplosðtÞ: (16)

III. RESOLUTION OF THE LINEARIZED MODEL

The whole system described previously can be repre-

sented by a circuit with a feedback loop where Eq. (11) rules

a block of amplification and delay, Eqs. (14) and (15) repre-

sent non-linear characteristics and Eq. (5) represents a trans-

fer function.

Inspired by the Barkhausen stability criterion used in

electronics39 and by the method used by Powell,18 it is possi-

ble to find a necessary but not sufficient criterion for the estab-

lishment of oscillations in the instrument. Indeed, the study of

the loop gain G of the linearized equations in the frequency

domain leads to two conditions on the existence of oscillation.

These two conditions are related to the amplitude and the

phase of the linearized loop gain.

If there is no linear contribution of the flow separation

Eq. (15), injecting Eqs. (11) and (12) linearized around yoff

in Eq. (16) leads to the Fourier transform DP of Dp:

DPðxÞ ¼ qddUB

W
ixHðxÞ; (17)

where

HðxÞ ¼ heaiW

UB
VacðxÞe�ixs (18)

is the Fourier transform of g(t). The loop gain defined as

G¼YDP/Vac is written:

G ¼ lYðxÞe�ixsix; (19)

where l¼ heaiW qdd/W. The first condition for the existence

of oscillations is that the phase shift around the loop must be

equal to an integer multiple of 2p. This implies that the sys-

tem oscillates at frequencies given by

� xnsþ
p
2
þ argðYðxnÞÞ ¼ 2np; (20)

where the integer n represents the hydrodynamic modes of

the jet. The first hydrodynamic mode corresponds to n¼ 0,

higher modes by increasing values of n. For instance, aeolian

sounds obtained at lower jet velocities correspond to the sec-

ond, or higher, jet mode n� 1.

For a given n, Eq. (20) has several solutions. For each of

these solutions xs, the oscillation can start if the modulus of

the gain evaluated at xs is higher than unity. Figure 3 is

obtained by numerically solving Eq. (20) with n¼ 0, and

injecting this solution in the modulus of the gain G.
Solutions result from a balance between the jet and the

resonator phase shifts, xs and arg(Y(x)), respectively. For

each value of the reduced jet velocity h, the frequency is

entirely determined by the phase condition. Thus, the shape

of the solution in the (h, f) plane is directly linked with the

phase response of the resonator (Fig. 3).

Solutions at which the oscillation can naturally grow are

plotted with a solid line on Fig. 3. These solutions corre-

spond to frequencies where the gain is large enough. The

resonator sufficiently amplifies the oscillation for frequen-

cies close to the pipe resonances.

Oscillation can not start below a particular jet velocity h0,

namely the onset threshold of oscillation. Furthermore, there

exists a range of velocities Ih¼ [h2!1, h1!2] in which oscilla-

tions can start on both first and second pipe regimes (acoustic

modes). Considering the history of the oscillation, for a jet ve-

locity h in the range Ih, it is possible to have either a first regime

or a second regime sound. Since above h1!2 the oscillation can

only occur on the second regime, h1!2 represents a threshold

of regime change from the first regime to the second one. Re-

versely, h2!1 corresponds to the threshold of regime change
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from the second regime to the first one. The existence of the

common range Ih makes an hysteresis possible. At this stage,

the end of a regime of oscillation seems to be determined by

the jet velocity at which the loop gain falls under unity.

The linearized model predicts an exponential growth of

oscillation. Obviously, a stable limit cycle can not be predicted

without including non-linear terms, see Eqs. (14) and (15).

These non-linear terms can significantly change the behavior

of the oscillator. A more detailed numerical study of the sys-

tem is thus needed to estimate the hysteresis thresholds.

IV. RESOLUTION OF THE COMPLETE NON-LINEAR
MODEL

A. Quasi-steady dimensionless equations

First establish the system which rules the dynamics of

the oscillator. Using Eqs. (11), (14), (15), (16) and the

inverse Fourier transform of Eq. (6) leads to

vacðtÞ ¼
X

n

vnðtÞ;

v00n þ enxnv0n þ x2
nvn

¼ Yn
d

dt

(
qddbUB

W

d

dt
tanh

heaiW

UBb

��

�vacðt� sÞ � yoff

b

��
� q

2a2
vc

v2
acðtÞsgnðvacðtÞÞ

)
; (21)

where 0 and 00 denote first and second differentiations with

respect to time and where the acoustic velocity is written

using a modal decomposition consistent with Eq. (6). Note

that Eq. (21) is based on the assumption of a constant jet ve-

locity UB. This equation remains exact for a time-dependant

jet velocity. In order to solve these equations numerically, it

is convenient to make them dimensionless. A dimensionless

time is defined as ~t ¼ x1t where x1 is the pulsation of the

first mode in Eq. (6), and a dimensionless jet transverse dis-

placement is defined as

yð~t Þ ¼ gðð~tþ ~sÞ=x1Þ
b

¼ heaiW

UBb
vacð~t=x1Þ: (22)

As it was done with the acoustic velocity vac, the dimension-

less displacement is written using a modal decomposition:

y¼Rnyn. Note that this variable change introduces the time-

dependant jet velocity UB increasing the complexity of the

system. To deal with a problem as simple as possible, nu-

merical calculations are performed under quasi-steady

assumptions. To do so, the jet velocity UB as a function of

the dimensionless time ~t must follow the conditions:

UBð~tÞ ’ UBð~tþ ~sÞ;

UBð~tÞ ’ UBð~tþ 2pÞ:
dUBð~tÞ

d~t
� UBð~tÞ:

(23)

The two first conditions state that the jet velocity must not

vary over one period and over the delay ~s. The last condi-

tion states that the variation of the jet velocity is neglegible

with respect to the jet velocity value. By using a Taylor

expansion of UBð~tþ ~sÞ ’ UBð~t Þ þ ~sdUB=d~tþ Oð~sÞ, the

combination of the three conditions leads to the global

condition:

max
cp

ð~s; 2pÞ dUB

d~t
� UB; (24)

since ~s only varies because of cp¼ cUB.
Injecting Eq. (22) and the new time ~t in Eq. (21) finally

leads to the dimensionless system:

yð~t Þ ¼
P

n
ynð~t Þ;

€yn þ en�n _yn þ �2
nyn

¼ ln

d2

d~t 2
tanh yð~t� ~sÞ � y0ð Þ � fn

d

d~t
yj j2;

(25)

where ln¼ lYn, fn¼qbUBYn/2 havc
2x1 eaiW, y0¼ yoff/b,

�n¼xn/x1, and where ˙ and ¨ denote the first and second

differentiations with respect to ~t.
The system (25) is a set of damped harmonic oscillator

coupled by non-linear functions. Further, each equation is a

neutral delay differential equation (DDE), where the dynam-

ics depend on a delay ~s that appears in a derivative term of

the variable yn. A quick look at Eq. (25) shows that oscilla-

tion can start only if the damping term en�n is lower than the

source term ln (the non-linear damping being negligible at

low amplitudes of oscillations). The previous section investi-

gated this behavior by performing an analysis of the linear-

ized model. A complete solution can be numerically

calculated.

FIG. 3. (Left) Dimensionless frequency obtained by analysis of the linearized

model versus reduced jet velocity h¼UB/Wf1 for the first and second regimes.

The solid line corresponds to frequency whose associated gain is higher than

unity. (Right) Amplitude and phase associated with the dimensionless admit-

tance Y/Yc. The dashed line represents the resonance frequencies. Note that

the reduced jet velocity increases over a factor of 150 in order to show the full

range of solutions, but for musical purposes, it never exceeds about 30. More-

over, both assumptions of the linear analysis and the model are no longer

valid for high jet velocities.
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B. Numerical calculation

Delay differential equations occur in many domains such

as population dynamics or control engineering. Many solvers

have been developed but time-varying delay is usually not

allowed in most of them. For the purpose of this study, a

solver has been developed allowing quasi-steady variations

of parameters such as the jet velocity UB, and thus the delay

~s. It is an iterative algorithm based on a fourth order Runge

Kutta method. For each step p, the delayed sample y(pDt� ~s)

is estimated by linear interpolation of the two previous sam-

ples yð½p� ~s=Dt� 1k k�DtÞ and yð½p� ~s=Dtþ 1k k�DtÞ,
where Dt is the time-step and where �k k denotes the nearest

integer function. The differentiation of the delay s is

neglected as a consequence of condition (23).

The resolution is run over a time Ts with three modes

for different values of the model parameters: the amount of

non-linear losses with avc, the jet spatial amplification b, and

the relative jet velocity c. For each triplet (avc, b, c), the jet

velocity slowly varies in time from Umin to Umax with a trian-

gle shape. Thus jdUB=d~tj ¼ ðUmax � UminÞ=2Ts, and the

global quasi-steady condition (23) is rewritten:

Ts 	
x1WðUmax � UminÞ

2cminU2
min

; (26)

where cmin¼ 0.2 is the smallest c over all the runs. The oscil-

lation is initiated by holding yð~t < 0Þ constant at an arbitrary

value. It results in a short transient at the beginning of the

run after which the system evolves freely.

The fundamental frequency of the output and the associ-

ated amplitude are estimated by taking the maximum of a

short time Fourier transform with a Hanning window. The

values of parameters used in computation are summarized in

Table I. The dimensionless acoustic velocity vac/UB extracted

from y by using Eq. (22) depends on the ratio of sections S/Sw

since Yc¼ S/qc0Sw in Eq. (5). The numerical calculation and a

classical method used by Fletcher9 (slowly varying parameter)

are compared in the Appendix.

C. Sensitivity of the model

The solver permits to independently vary parameters of

the model. The investigation of the sensitivity of the model

focuses on three parameters. The first one is the importance

of the non-linear effects associated with the flow separation

at the labium, which is studied by adjusting the vena con-

tracta coefficient avc. Secondly, the loop gain is studied by

adjusting the jet spatial amplification b. Finally, the delay s
is studied by adjusting the relative convection velocity c.

Each of these parameters are sensitive points of the model

since they are experimentally obtained and/or represent ele-

ments varying according to the different authors. Moreover,

they include other sensitive parameters. For instance the jet

spatial amplification b allows the modification of the loop

gain as the distance between the two sources dd could.

Lastly, each of these parameters can also be linked to a geo-

metrical or a tunable element of instrument making.

Figure 4 presents the oscillating frequencies obtained by

linear analysis for three values of the relative convection ve-

locity c¼ 0.2, 0.4, or 0.6. The delay s is modified by varying

the relative convection velocity, thus the phase condition

(20) is modified. As a result, the available frequencies are

shifted and the associated oscillation thresholds are changed.

Figure 4 also presents the oscillating frequencies of the solu-

tion of the complete non-linear model for a relative convec-

tion velocity c¼ 0.4. An overview of the solution provided

by the solver highlights general trends of the model. Firstly,

the way the frequency depends on jet velocity is slightly

modified, compared with the linear analysis, by the introduc-

tion of non-linear processes. Secondly, the thresholds of

regime change are strongly affected by the non-linear proc-

esses. Thirdly, the model predicts numerous aeolian regimes

for low jet velocity. As mentioned previously, at high

Strouhal (low jet velocity), the model overestimates these

regimes. Dequand17 showed that when a “discrete vortex”

description is more appropriate (high Strouhal number or

low value of W/h) the jet drive model overestimates sound

production. As a consequence, the onset threshold of oscilla-

tion h0 depends on the presence of these aeolian regimes.

The first regime stops when the oscillator behaves on the

second or on the third aeolian regimes while decreasing jet

velocity. Because of this shortcomings, the investigation of

the influences of the parameters is restricted at the transition

between the first and the second regime.

The influence of the relative convection velocity c is

well described in the framework of the linearized model

analysis: adding non-linear source and losses does not mod-

ify the convection effects. Figure 5 shows the evolution of

the regime change thresholds h1!2 and h2!1 as functions of

the jet spatial amplification b and for different magnitude of

non-linear losses (avc). An increase of the loop gain enlarges

the available range of frequency for both regimes: the two

thresholds move away from each other. The evolution of the

threshold h1!2 with respect to the jet spatial amplification b
is not monotonous. This suggests that, at least for the transi-

tion from the first to the second regime, the threshold is

determined by a competition between the two non-linear

processes (source and damping).

The non-linear losses due to vortex shedding at the labium

are crucial for the prediction of the amplitude of oscillation,

but they also affect the transition from the first to the second

regime. Reversely, the non-linear losses mechanism does not

affect the threshold h2!1. The two non-linear processes are

not strongly involved in the beginning of the second regime

because the predictions of the complete and the linearized

model are only barely shifted. These observations call for an

TABLE I. Geometrical parameters of the recorder used in the experiment,

modal parameters of the resonator and computation parameters.

Recorder parameters W¼ 4 mm H¼ 12 mm /in¼ 19 mm

h¼ 0.8 mm l¼ 265 mm yoff¼ 0 mm

Modal parameters x1¼ 3547 rad/s e1¼ 3.966e-2 Y1¼ 28.45 kg/m2

�2¼x2/x1¼ 2.023 e2¼ 3.184e-2 Y2¼ 24.88 kg/m2

�3¼x3/x1¼ 3.066 e3¼ 2.847e-2 Y3¼ 20.24 kg/m2

Computation

parameters

Ts¼ 3 105 b¼ 0.2! 0.6 c¼ 0.2! 0.6

q¼ 1.19 kg/m3 avc¼ 0.5! 0.9 UB¼ 6 ! 75 m/s
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estimation of the influence of both source and damping terms

with respect to the reduced jet velocity. But first, the predic-

tions of the model have to be compared with measurements

made on the experimental setup presented in the next section.

V. EXPERIMENTAL SETUP

A modified Zen-On Bressan recorder is used keeping

the mouthpiece (sound production piece) and replacing the

resonator by a cylindrical pipe whose inner diameter

/¼ 19 mm matches the inner diameter of the mouthpiece of

the recorder. The brass cylindrical pipe has a wall thickness

0.5 mm and the resulting length of the recorder from the flue

exit to the passive end is l¼ 265 mm. The window of size

W¼ 4 mm and Hm¼ 12 mm is surrounded by “ears” of

length lears¼ 7.3 mm. The labium presents a sharp angle of


15 degrees and is slightly curved in the transverse direc-

tion. The flue windway has a length of 46 mm and is slightly

convergent between the input (13.6� 1.5 mm2) to the output

(12.5� 0.98 mm2). The cross section of the flue channel is a

segment of annulus. The other geometrical parameters are

listed in Table I. The use of a cylindrical pipe makes the cal-

culation of the passive response of the pipe easier. The use

of an optimized recorder mouthpiece facilitates the sound

production. The ratio W/h� 4 is convenient compared with

FIG. 4. (Gray lines) Dimensionless frequency obtained by analysis of the linearized model versus reduced jet velocity h¼UB/Wf1 for three values of the rela-

tive convection velocity c¼ 0.2, 0.4, 0.6. The solid lines correspond to frequency whose associated gain is higher than 1. (Black lines) Dimensionless fre-

quency predicted by the complete model and obtained by numerical calculation versus h¼UB/Wf1 for b¼ 0.3, c¼ 0.4 and avc¼ 0.6.

FIG. 5. Regime change thresholds h1!2 (solid line) and h2!1 (dashed line)

estimated by numerical calculation of the complete model versus jet spatial

amplification b for different values of the vena contracta coefficient avc

associated to the flow separation at the labium. Note that the thresholds

h2!1 overlay for the five values of avc. The threshold h2!1 predicted by the

analysis of the linearized model is also plotted in dotted line (at the bottom).
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the restriction of the model. This recorder model was already

studied by Lyons,4 at least for the passive response of the

instrument. Compressed N2-O2 mixture in the same propor-

tion as air is sent into an artificial mouth in which the flute is

plugged as shown on Fig. 6. The artificial mouth is a cylin-

drical cavity of volume 1.5 dm3 filled with an absorbent ma-

terial in order to damp the cavity resonances. The pressure in

the mouth pm is measured by means of an Endevco 8507 C

dynamic pressure sensor. The acoustic pressure is measured

in the bore of the recorder with a microphone B&K 4938 at

16 mm from the cork. The microphone is mounted flush in

the wall of the recorder mouthpiece at an angle of p/2 with

respect to the axis of the window.

The cavity pressure is adjusted manually with a pressure

regulator. The measurement procedure consists in slowly

increasing the blowing pressure pm until the instrument over-

blows on the second regime of oscillation, and then slowly

decreasing the pressure pm back to zero. The whole measure-

ment lasts about 3 min, which ensures a quasi-steady varia-

tion of the cavity pressure. The jet velocity is estimated by

applying Bernoulli’s law: UB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pm=q

p
. The fundamental

frequency f0 is extracted from the acoustic pressure by using

the algorithm YIN40 and the associated amplitude pac is esti-

mated by taking the maximum of a short time Fourier trans-

form near the frequency predicted by YIN. The amplitude p
of the pressure mode is then given by

p ¼ pac

sin
2pf0

c
xm

� �				
				
; (27)

where xm is the distance between the microphone and

the passive end, including the radiation end correction

Dl¼ 0.3� 19 mm. The amplitude of the pressure mode is

converted into a dimensionless acoustic velocity by using

pS/SwqcUB (including the ratio of pipe and window cross

sections S/Sw). Results are shown in Figs. 7 and 8.

As other authors have already found (for instance

Meissner41 on a Helmholtz resonator), the fundamental fre-

quency has a different dependence on the jet velocity in two

FIG. 6. Experimental setup. Compressed N2-O2 mixture is sent to the artifi-

cial mouth to sound the recorder. The blowing pressure is adjusted using the

regulator. The artificial mouth pressure is measured using a pressure sensor.

Acoustic oscillation is measured at a close distance from the window.

FIG. 7. Dimensionless frequency f/f1 versus reduced jet velocity h¼UB/Wf1 for experiment (dot) and numerical resolution of the complete model (solid line)

for avc¼ 0.7, b¼ 0.26, c¼ 0.4. The aeolian regimes predicted by the model are not plotted. For information, frequency predicted by the linearized model is

plotted in dashed gray line.
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different ranges. At low jet velocity, the frequency rapidly

increases with the jet velocity h. For higher jet velocities, the

frequency slowly increases until it reaches the regime

change and the system overblows. On the second regime,

one can observe the same trend: f0 slowly increases with the

velocity. The amplitude of oscillation is plotted on Fig. 8.

Amplitude measurements of the two first regimes are con-

sistent with the literature.30 The first regime amplitude rap-

idly grows for low jet velocity and slowly decreases for

higher jet velocities. The dimensionless amplitude of the

second regime is close to that of the first (Fig. 8), as already

noticed by Verge,30 Dequand,17 and Fabre.38

VI. DISCUSSION

As discussed in Sec. IV C, three main parameters of the

model are adjustable (the relative convection velocity c, the

jet spatial amplification b and the vena contracta coefficient

avc). Figure 7 presents the oscillating frequency measured in

this experimental setup compared to that predicted by the

model for particular values of the model parameters. The

agreement is fairly good for the prediction of the frequency

for the first and second oscillating regimes, except at low jet

velocities. The hysteresis thresholds are accurately predicted

for values of avc, b, and c close to those found in the

literature.6,31–33 However, the model underestimates the am-

plitude of oscillation by a factor of 2 (Fig. 8). Because of the

complex balance between the source and the dissipation

terms, the relation between the adjustable parameters and the

amplitude of the limit cycle is not straightforward. For

instance, the numerical value of the jet spatial amplification

(b¼ 0.26) is slightly lower than those found in the literature

(b 
 0.5) and is expected to have a great influence on the

amplitude of oscillation. The linear losses (viscous, thermal,

and radiation) are difficult to estimate accurately and also

affect the source/dissipation balance. The set of values of the

parameters has been adjusted to match the frequency and the

hysteresis.

The shift of frequency associated with control blowing

pressure (or jet mean velocity) is an important characteristic

of an instrument as seen from the player’s and maker’s point

of view. However, the hysteretic jump of frequency between

different oscillating regimes is even more crucial to the mu-

sical applications. The model presented in the previous sec-

tions permits one to test the influence of several parameters

on the oscillation thresholds.

Because the model overestimates aeolian regimes at low

blowing conditions (high Strouhal number), the discussion is

restricted to the first and second regimes of oscillation. The

thresholds between the first and the second regimes for

increasing (h1!2) and decreasing (h2!1) jet velocities are pre-

sented on Fig. 5, for different values of the non-linear losses

(avc), as a function of the linear loop gain (b). The lower limit

of oscillation on the second regime predicted by the linearized

model is also plotted for comparison. The first striking point

is that the transition from the second regime to the first one

(h2!1) is independent from the amplitude of the non-linear

losses (avc) while the transition from the first regime to the

second one (h1!2) is strongly affected by the non-linear

losses. Furthermore, the transition h2!1 predicted by the anal-

ysis of the linearized model is close to the one observed by

the complete non-linear model. In contrast, the transition

h1!2 predicted by the linearized model (not plotted on Fig. 5)

is at least one order of magnitude higher than the one pre-

dicted by the complete non-linear model. As a result, the

threshold h1!2 for increasing jet velocity appears to be con-

trolled by the non-linear losses while the threshold h2!1 for

decreasing jet velocity is independent of linear losses.

There are two types of non-linearities in the model. The

first one is induced by the saturation of the jet drive mecha-

nism when the amplitude of the jet oscillation becomes

wider than the half jet width [Eq. (14)]. The second is associ-

ated with the flow separation at the labium [Eq. (15)]. The

relative contributions of these two terms have already been

studied by Fabre.38 The solver presented here permits one to

quantify these contributions. For the purpose of comparison,

the acoustic power PJD generated by the jet drive source

term, the acoustic power PLi associated with the linear dissi-

pation by radiation and propagation of the mode i, and the

acoustic power PVX dissipated by the flow separation at the

labium are calculated as

PJD ¼ hSwvacDpsrci;
PLi ¼ h�SweixiY

�1
i vivaci;

PVX ¼ hSwvacDplosi;
(28)

where h � i indicates averaging over a period. The three con-

tributions are plotted on Fig. 9 as function of the reduced jet

velocity for oscillation on the first and second regimes. The

energy balance PJD¼PVXþRiPLi is verified. As discussed

by Fabre,38 the decrease of the sound production PJD after

its maximum value, observed here on both first and second

regimes, is due to the evolution of the phase shift between

the source term and the acoustic velocity. As expected from

the behavior of the model observed on Fig. 5, the power

FIG. 8. Dimensionless amplitude p/qc0UB versus reduced jet velocity

h¼UBWf1 for experiment (dot) and numerical resolution of the complete

model (solid line) for avc¼ 0.7, b¼ 0.26, c¼ 0.4.
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PVX associated with the flow separation at the labium repre-

sents a small contribution to the energy balance of the sys-

tem for the lowest jet velocities of both first and second

regimes. This contribution becomes larger as the jet velocity

increases, approaching the contribution of linear losses for

the second regime.

VII. CONCLUSION

This paper presented a model designed from different

elements of the literature that showed good agreement with

the experimental data presented here. Notably it predicted

the frequency dependency on the blowing pressure and the

thresholds of regime change. Crude approximations were

made in order to ease numerical solution, and are determin-

ing factors of the restrictions of the model. Both models of

jet and sources are inappropriate at high Strouhal number

corresponding to very low blowing pressures. The passive

description relies on low frequency assumptions. However,

it provides fair results for higher blowing pressures.

The effects of each part of the model have been identi-

fied. The amplitude of the limit cycle depends on the jet ve-

locity: different mechanisms rule the dynamics at different

jet velocities. The onset of oscillation is well described by a

linearization of the source model. For higher jet velocity, the

saturation of the jet drive mechanism, followed by the satu-

ration of the vortex shedding mechanism, are determinant in

the prediction of amplitudes of oscillation. The end of the

first regime depends on the strongest non-linear process,

namely the flow separation at the labium. By contrast, the

onset of the second regime is determined by the variation of

the loop gain and of the relative convection velocity.

This model could provide elements of understanding rel-

evant to an instrument maker’s choices. For instance, the loop

gain has a link with the quality factor of the resonator and

modifies both the onset of oscillation and the frequency shift

with blowing pressure. The vena contracta coefficient of the

flow separation seems to control the regime change threshold

and depends on the presence of sharp edges in the resonator.

The model also provides a consistent framework to study

spectral enhancement. Further improvements should focus on

the jet and source descriptions covering a wider range of con-

trol blowing pressure and geometrical conditions.
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APPENDIX: METHOD OF SLOWLY VARYING
PARAMETERS

To solve the set of equations (25), it is possible to use

the method of slowly varying parameters. As the resonator is

described by several modes, solutions of (25) are expected to

be of the form

ynð~tÞ ¼ Anð~tÞ sinð�n~tþ hnð~tÞÞ; (A1)

where the amplitude An and the phase hn are slowly varying

functions of the time ~t. Their variations over a period are

neglected. By applying slowly varying calculation,42 equa-

tions on amplitude An and phase hn are written:

�n
_An ¼ �

�nen

2
An

� ln

2p

ð2p

0

d2

dt2
n

tanh yðt� sÞð Þ½ � cos tndtn

þ fn

2p

ð2p

0

d

dtn
jyðtÞj2 cos tndtn;

�nAn
_hn ¼ �An

ln

2p

ð2p

0

d2

dt2
tanh yðt� sÞð Þ½ � sin tndtn

þ fn

2p

ð2p

0

d

dtn
jyðtÞj2 sin tndtn;

(A2)

where tn¼ �ntþ hn. The main difficulty of the method of

slowly varying parameters consists in the evaluation of the

projections against sinusoidal functions. The last term of the

right-hand side of Eq. (A2) could be developed in terms of

series since y¼Rnyn.

As explained by Fletcher,9 the expansion of non-linear

terms leads to a new series where the nth oscillating term is

given by cos((�i 6 �j 6 �k 6 � � �)t) where i 6 j 6 k 6 � � �
¼ 6 n. The method consists of keeping the terms which cor-

respond to the pulsation of the mode (considering �n ’ n�1)

and neglecting the others. The other non-linear term (tanh)

requires a Taylor expansion in order to perform the same cal-

culation. Thus, the whole resolution of this problem involves

FIG. 9. Powers associated with the source (PJD), with the losses due to the

flow separation at the labium (PVX) and with the losses due to propagation

and dispersion (PL) versus reduced jet velocity h¼UB/Wf1 for the two first

regimes and for avc¼ 0.7, b¼ 0.26, c¼ 0.4. Dashed lines represents the two

thresholds h1!2 and h2!1. The powers are estimated by numerical calcula-

tion. For each regime, the energy brought by the source at low jet velocity is

balanced by the linear losses whereas at higher jet velocity both losses

mechanisms have to be taken into account.
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a lot of algebra. The calculation is limited to one mode. For

each step of integration of Eq. (A2) the projections against

sinusoidal functions are numerically estimated avoiding the

expansion of the non-linear function.

Figure 10 compares the amplitude and the frequency

estimated by the solver described in Sec. IV with those pre-

dicted by the method of slowly varying parameters for dif-

ferent values of the reduced jet velocity h. Both methods of

resolution predict the same trend as that described in Sec. V.

However, the predictions are slightly shifted, especially

when the amplitude of oscillation is smaller than its maxi-

mum value.
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FIG. 10. Dimensionless frequency f/f1 and dimensionless amplitude pS/

Swqc0UB versus reduced jet velocity h¼UB/Wf1 for the method of slowly

varying parameters (triangle) and for the numerical calculation described in

Sec. IV (solid line) for avc¼ 0.6, b¼ 0.3, c¼ 0.4, Umin¼ 13 m/s, Umax

¼ 50 m/s, and Ts¼ 150 000.
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