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1.Introduction 
Pulse waves of pressure and flow rate in the arterial 
system can be well captured by 1D models of blood 
flow. In the 1D models, the mechanics of the 
arterial wall is taken into account to close the 
governing equations. Although the viscoelastic 
behaviour of the wall has been recognized as a 
fundamental factor for a long time, most 1D 
simulations in literature adopted elastic models for 
simplicity.  A recent in vitro study [Alastruey et al. 
2011] showed that the viscosity has considerable 
influence on the pulse waves, especially at the 
peripheral part of the arterial network.  However, 
the vessels in the study were made of polymers 
which are actually much less viscous than the real 
arterial wall. There are also some other studies on 
in vivo conditions, such as ref. [Reymond et al. 
2009]. But the estimation of the wall viscoelasticity 
was done by interpolation on limited available data. 
In this paper, the coefficients of the viscoelastic 
model were estimated from in vivo measurements. 
The pulse wave in an arterial tree was simulated by 
a nonlinear 1D blood flow model. The effect of the 
viscoelasticity of the arterial wall on the pulse wave 
was investigated.  
 
2. Methods 
The experimental data were obtained from a group 
of eleven ovines. The experimental protocol 
conformed to the European Convention for the 
protection of Vertebrate Animals used for 
Experimental and Scientific Purposes. The arterial 
tree of the ovine was perfused by an artificial heart 
under general anesthesia. Synchronized recording 
of pressures and diameters was applied on seven 
anatomical locations. For more details on the 
animal experiments, see ref. [Armentano et al. 
1995]. 
The viscoelasticity of a material can be modeled by 
a Kelvin-Voigt model, where the tensile stress σ is 
related with the strain stress e by  

 

In this equation, E is the Young's modulus, and φ is 
the viscosity coefficient of the material. With the 
hypothesis of a thin-walled vessel, we derived the 
constitutive relation between the transmural 
pressure P (the difference between internal and 
external pressure) and the radius r of the circular 
cross-section, 

 

where r0 is the undeformed radius, η the Poisson's 
ratio, and h the thickness of the arterial wall. In this 
equation, P is in linear relation with two quantities, 
1/r and dr/(rdt). The coefficients were estimated by 
linear regression from the time series on the 
pressures and diameters.  
Incorporating this viscoelastic model, the governing 
equations of the 1D flow can be expressed in terms 
of the cross-section area A and the flow rate Q ， 

 

where ρ is the density of the fluid and A0 is the 
undeformed cross-section area. The two 
coefficients for elasticity and viscosity are  

 and  

We thus obtained a hyperbolic-parabolic system 
and we solved it by an operator splitting method 
which separates the hyperbolic and the parabolic 
parts. The hyperbolic part was solved by a Taylor-
Galerkin scheme and the parabolic part by a Crank-
Nicolson scheme. The implementation of the 
schemes has been verified by our previous studies 
[Wang et al.2012, Saito et al. 2011].  
  
3. Results and Discussion 
The experimental data were recorded at the seven 
anatomical locations as shown in Figure 2 (top): 
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Ascending Aorta (AA), Proximal Descending aorta 
(PD), Medial Descending aorta (MD), Distal 
Descending aorta (DD), Brachiocephalic Trunk 
(BT), Carotid Artery (CA) and Femoral Artery 
(FA). In Figure 1, one case of comparison between 
data and the fitted model is shown (at MD). The 
model captures the viscoelastic behaviour very well. 

 
Figure 1. One case of comparison between data 
(star) and the fitted model (red line) at the location 
MD: the time series of pressure (a) and the 
hysteresis loop of radius and pressure (b).  
 
From the coefficients of the constitutive relation, 
we further evaluated r0, Eh and φh. The mean 
values and standard deviations among the group of 
ovines are shown in Table 1. We note two main 
patterns about the value of the coefficients. First, 
descending from the central to the peripheral part of 
the tree, both stiffness and viscosity values increase. 
Second, the stiffness and viscosity values at carotid 
artery are significantly larger than the values at 
other locations. 

Artery r0 (cm) Eh 
(10 5 Pa cm ) 

φh  
(10 4 Pa cm s) 

AA 0.9526±0.0659  0.5712±0.0831   0.1002±0.0319 

PD 0.8841±0.0180  0.7608±0.0726  0.1283±0.0284 

MD 0.8594±0.0190  0.7872±0.0898 0.1652±0.0675 

DD 0.8294±0.0138  1.5806±0.1788 0.3015±0.0672 

BT 0.8994±0.0996 0.7107±0.1914 0.1382±0.0636 

CA 0.4070±0.0263 3.2928±0.4250 0.6367±0.1290 

FA 0.2826±0.0160 0.7000±0.1157 0.1259± 0.0392 

Table 1. The mean values and standard deviations 
of the undeformed radii, elasticity and viscosity 
coefficients of the group of ovines.  
   
Figure 2 shows the history profiles of flow rate and 
pressure at two locations, one at the central part 
(MD) and the other at the peripheral part (CA). A 
half sinusoidal flow rate was imposed at AA as 
inflow to the network. The amplitude and the 
frequency of the numerical results are comparable 
with the measured data. By comparing the results 
predicted by the two models, with and without the 
wall viscosity, we clearly observe the smoothing 
effect of the viscosity on the waveform, especially 
for the flow rate. 
 
 4. Conclusions 
We recorded the time series of diameters and 
pressures at seven locations of ovine arterial tree. 
The viscoelastic behaviour of the wall was modeled 

by a Kelvin-Voigt model and the coefficients were 
derived by linear regression. The 1D simulations of 
pulse wave with these values showed that the 
smoothing effect of the viscosity on the waveform 
is very significant.   

 
Figure 2. The topology of the ovine arterial tree 
(top) and the history profiles of flow rate and 
pressure at two locations.  
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