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1 Introduction 
Simulating the flow in an arterial tree is a 
challenging problem. Many authors (since for 
example [7]) have succeeded in simulating an 
arterial tree with a monodimensional (1D) approach 
or integral approach, among them [5] and recently 
[1,6]. The two later [1] and [6] compared 
successfully an experimental realistic visco elastic 
model of tubes and such 1D models. Here, we 
emphasize on the numerical methods and we will 
simulate results of [6] as test case. 
 

2 Methods 
The monodimensional integral model of mass and 
momentum conservation is used for the arterial 
network: 
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where A is the cross section area of the vessel (R is 
the radius), Q the velocity flux, f the friction 
coefficient. The pressure-section relation is: 
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where K is the stiffness of the artery, a nonlinear 
square effect is added, and we take into account a 
Kelvin-Voigt visco-elastic effect. Boundary 
condition at the entrance is a half sinusoidal pulse. 
Continuity of pressure and conservation of fluxes  
at the nodes are preserved. To mimic the resistance 
of the peripheral vessels,  appropriate reflection 
coefficients of  pressure are imposed at the 
outflows.   
We turn now to the numerical part. We test two 
classes of resolution. First, we use finite element 
with a Taylor-Galerkin scheme as explained in [3]. 
Second, a finite volume discretization is performed. 
To do the latter the system is written in a 
conservative form, for example the .elastic part is:  
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3 Results and Discussion 
Our aim here is to carefully compare those  
numerical methods, finite volumes of first and 
second order, and finite elements. 
We first test the schemes on simple configurations 
(often linearized, with or without damping…) 
where some analytical solutions are available. For 
example, on figure 1 we present the propagation 
(without any viscous effect) of a pulse and its 
reflection at a bifurcation. This is done for several 
schemes. The reflection and transmission 
coefficients of the waves through the bifurcation 
(for each scheme) agree with the analytical 
analysis. We observe that there is virtually no  
numerical diffusion for the FE, but a very small, 
almost un-noticeable dispersion. The FV methods 
are more diffusive. Although the accuracy of the 
second order FV is comparable with FE, it  presents 
a steeper slope and a squared off effect due to the 
slope limiter..  
  

 
Figure 1 Example of simulation of a signal in a 
straight tube with a bifurcation (configuration 7-8 
9) of figure 2 (same mesh for all the methods). 
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Figure 2 Example of simulation of the experimental 
results of [6], a pump produces a pulse of water 
which propagates in a 9 arteries network. The 
measurement  of velocity by Doppler is done at 
“the neck” of the schematic human network. The 
values of parameters are those of [6]. 
 
As we observe that the numerical schemes are 
sensible to changes in the artery section (tapering/ 
aneurism) which is a source term in the equations.  
 
A robust method (called "well-balanced" method) 
issued from Shallow Water equations by [2] is 
used. His main advantage is to properly redistribute 
in the numerical flux the changes of section. It 
preserves well the flux and avoids errors in the 
flow, for example there are no spurious flow due to 
those section changes. 
Those spurious numerical flows appear even if 
there is no flow: in the case of Shallow Water, the 
"equilibrium of the lake at rest" [2] is preserved, in 
the Biomecanical context, the "equilibrium of the 
man at eternal rest" is preserved 
 
4 Conclusions 
We have presented a 1D artery flow model with 
finite elements and finite volume numerical 
resolutions. The numerical models appear to be 
reliable as we checked them against analytical and 

experimental results. The differences between the 
models correspond to the errors of methods and 
numerical accuracy. We are now able to plan to 
present a more realistic arterial network and we 
want to couple it to a venous network such as the 
venous network of [4].  
  
 
 
References  
 
[1] Alastruey et al. “Pulse wave propagation in a 

model human arterial network: Assessment of 
1-D visco-elastic simulations against in vitro 
measurements”, Journal of Biomechanics 44 
(2011) 2250–2258 

[2] E. Audusse, et al. A fast and stable well-
balanced scheme with hydrostatic 
reconstruction for shallow water flows. SIAM J. 
Sci. Comput., 25(6):2050–2065, 2004. 

[3] L. Formaggia et al. One dimensional models for 
blood flow in arteries, ,  Journal of engineering 
mathematics}, 47, 251-276, 2003 

[4] J-M Fullana, S. Zaleski, A branched one-
dimensional model of vessel networks. J. of 
Fluid Mechanics, 2009. 621: p. 183–204␣ 

[5] M.S. Olufsen, et al. Numerical simulation and 
experimental validation of blood flow in arteries 
with structured-tree outflow conditions. Annals 
of Biomedical Engineering, 28:1281–1299, 
2000. 

[6] M. Saito et al. One-dimensional Propagation 
Model of Pressure Wave in a Model of Human 
Arterial Network: Comparative Study of Theory 
and Experiments, Journal of Biomechanical 
Engineering 2011,Vol.133 / 121005-1  

[7] Zagzoule, M; Marc-Vergnes, JP. A global 
mathematical model of the cerebral circulation 
of the man. Journal of Biomechanics, 19(12), 
1015-1022, 1986. 

  
  
 
 
 
 
 
 
 
 
 
 

 


