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Abstract. In recent experiments it was shown that a planar silo with
two discharge orifices which were separated by a distance, L, displayed
counter-intuitive flow rate phenomena as granular material was discharged
from it. In contrast to previous studies, the flow rate did not monoton-
ically decrease as the separation between orifices increased. Instead, a
rapid decrease in flow rate was observed as the two orifices were sep-
arated until, at a critical orifice separation, a minimum flow rate was
reached. Upon further separating the two orifices the flow rate steadily
increased to the infinite separation limit of two openings. In this work we
numerically investigate this so-called ‘flow-rate dip’ phenomenon. The
kinematic and µ(I) models are used to examine the two opening silo,
with the kinematic model failing to capture any flow rate dynamics and
the µ(I) model capturing the dynamics if appropriately large (yet still
physically reasonable) friction parameters are used.
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1 Introduction

Granular discharge from a silo under the influence of gravity is a complex system
to model. In particular, a recent experimental study [1] has shown that for a
planar silo with two openings (see Figure 1), the separation distance, L, of these
openings cause some unusual flow rate dynamics. For a large separation, the flow
rate appears to approach the expected flow rate for two distinct silos with a single
opening. When there is zero separation (i.e. the silo has one larger opening),
the flow rate is much higher, as predicted by the Beverloo relation. In between
these extremes, the flow rate does not monotonically decrease, it instead dips
sharply to a local minimum for a small separation, then slowly increases back
to the large separation value. This behaviour had not previously been observed
in similar experiments [14, 13] and the new phenomenon was attributed to the
larger values of inter-particle friction of the particles used in the study [1].

While it has been shown that discrete element models (DEM) with appro-
priately large values of inter-particle friction are able to reproduce the observed
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Fig. 1. Diagram of the two opening silo.

flow-rate dip [1], as yet, no continuum model of dense granular flow has success-
fully predicted such a dynamic. As such, the two opening silo is an excellent test
of continuum mathematical models of granular flow and may potentially offer in-
sight into the dynamics that are difficult to observe using DEM or experimental
methods.

In this work we study two continuum models - the kinematic model [9] and
µ(I) model [8, 4], and use these to examine the flow rate from a dual orifice silo.

2 Numerical Models

2.1 Kinematic model

The kinematic model [9] can be formulated with the assumption that a gradient
in vertical velocity causes horizontal motion i.e. u = −B ∂v

∂x where u and v
are the horizontal and vertical velocity components respectively, and B is some
constant parameter. This assumption combined with that of incompressibility
gives a relatively simple model of granular flow, taking the form of the heat
equation [7],

∂v

∂y
= B

∂2v

∂x2
. (1)

This partial differential equation can be solved exactly across the infinite half-
plane with a Dirac delta v = δ(x) boundary condition at y = 0, corresponding
to an infinitesimal orifice. The solution of this boundary value problem is

v = − Q√
4πBy

exp
(
− r2

4By

)
, (2)

where Q is the flow rate and r =
√
x2 + y2. For a silo with two openings sepa-

rated by some distance L, the boundary condition at y = 0 is v = δ(x− L/2) +
δ(x+ L/2), resulting in

v =
Q√
4πBy

exp
(
(x− L/2)2

4By
+

(x+ L/2)2

4By

)
. (3)
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Note that this model requires scaling by the flow rate, by using the Beverloo
relation for example. For the two opening case, this means that the flow rate
for different separations is constant, since the flow rate is effectively determined
for each orifice individually. This common model of granular flow from a silo is
unable to capture the flow-rate dip phenomenon.

2.2 µ(I) model

The µ(I) model defines an effective viscosity ηeff which can be used in the in-
compressible Navier-Stokes equations to model the flow of granular material. In
a standard incompressible fluid, shear stress τ can be related to shear rate γ̇ by
the relation τ = ηγ̇, where the viscosity of the fluid η is assumed to be constant.
For granular material, the viscosity is determined by the bulk friction µ, which
changes with the dimensionless ‘inertial number’, I, which is given by

I =
γ̇d√
P/ρ

, (4)

where γ̇ is the shear rate, d is the particle diameter, P is the confining pressure,
and ρ is the grain density.

The friction, µ, is the ratio between the shear stress and the pressure, i.e.
µ =

τ

P
, where τ is the shear stress. It has been found that µ increases with I for

granular material in the dense regime [8], with a common form of the relation
between µ and I given as

µ(I) = µs +
∆µI

I0 + I
, (5)

where µs, I0, ∆µ are all constant parameters. From this relation, the effective
viscosity can be defined as

ηeff =
µ(I)P

|γ̇|
, (6)

with a maximum value, ηmax, imposed to prevent numerical issues in stationary
zones [6]. The effective viscosity together with the incompressible Navier-Stokes
equations

∂u

∂t
= −(u · ∇)u+∇ · (η∇u)− ∇P

ρ
+ ρg, (7)

defines the velocity given initial and boundary conditions. At the side walls and
base, no-slip boundary conditions are used, with a free surface at the top and
at the orifices. Note that this model is a planar analog, and does not take into
account friction at the front and back walls.

This model has previously been used to model a single opening planar silo
[10, 11] and the collapse of a granular column [6]. Recently, a selection of conical
silos were modelled using the µ(I) model and compared to experimental data
gathered from Magnetic Resonance Imaging experiments [3]. It was shown that
the µ(I) model was able to qualitatively predict the shape of velocity contours
in the silo, but was not able to accurately quantify the flow rate, likely at least
in part due to the incompressible assumption.
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3 Results

The µ(I) model was implemented in Basilisk [12] (a computational fluid dynam-
ics software) for a two opening silo for various orifice separations, L. The case
where the separation is zero (L = 0) is equivalent to a silo with a single orifice
twice the orifice width. For each simulation the predicted flow rate is normalised
by the flow rate for the zero separation case. To gauge the effect of model con-
stants the simulation is also repeated for various different parameters for the
µ(I) rheology, shown in Table 1. The results are shown in Figure 2. Basilisk is
designed to solve fluid dynamics problems in non-dimensional variables hence we
scale our system such that Ws/l̂ = 10, where Ws is the silo width and l̂ is some
reference length. The non-dimensional particle diameter used was d̂ = 0.033, the
scaled orifice width was Ŵ = 0.625 and the initial height of the bed of grains
was Ĥ = 4.5. A scaled maximum viscosity of η̂max = 100 was used to regularise
the viscosity at low shear rates.

Low friction 0.32 + 0.28I/(0.4 + I)

Medium friction 0.47 + 0.38I/(0.5 + I)

High friction 0.62 + 0.48I/(0.6 + I)

Extra high friction 0.77 + 0.58I/(0.7 + I)

Table 1. Different parameters for µ(I) implementation in Basilisk

For low friction values, the model predicts a monotonic smooth decrease from
zero separation distance to large separations, as observed in some past studies
[14, 13]. However, for larger friction values the flow rate decreases more sharply
as the distance between orifices increases, and for large enough friction values
the flow rate dips below the large separation limit at a critical value of L, before
rising back up to a steady rate. The behaviour for high friction coefficients is
qualitatively similar to that observed experimentally.

4 Conclusion

In this work we numerically studied whether continuum models of granular flow
are able to capture the ‘flow rate dip’ dynamic in a two opening silo, as observed
experimentally. It was shown that kinetic models, such as the kinematic model
[9], are unable to produce flow rate interference between the two openings. How-
ever, for large enough values of the friction parameters, the continuum model
with the µ(I) granular rheology is able to capture this interference and a type of
flow rate dip. For lower values of friction, a monotonic decrease in flow rate was
observed as the spacing between openings was increased. This work reports the
first time a flow rate dip has been observed in a continuum model of granular
flow. Since the µ(I) model is purely a local-model (as compared with non-local
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Fig. 2. Normalised flow rate for various orifice separations and µ(I) parameters.

models of granular friction [5]), this suggests that the flow rate dip is a local
effect. The flow rate dip can not be associated with a finite size effect, since, in
our continuum model, the particle size enters only into the inertial number def-
inition. Furthermore, since the model is of incompressible type, the dip in flow
rate appears to be mainly caused by pressure or shear-rate dynamic interaction.
Fully explaining the observed phenomenon is ongoing work.

We note that the values chosen for the µ(I) parameters greatly affect the
dynamics, with high bulk friction being necessary to capture the dip in flow
rate. The choice of material in experiments is also important, as experiments
with relatively smooth non-frictional granules such as glass beads have lower
bulk friction [8] may miss some granular dynamics. It is unclear whether any
other phenomena contributes to this flow rate dip, with further work needing
to be done to see if accounting for non-local effects [5], dilatancy [2], and wall
friction [15] improves the prediction of two opening silo dynamics.

There are still outstanding problems with the µ(I) model. In particular, the
µ(I) rheology can capture the shape of the velocity field in a silo, and effect
of changing certain factors such as the distance between two orifices, but it
gives poor predictions for the actual flow rate [3]. Further work may reveal
that accounting for additional factors could provide a more powerful model for
predicting the dynamics of granular material discharging from a silo.
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