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Gas-assisted discharge flow of granular media from silos
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We studied experimentally the discharge of a vertical silo filled by spherical glass beads
and assisted by injection of air from the top at a constant flow rate, a situation which
has practical interest for nuclear safety or air-assisted discharge of hoppers. The measured
parameters are the mass flow rate and the pressure along the silo, while the controlled
parameters are the size of particles and the flow rate of air. Increasing the air flow rate
induces an increase in the granular media flow rate. Using a two-phase continuum model
with a frictional rheology to describe particle-particle interactions, we reveal the role
played by the air-pressure gradient at the orifice. Based on this observation, we propose a
simple analytical model which predicts the mass flow rate of a granular media discharged
from a silo with injection of gas. This model takes into account the coupling with the gas
flow as well as the silo geometry, position, and size of the orifice.

DOI: 10.1103/PhysRevFluids.4.124305

I. INTRODUCTION

The flow of granular media cannot be simply described using standard fluid models, especially
when coupled with the flow of an interstitial fluid. Continuum models for granular media using
a specific frictional rheology are still under development. Among these models, let us consider
the so-called μ(I ) rheology, based on a local constitutive law relating the local shear rate and
the stress tensor [1]. Using this μ(I ) rheology, several flow configurations have been successfully
described thanks to numerical simulation, including granular column collapse and discharge of large
and narrow silos [2–6]. These flows only considered dry granular media for which interactions
between the particles and the surrounding fluid can be neglected. In the present study, we consider
the discharge flow of granular media from a silo assisted by injection of air from the top and we
focus on the role of the gas, flowing in a moving granular medium with interactions between both
phases, on the particle flow rate. We start from an experimental study in quasisteady conditions
which reveals several flow regimes. We then show that this two-phase flow can be modeled using
two interpenetrating continuum media: the granular medium with a frictional rheology, and a
Darcy-Forchheimer flow for the gas phase, coupled through drag-related friction.

This study has been motivated by a specific case. Let us consider a hypothetical accidental
scenario in nuclear power plants: following a reactivity insertion in the core of the reactor, a fuel
rod can break and its contents can be ejected toward the surrounding water (at around 600 K and
15.5 MPa). Fuel rods are 4-m-long cylindrical tubes of 1 cm diameter that under some specific
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accidental conditions, could contain high-pressure gases (up to 100 MPa [7]) and small size (in
the range of 10 to 1000 μm) fuel particles. The ejection of those high-temperature particles (up
to around 2000 K) could have serious consequences for nuclear safety, in particular if the flow
rate is high. The impact of the discharge of internal gases on the particles flow rate has thus to be
determined. More generally, similar flow configurations also occur in processes such as air-assisted
discharge of hoppers or pipe conveying.

Let us first briefly consider the discharge of a granular media out of a silo toward a larger vessel at
constant pressure in the absence of any grain-fluid interaction. The steady-state flow rate is mainly
determined by the size of the aperture, say D, and can be computed thanks to the Hagen-Beverloo
law [8,9] (see a translation of the original article of Hagen in [8]). When the aperture is on a lateral
side of a silo of width W , friction along the walls can impact the flow rate for relatively small aspect
ratios W/D [6]. The size of the grain only acts as a second-order parameter: the flow rate depends
on the ratio between the aperture size and the particle diameter, D/d , only for small values of this
number [10–12].

Even without the net gas flow rate through the silo orifice, the interaction between gas and
particles may have to be considered, with viscous friction acting as an additional drag [13]. The
impact of countercurrent air flow on the discharge of silos has been studied both experimentally
[14,15] and numerically using discrete models for particles [16] and is not negligible for small
particles (around 100 μm for glass beads). Air-assisted discharge of hoppers has motivated several
studies [17–19]. Analysis of the flows in several geometrical configurations of rather large silos
leads to the evidence that the pertinent driving force for the granular flow rate through the orifice
is the sum of the weight and the fluid pressure gradient along the normal to the aperture and in its
vicinity. Therefore, models considering the impact of the air flow on the steady-discharge rate have
been proposed that extend the Hagen-Beverloo law to those configurations, [14]. The fluid pressure
gradient can be related to the fluid flow rate through the granular media thanks to classical models
for flow through porous media.

Our main objective is first to assess this behavior for different silo configurations where wall
friction and orifice orientation with respect to gravity are varied. Then we address the ability of a
continuum model to reproduce this behavior thanks to the comparison between numerical simulation
and experimental results. The article is organized as follows. We first present an experimental setup
dedicated to the study of the flow of air and of a simple granular media (glass beads of uniform size
d) through a silo of simple geometry with an orifice of variable size and position; see Sec. II. A
two-phase continuum model is presented in Sec. III together with its numerical implementation in a
simplified configuration. Based on this model, the relation between gas and granular flow rates is an-
alyzed in Sec. IV, where an analytical model is proposed. In Sec. V, the impact of the position of the
orifice is analyzed and the ability of the model to reproduce the influence of this parameter is studied.

II. EXPERIMENTAL OBSERVATIONS

A. Experimental setup

Several silos, which are air tight except at the aperture, have been built for this study by varying
the shape of the tank (cylindrical and rectangular) and the position of the orifice (bottom or lateral),
as can be seen in Fig. 1 and Table I.

The cylindrical hoppers consist of a smooth Perspex cylinder, whereas the rectangular hoppers
have a front wall in Perspex to allow visualization and a back wall in metal. The orifice consists
either of a circular hole of variable diameter D or a rectangular hole of variable dimensions W × D
(where W is the silo thickness for rectangular silos or the orifice arc length for cylindrical silos). The
orifice can be located at the center of the silo bottom or on the lateral wall, 20 mm above the bottom.
To avoid an effect of the walls thickness, they have been bevelled along the aperture with an angle of
30◦ to the vertical (see [6] for more details). The typical height H of the silos is always one order of
magnitude larger than its lateral extent L to prevent size effects. The top of the silo is connected to an
air-injection system (density ρ f = 1.2 kg/m3 and viscosity η f = 1.8 × 10−5 Pa s) which provides a
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FIG. 1. Sketch of setup with (a) cylindrical silo with orifice at the bottom, (b) cylindrical silo with lateral
orifice, (c) rectangular silo with orifice at the bottom, and (d) rectangular silo with lateral orifice. Distances are
given in mm. Gravity is aligned with but opposite to the z axis.

constant volumetric flow rate of air Qair, with a relative variation below 10%, through three holes of
diameter 4 mm (see Fig. 1). The imposed air flow rate was varied between 1 L/min (≈10−5 m3/s)
and 50 L/min (≈10−3 m3/s) and was measured during each run using a mass flow meter, Aalborg
GFM171009 (range 0–5 L/min) or Aalborg GFM371033 (range 0–50 L/min), with an accuracy of
1% and a response time of 1 s. In order to measure the interstitial air pressure pf inside the silo,
3 mm holes are drilled at different locations along a median vertical axis, and the other around the
orifice, as shown in Fig. 1. These holes are closed with a 40 μm mesh, preventing the particles from
going through. Each hole is connected by a tube to one end of a differential piezoelectric pressure
sensor, Honeywell DCAL405DN (range ±1245 Pa) or DCAL430DN (range ±7472 Pa), with the
second end being at the room pressure. The pressure signal was recorded during each run with an
accuracy of ±1% and a frequency of 100 Hz.

The granular materials consist of smooth spherical glass beads (density ρp = 2500 kg/m3,
supplied by Potters-Ballotini) with different sizes d = 124, 190, 375, 538, 762, 1129, and 1347 μm
(the uncertainty is evaluated to be ≈±10%).

The experimental procedure is the following: keeping the aperture closed, the glass beads with
a total mass mt were poured in the silo from the top; then the column height (hp) was measured,
giving the initial bulk particle volume fraction φb = mt/(ρphpSb), where Sb is the area of the silo
cross section. The top of the silo was then closed. After the preparation phase, the air was injected
at a constant flow rate Qair and the orifice of the silo was suddenly opened manually. The beads fall
out of the orifice and are collected within a bucket, with the temporal evolution of the mass m(t )
being recorded using an electronic balance (Mettler Toldeo 6002S) with an accuracy of 0.1 g and a
frequency of 20 Hz. One deduces the instantaneous mass flow rate as Qi = [m(t + δt ) − m(t )]/δt ,
corresponding to the mass of particles falling out of the silo during the time δt = 1 s.

B. Typical results

In this section, we will first focus on the results obtained in cylindrical silos with a bottom
orifice. A typical result is shown in Fig. 2 for L = 60 mm, D = 10 mm. Figure 2(a) shows the
temporal evolution of the instantaneous mass flow rate for a given particle diameter d = 538 μm in
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FIG. 2. Cylindrical silo with a bottom orifice with L = 60 mm and D = 10 mm. (a) Temporal evolution of
instantaneous mass flow rate for d = 538 μm and different volumetric flow rates of air Qair . (b) Mass flow rate
Q vs the particle diameter d for different volumetric flow rates of air Qair . The full line represents Eq. (1) for an
opened-top silo. The dashed lines represent the analytical model [Eq. (23)]. (c) Mass flow rate Q vs volumetric
flow rate of air Qair for different sizes of particles. The solid line represents the mass flow rate of opened-top
silo Qo with d = 1129 μm [Eq. (1)], whereas the dashed line represents Eq. (3).

three conditions: the opened-top silo without influence of air, the closed-top silo without injection
of air, and the silo connected to the air injection system with a constant air flow rate Qair = 12
L/min. A steady-state discharge regime is observed in each explored case. The mean flow rate Q is
given by the mean value of the instantaneous mass flow rate Qi during this stationary regime. We
can see that the highest value of this flow rate is obtained in the case with a constant air flow rate,
demonstrating the strong role of air flow, and the lowest in the case with the closed-top silo, due to
a counterflow of air, notably at the orifice, in this configuration. In Fig. 2(b), the mass flow rate is
plotted versus the particle diameter d for the opened-top silo and different volumetric flow rate of
air, Qair. For the opened-top silo, we recover that the mass flow rate decreases very slightly when
increasing the particle diameter. Following [10–12], the data are well fitted by

Q0 = C0φbρp
[
1 − αDe−β D

d
]
S0

√
gD, (1)

with S0 = πD2/4 the orifice area. The fitting parameters C0, αD, and β are given in Table I (see the
full line). The dependence with the ratio between the aperture size and the particle diameter D/d
can be interpreted as a dilation at the aperture due to steric effects, where we can note

φo = ξφφb
[
1 − αDe−β D

d
]
, (2)

which is the mean volume fraction at the orifice. The fitting parameter ξφ is a constant expected to
be �1. It may account for a dilatation due to other effects than the steric effect, as, for example, the
shear-rate dependence of the volume fraction observed for dense granular flows [20]. This parameter
is included in C0 and cannot be deduced directly from the measurement of the particle flow rate. With
an imposed air flow, the granular flow rate Q becomes all the more sensitive to the air flow rate when
the particles size is small as revealed by the relative inclination of the curves in Fig. 2(b). The value
of Q is notably impacted by Qair for the case of smaller particles (d = 190 μm), whereas for larger
particles, Q tends to the asymptotic value Q0. The permeability is the main property depending on
the particle diameter, which suggests that the coupling between the fluid and the grains is mainly
due to the drag force. In Fig. 2(c), the mass flow rate Q is plotted versus the volumetric flow rate
of air Qair for different sizes of particles. We observe that the mass flow rate increases with the
air flow rate and that it is bounded by two asymptotic behaviors: for small particles, with a very
low permeability (dashed line in the figure), the air entering at the top of the silo does not flow
throughout the granular media but rather pushes it out of the silo, leading to

Q/(ρpφb) = Qair. (3)
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FIG. 3. Cylindrical silo with a bottom orifice with L = 60 mm and D = 10 mm and Qair = 12 L/min
[corresponding to the purple curve in Fig. 2(a)]. (a) Temporal evolution of the instantaneous pressure along
the cylindrical silo. (b) Mean pressure in the granular bed along the vertical axis. The black dashed (red dash-
dotted) line corresponds to the estimated pressure gradient close to (far from) the orifice. The corresponding
equation is y = 58 010x (y = 3856x + 541.6).

For large particles with a very high permeability, and small air flow rate, the air flows easily
throughout the granular media and does not affect it, leading to Eq. (1) [see the full line in Fig. 2(c)].

Figure 3(a) shows how the instantaneous pressure of the air along the silo varies with time during
the discharge. The room pressure has been subtracted to the signal, such that the reference pressure
at the end of the discharge is zero. There is a small overpressure before opening due to the injection
of air. During the discharge, a build-up of the pore pressure is observed, corresponding to an air
flow through the granular column toward the orifice. For each position, we can see that the pressure
exhibits an initial plateau, followed by a quasilinear evolution overlapping other signals. The plateau
corresponds to the time during which the sensor is located inside the granular bed. The flow rates and
permeability of the granular material being constant, the pressure drop of air between the position
of the pressure sensor and the orifice is indeed expected to be constant. Moreover, when the pressure
taps are located above the top of the granular bed, with the pressure in this reservoir being uniform,
the signals of the sensors are superimposed. The pressure drop is then related to the bed height
within the silo, which decreases linearly with time for this stationary discharge. From the plateau,
we can deduce the mean air pressure during the discharge, pf , which we have plotted in Fig. 3(b) as
a function of the position along the vertical axis. As expected, we observe that the pressure gradient
is constant inside the granular material, except close to the orifice where we observe a much stronger
pressure gradient, (∂ pf /∂z)|z≈0 ≈ 15(∂ pf /∂z)|z�0, in the case considered. The orifice surface being
smaller than the silo surface, the air velocity and thus the pressure gradient are expected to be higher
at the orifice, with a factor ≈(L/D)2 ≈ 36 in this case. We recover a lower coefficient than the
section ratio for all the configurations studied (varying L and D as summed up in Table I), which
seems to suggest that it is not due to the position of the sensor. We rather interpret this observation
as an effect of the dilation of the granular media near the orifice which tends to facilitate the air
flow by decreasing the permeability and therefore decreasing the local pressure gradient for a given
flow rate.

III. TWO-PHASE CONTINUUM MODELING

A. Governing equations and closures

To capture the coupling between the fluid and the granular materials during the discharge of silos,
we consider a two-phase continuum model. The mass and momentum conservation equations for
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the two phases are given by the following expressions (see [21]):

∂ (1 − φ)

∂t
+ ∂

(
(1 − φ)u f

i

)
∂xi

= 0, (4)

∂φ

∂t
+ ∂

(
φup

i

)
∂xi

= 0, (5)

ρ f (1 − φ)

[
∂u f

i

∂t
+ u f

j

∂u f
i

∂x j

]
= (1 − φ)

∂σ
f

i j

∂x j
− fi + (1 − φ)ρ f gi, (6)

ρpφ

[
∂up

i

∂t
+ up

j

∂up
i

∂x j

]
= ∂σ

p
i j

∂x j
+ φ

∂σ
f

i j

∂x j
+ fi + φρpgi, (7)

where φ is the volume fraction of the granular material, up
i and u f

i are, respectively, the local
velocities of particles and fluid, and the tensors σ

p
i j and σ

f
i j are the particle and fluid stress

tensors. The term fi includes the interaction forces between the two phases, beside the buoyancy
φ∂σ

f
i j/∂x j [21]. Given the range of the particulate Reynolds number, Rep = ρ f (u f − up)d/η f �

ρ f Qaird/(η f D2) ∈ [10−1 − 103], we adopt the generalized form that is commonly known as the
Forchheimer resistance law (see [22,23]). This law is established for a fixed porous media in which
a gas flows and we adapt it using the relative velocity between the two phases:

fi = η f

κv

(1 − φ)2
(
u f

i − up
i

) + ρ f d

κi
(1 − φ)3

(
u f

i − up
i

)∣∣u f
i − up

i

∣∣, (8)

where, for a granular medium composed of spherical beads, κv = (1−φ)3d2

150φ2 and κi = (1−φ)3d2

1.75φ
[24].

To close these equations, we first assume that the viscous stresses in the fluid phase are negligible
compared to the drag viscous term, valid as soon as D2 � κv . Under this assumption, the fluid stress
tensor simply reduces to the isotropic pressure part, σ

f
i j = −pf δi j . The stress tensor of the particle

phase, σ p
i j = −ppδi j + τ

p
i j , comes only from direct particle-particle interactions and can be described

by a shear-dependent frictional rheology [1,20,25]:

τ
p
i j = ηp(|γ̇ |, pp)γ̇i j with ηp(|γ̇ |, pp) = μ(I )pp

|γ̇ | , I = |γ̇ |d√
pp/ρp

, and μ(I ) = μs+ �μ

I0/I+1
, (9)

where γ̇i j = ∂up
i /∂x j + ∂up

j /∂xi is the strain-rate tensor with |γ̇ | = √
(γ̇i j γ̇i j/2) its second invariant,

and I0, μs, and �μ are constants which depend on the particle’s shape and material. We do not take
into account the shear-rate dependence of the volume fraction [20]. Finally, in the fluid phase, the
flow is taken as stationary and we suppose that the inertial term and the gravity term can be neglected
with respect to the drag force [26]. These assumptions are valid as soon as ρ f � ρp, D � d and the
Froude number defined on the particle length, Frp = (u f − up)2/gd ≈ Q2

air/(gdD2) � κid−2. For
convenience, let us introduce a volume-averaged velocity for the mixture as Ui = φ up

i + (1 − φ) u f
i .

Given the assumptions above, the two-phase flow obeys

∂ (Ui )

∂xi
= 0, (10)

−∂ pf

∂xi
= η f

κv

(
Ui − up

i

) + ρ f d

κi

(
Ui − up

i

)∣∣Ui − up
i

∣∣, (11)

∂φ

∂t
+ ∂

(
φup

i

)
∂xi

= 0, (12)

ρpφ

[
∂up

i

∂t
+ up

j

∂up
i

∂x j

]
= ∂σ

p
i j

∂x j
− ∂ pf

∂xi
+ φρpgi. (13)
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This system of equations describes the discharge flow of a granular medium interacting with a
moving gas.

B. Numerical implementation in a simplified configuration

To study the effect of the air injection on the discharge flow of the silo, we numerically solved
Eqs. (10)–(13) in a simplified configuration where we focus on the viscous regime for the interstitial
flow of air (κi = ∞). We consider a two-dimensional silo of width L and height H = 4L with an
orifice of dimension D at the center of the bottom of the silo, initially filled with a height hp = 3.9L
of the viscoplastic fluid. The mesh is such that the width of the silo L is divided in 64 computation
cells, which is a good balance between precision and computational time. Following [6] to take into
account the lateral friction on the walls, which is supposed to be a Coulomb force −μw pp on each
wall, we average the momentum equation [Eq. (13)] across the thickness of the silo:

ρ

[
∂up

i

∂t
+ up

j

∂up
i

∂x j

]
= ∂σ

p
i j

∂x j
− ∂ pf

∂xi
+ ρgi + fwi with fwi = −2

μw pp

W

up
i∣∣up
i

∣∣ , (14)

where the effective density of the granular media, ρ = φρp, is taken constant, = ρp, for simplicity.
Indeed, we do not consider the variation of the volume fraction with I given by [20], as we suppose
the granular flow to be incompressible. We solve Eq. (14) made dimensionless using L as a length
scale, ρgL as a pressure scale,

√
L/g as a timescale, and, following Staron et al. [27], we take,

for the rheological constants, μs = 0.4, �μ = 0.28, I0 = 0.4, and μw = 0.1. Moreover, we use
a regularization technique to avoid the divergence of the viscosity when the shear becomes too
small by replacing ηp by min(ηp, ηmax), with ηmax = 100ρ

√
gL3 a constant that is large enough

[2,3,6,27]. Concerning the fluid phase, combining the momentum conservation [Eq. (11)] with the
mass conservation [Eqs. (10) and (12)], we obtain

∂

∂xi

(
ζ

∂ pf

∂xi

)
= 0, (15)

where ζ = κvρ
√

g/L/η f is the dimensionless permeability considered constant across the silo. The
Navier-Stokes simulations are performed with the free software BASILISK [28], which uses a finite-
volume projection method. Two phases are present: a surrounding passive gas for z > hp with a
small density, a small viscosity, and a very high permeability ζ∞ = 100 � 1, and the granular media
for z � hp, where ζ = 1. At each time step, we first solve Eq. (15), corresponding to a Poisson-
Helmholtz equation, using a specific solver [29,30]. We consider a Dirichlet condition at the orifice
(pf = 0) and a Neumann condition at the solid boundaries (ni∂ pf /∂xi = 0), where ni is the vector
unity normal to the surface. To simulate the air injection at the top of the silo, we suppose that
far from the orifice, the flows are uniform, Uz(hp) = Qair/L and up

z (hp) = Qi/ρL, leading to the
boundary condition at the top of the domain,

∂ pf

∂z

∣∣∣∣
z=H

= − (Qair − Qi/ρ)

ζ∞L
ρ
√

g/L. (16)

This condition couples the flows of the two phases. It depends on the instantaneous particle flow
rate Qi, which is computed at each time step. The resolution of Eq. (15) gives the fluid pressure
field pf and its gradients, corresponding to the fluid-particle coupling in Eq. (14), which can then
be solved with a no-slip condition at the solid boundaries and a zero particle pressure at the orifice
and at the top boundary of the domain. Finally, the interface between these two phases is tracked
with a volume-of-fluid method; see [2,3,6,27] for more details.

We performed a set of simulations for L = 90d , D = 0.25L, and W = 0.25L, where we varied
the air flow rate Qair. Figure 4(a) shows the temporal evolution of the dimensionless instantaneous
mass flow rate Qi/(ρp

√
gL3) in three conditions: no coupling with the fluid phase, equivalent to the

opened-top silo, or coupling with the fluid phase, equivalent to the closed-top silo, with Qair = 0
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FIG. 4. Continuum simulation of the discharge of a silo with orifice at the bottom for L = 90d , D = 0.25L,
and W = 0.25L. (a) Temporal evolution of the dimensionless instantaneous flow rate Qi/(ρ

√
gL3) as a function

of the dimensionless time t/
√

L/g. (b) Q/ρ
√

gL3 as a function of Qair/
√

gL3. The lines represent the simple
analytical model [Eq. (23)] with A = 1 (black dashed line) and A = 0.68 (red line).

(no injection of air) and Qair = 0.5
√

gL3. Similarly to the experiment, we observe a steady-state
discharge regime in each explored case and we recover that the highest value of the mean flow
rate is obtained in the case with a constant air flow rate, and the lowest in the case with the
closed-top silo (Qair = 0). In Fig. 4(b), the dimensionless mass flow rate Q/(ρp

√
gL3) is found

to increase with the dimensionless volumetric flow rate of air Qair/
√

gL3, as in the experiments.
Following the experimental measures, Fig. 5(a) shows the temporal variation of the instantaneous
air pressure along the silo. We observe the same behavior as in the experiments, with a build-up
of the pore pressure, and for each position a plateau followed by a linear evolution where all
the signals are finally superimposed. In Fig. 5(b), we have plotted the mean air pressure pf

deduced from the plateau, as a function of the position along the vertical axis. We observe a
constant pressure gradient far from the orifice and a stronger pressure gradient close to the orifice,
(∂ pf /∂z)|z≈0 = (L/D)(∂ pf /∂z)|z�0, exactly due to the change in the air flow area; indeed, in the

(a () b)

0 5 10 15 20

t/ L/g

0.0

0.4

0.8

1.2

pf i
/(

ρ
g
L

)

z/L = 0.1

z/L = 1.0

z/L = 1.9

z/L = 2.8

z/L = 3.7

0 1 2 3 4
z/L

0.0

0.4

0.8

1.2

pf
/(

ρ
g
L

)

FIG. 5. Continuum simulation with orifice at the bottom for L = 90d , D = 0.25L, W = 0.25L, and
Qair/

√
gL3 = 0.5 [corresponding to black line in Fig. 4(a)]. (a) Pressure pf /ρgL along the center of the silo vs

time t/
√

L/g for different positions. (b) Mean pressure in the granular bed along the vertical axis. The black
dashed line corresponds to a linear adjustment of the pressure close to the orifice with y = ηβl

So
(Qair − Q/ρp)x =

1.23x. The red dash-dotted line corresponds to a linear adjustment of the pressure far from the orifice
with y = ηβl

Sb
(Qair − Q/ρp)x + 0.098 = 0.308x + 0.098, where the numerical parameter is obtained using the

least-squares method.
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g
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FIG. 6. Continuum simulation of discharge of a silo with an orifice at the bottom for L = 90d , D = 0.25L,
W = 0.25L, and Qair/

√
gL3 = 0.5 [corresponding to the black line in Fig. 4(a)]. (a) Streamlines for the particle

phase (red dashed lines) and for the fluid phase (black full lines). (b) Air mean pressure gradient 〈∂ pf /∂z〉
averaged along the orifice (�) and in the accelerated zone near the orifice (×) vs

η f

κvSo
(Qair − Q/ρp). The

dashed (full) line corresponds to the best linear fit.

simulation, the volume fraction is kept constant. The transition between the two zones then occurs
for z ≈ 0.42D. Using the results of this simulation, in the next section we propose an analytical
model to predict the flow rate of the discharge of a granular media from silos with injection of air.

IV. AN ANALYTICAL MODEL

A. Hypothesis of the model and numerical validation

We have seen in Secs. II B and III B that the air flow strongly influences the discharge rate of the
silo. As already shown in other flow configurations [17–19] and suggested by the conservation of
the momentum of the particle phase [Eq. (13)], the air-pressure gradient acts as a driving force in
addition to gravity. With the silo discharge controlled by the flow at the orifice [8–10,31], following
the models proposed in [17–19], we consider that the variation of the granular flow due to air flow
can be modeled as a modification of the driving force. Therefore, the particle mass flow rate in the
presence of a fluid pressure gradient, issued from Eq. (1) with a correction of gravity, reads

Q = Q0

(
1 + 1

φoρpg
ni

∂ pf

∂xi

∣∣∣∣
o

)1/2

, (17)

where Q0 is the opened-top silo case flow rate, ni
∂ pf

∂xi
|o is the air-pressure gradient normal to the

orifice (i.e., ∂ pf /∂z|o for a bottom orifice), and φo is the volumetric fraction of particles, both
near the orifice. The fluid pressure gradient depends on the position in the silo and is given by
the momentum balance for the fluid phase [Eq. (11)].

The simulations result [see Fig. 6(a)] supports the assumption of quasivertical streamlines close
to the orifice. Given the constant volumetric air flow rate imposed at the top of the silo Qair and the
corresponding steady particle mass flow rate at the orifice Q, the local relative velocity between the
mixture and particles at the orifice, vrel = ni[Ui(0) − up

i (0)], can be deduced from a mass balance
across the silo assuming incompressibility:

vrel = Qair − Q/(φoρp)

S0
, (18)

where S0 is the orifice cross section. The singular value Qair = Q/(φoρp) exactly compensates the
volumetric granular flux similarly to an opened-top case silo with vrel = 0 and Q = Q0. For lower
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air flow rates at the top of the silo, there is a counterflow of air at the orifice. It leads to the observed
values of Q less than Q0 for the smallest particle size and very low values of Qair. For the sake of
clarity, we introduce the nondimensional flow rates relative to the discharge rate in the absence of
fluid interaction Q0, i.e., for the granular flow rate Q̄ = Q

Q0
and for the air flow rate Q̃ = φ0ρpQair

Q0
, as

well as the notation

± = Q̃ − 1

|Q̃ − 1| = vrel

|vrel| = −∓, (19)

whose values are +1 in the case of cocurrent flow and −1 in the case of countercurrent flow. Let
us assume that the air-pressure gradient is nearly uniform in the orifice region. This leads to [from
Eq. (11)]

ni
∂ pf

∂xi

∣∣∣∣
o

≈ ±
[

η f

κv (φo, d )
|vrel| + ρ f d

κi(φo, d )
|vrel|2

]
. (20)

Figure 6(b) shows that for the continuum simulation in the Darcy flow case (κ−1
i = 0), the mean

air-pressure gradient averaged at the orifice (�) is well represented by Eq. (20) (black dashed line).
Combining Eqs. (17), (18), and (20) provides a direct relation between Q̄ and Q̃ and, after rather
simple calculations, we get

(1 ∓ Ni )Q̄
2 + (Nv ± 2NiQ̃)Q̄ − (1 + NvQ̃ ± NiQ̃

2) = 0, (21)

where we introduced

Nv = η f Q0

φ2
oρ

2
pκv (φo, d )gS0

and Ni = ρ f dQ2
0

φ3
oρ

3
pκi(φo, d )gS2

0

. (22)

For a given air flow rate and system dimensions (say Q̃, Nv , and Ni), Eq. (21) is a quadratic
equation for Q̄. Its single positive root is the solution of our problem (the discriminant � is always
strictly positive and therefore there are always two roots and the second root, which is negative, that
would correspond to particles entering the silo has no physical meaning in our context) and reads

Q̄ = (∓2NiQ̃ − Nv ) + √
�

2(1 ∓ Ni )
with � = N 2

v + 4(1 + NvQ̃) ± 4Ni(Q̃
2 − 1). (23)

The trivial solution Q̄ = 1 when Q̃ = 1 is recovered for any value of Nv or Ni. The asymptotic limit
at large values of fluid-particle inertia dominated drag (Ni → +∞) corresponds to the solution
Q̄ = Q̃: the air entering at the top of the silo does not flow throughout the granular media, but rather
pushes it out of the silo. In Fig. 4(b), we compare the numerical simulation results with Eq. (23)
(black dashed line) for the Darcy flow case Ni = 0. We observe that Eq. (23) overpredicts the
flow rate. This suggests that the mean air-pressure gradient near the orifice needs to be evaluated
on a larger zone (where it should necessarily be lower). In Fig. 6(b), we calculate the mean
air-pressure gradient 〈∂ pf /∂z〉 averaged on a circular zone of size D/2 above the orifice (×),
corresponding roughly to the zone where the particles accelerate [8,31]. We observe that 〈∂ pf /∂z〉
is still proportional to η f |vr |/κv , as supposed in Eq. (20), but with a coefficient A = 0.68, lower
than 1 due to the two-dimensional (2D) flow in this zone (red full line). This implies that the model
given in Eq. (23) should still be valid if replacing Nv by ANv . This corresponds to the red full line
of Fig. 4(b), which gives a good prediction of the flow rate.

B. Comparison with experiments

In contrast with the numerical simulation, in the experiment the granular medium tends to dilate
at the orifice. In the presence of air flow, this dilation also impacts the permeability of the granular
phase in the near orifice region, which suggests that Eq. (20) represents the mean pressure gradient
in the region where the particle are accelerated, considering that φo represents the volume fraction in
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FIG. 7. Silo with orifice at the bottom. (a) Mass flow rate of particles vs volume flow rate of air Qair for
the cylindrical silo with L = 60 mm, D = 10 mm for different sizes of particles. The dashed lines represent
Eq. (23) with the adjusted parameter φo by using the least-squares method. (b) φo/φb vs D/d , with different
sizes of L and D, where the solid line represents Eq. (2) with the fitting parameters given in Table I. (c) Mass
flow rate vs different sizes of particles d for different volume flow rates of air Qair for the rectangular silo
with L = 60 mm, D = 10 mm, and W = 3.5 mm. The full line represents Eq. (1) for an opened-top silo. The
dashed lines represent Eq. (23) with the fitting parameters given in Table I.

this region. To test this hypothesis, we deduce φo as an adjusted parameter of the model [Eq. (23)] to
fit the data of the mass flow rate of particles versus the volume flow rate of air [Fig. 7(a)]. In Fig. 7(b),
we have plotted the obtained value of φo, normalized by φb as a function of the dimensionless
aperture size D/d , for different silo diameters L and aperture diameters D. We observe that the data
superimpose in this representation and are well represented by Eq. (2) (see the full line in the figure),
where for simplicity we use the coefficients α and β obtained previously for the opened-top silo
[Eq. (1)] supposing that the steric effect is scarcely influenced by the air flow. The fitting parameter
ξφ , given in Table I, will then also account for the zone of evaluation of the pressure gradient,
similarly to A in the numerical simulation.

Finally, once supplemented by a law for Q0 and φo given, respectively, by Eqs. (1) and (2), which
rely on four fitting parameters, i.e., C0, ξφ , α, and β, the model [Eq. (23)] is found to be predictive;
see the dashed lines in Fig. 2(b). This model is also valid for a rectangular silo with a bottom orifice,
as can been seen in Fig. 7(c), where the agreement with the experimental data is fairly good, with
the fitting parameters given in Table I.

V. VALIDATION OF THE ANALYTICAL MODEL FOR A LATERAL ORIFICE

We can generalize the analytical model to silos with a lateral orifice [see Figs. 1(b) and 1(d)].
In this configuration, Zhou et al. have shown that the flow rate of an opened-top silo is modified
[6]. They proposed an empirical law to predict the flow rate for a lateral orifice of thickness W and
height D,

Q0l = C0lρφbGD

(
D

d

)
GW

(
W

d

)
F

(
D

W

)
W

√
gD3. (24)

The function F (D/W ) = [1 + γ2D/W ]−1/2 accounts for the effect of the friction on the lateral
wall, which tends to align the velocity with gravity when the thickness decreases and, consequently,
reduces the flow rate. The geometrical functions GD(D/d ) = [1 − αDe−β D

d ] and GW (W/d ) =
[1 − αW e−β W

d ] account for the dilation at the aperture due to steric effects,

φol = ξφφbGD

(
D

d

)
GW

(
W

d

)
. (25)
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FIG. 8. Continuum numerical simulation for a silo with a lateral orifice with D = 0.40625L and W =
0.25L. (a) Streamlines for the granular flow (red dashed line) and for the air flow (black lines). (b) Q/ρ

√
gL3 as

a function of Qair/
√

gL3. The lines represent Eq. (23) with A = 1 and λ = 1 (−−), A = 0.67 and λ = 1 (−−),
and A = 0.67 and λ = 0.36 (−).

The fitting parameters of Eq. (24) have been obtained in the opened-top silo [see the full line in
Figs. 9(a) and 9(b)] and are summed up in Table I, where we consider, for the rectangular silo, that
GD(D/d ) ≈ 1.

Figure 8(a) shows the streamline of the granular media (dashed red lines) and of the air (black
lines) obtained numerically in the laminar regime. Even though the orifice normal is orthogonal
to the direction of gravity, the latter still drives the discharge. The difference between the two
configurations (orifice at the bottom or lateral) reduces to the different values of the empirical
constants, namely, C0 for the bottom case and C0l for the lateral case. Therefore, for the same shape
of a large orifice (D/d � 1) in the Hagen-Beverloo regime (D/W � 1), the ratio λ = (C0l/C0)2 <

1 can be related to a reduction of the driving force in the lateral case that then reads λg. Thus, the
previous approach and Eq. (23) should still be valid in the lateral case if we keep the empirical
constants from the bottom case but replace g by λg.

Figure 8(b) shows the comparison between the continuum numerical simulations in the viscous
regime and the analytical model for several A and λ values. Both corrective coefficients A (which
account for the zone of evaluation of the pressure gradient) and λ are necessary to fit the data.

Finally, Fig. 9 compares the experimental results for a lateral orifice, and for the cylindrical
and the rectangular silos, with the generalized model given by Eq. (23) with the reduced gravity
λg and the adjusted parameters given in Table I. The coefficient ξφ has been adjusted to the
data following the previous approach. We observe that the agreement is fairly good for both the
cylindrical and rectangular silos.

VI. CONCLUSION

Using experiments and continuum simulations, we have studied the effect of injection of a
constant flow rate of air in the discharge of a silo with a bottom or a lateral orifice. Steady flow
regimes are obtained. We observe that the particle flow rate increases with the air flow rate and
decreases with the particle size. Based on a continuum two-phase model using a frictional rheology
for the particulate phase, we propose an analytical model where the fluid pressure gradient near
the orifice acts as an additional driving force with respect to gravity, in accordance with previous
authors [17–19]. This model is validated by the continuum simulations, where we observe that the
driving fluid pressure gradient corresponds to a mean gradient on a circular zone of size D/2 above
the orifice where the particles accelerate [8,31].
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FIG. 9. Mass flow rate vs size of particles d for different volume flow rates of air Qair , for lateral orifices.
(a) Cylindrical silo with L = 60 mm, D = 20 mm, and W = 10 mm. (b) Rectangular silo with L = 60 mm,
D = 10 mm, and W = 3.5 mm. The full lines represent Eq. (24) and the dashed lines represent the generalized
model (23), with the adjusted parameters given in Table I.

The permeability variation at the orifice, associated with dilation of the granular medium that
accelerates, is accounted for thanks to a function of the dimensionless aperture size (D/d). The
analytical model includes four fitting parameters, which can be obtained with a first series of
experiments with an opened-top silo, varying either the orifice size or the particle size (giving C0,
α, and β), and a second series of experiments varying the air flow rate for a large ratio between the
aperture size and the particles diameter (giving ξφ). To take into account the position of the orifice,
the driving force for an opened-top silo needs to be modified (g needs to be replaced with λg) to
take into account the inclination of the granular medium streamlines. This parameter is obtained
with a series of experiments with an opened-top silo with a lateral orifice varying either the orifice
size or the particle size. We finally obtain a fairly good agreement between the analytical model and
the experiments. It would be good in the future to test configurations where the particle’s shape or
polydispersity in size are varied or where the particle and air flows are nonstationary, as can be seen
in industrial situations.
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