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The granular silo is one of the many interesting illustrations of the thixotropic property
of granular matter: a rapid flow develops at the outlet, propagating upwards through a
dense shear flow while material at the bottom corners of the container remains static.
For large enough outlets, the discharge flow is continuous; however, by contrast with
the clepsydra for which the flow velocity depends on the height of fluid left in the
container, the discharge rate of granular silos is constant. Implementing a plastic
rheology in a 2D Navier-Stokes solver (following the μ(I)-rheology or a constant
friction), we simulate the continuum counterpart of the granular silo. Doing so, we
obtain a constant flow rate during the discharge and recover the Beverloo scaling
independently of the initial filling height of the silo. We show that lowering the
value of the coefficient of friction leads to a transition toward a different behavior,
similar to that of a viscous fluid, and where the filling height becomes active in the
discharge process. The pressure field shows that large enough values of the coefficient
of friction (�0.3) allow for a low-pressure cavity to form above the outlet, and can
thus explain the Beverloo scaling. In conclusion, the difference between the discharge
of a hourglass and a clepsydra seems to reside in the existence or not of a plastic yield
stress. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757390]

I. INTRODUCTION

Granular matter is well-known for its ability to behave like a solid or like a fluid depending
on the stress it is subjected to, transiting from one state to the other over a few grain diameters.
This phenomenon is best described in terms of internal friction: a granular packing can resist shear
stress below the friction threshold and remain static, but starts flowing when the friction threshold
is reached. In this respect, granular matter resembles other more classical visco-plastic materials,
characterized by a yield stress and a viscosity, for instance Bingham plastics. The granular silo
is one of the many interesting illustrations of this thixotropic property of granular matter: a rapid
flow develops at the outlet, propagating upwards through a dense shear flow while material at
the bottom corners of the container remains static.1–6 Beside its obvious industrial relevance, the
phenomenology of the silo discharge is in itself intriguing, and raises an important interest from
the scientific community. For narrow outlets, arches forms and vanish alternatively, clogging the
flow with a probability depending on the outlet dimension, and leading to intermittency;7–10 this
regime, not accessible through continuum modeling, is not addressed in this work. For larger outlets,
the flow is continuous; however, in contrast with the discharge of a Newtonian fluid for which the
flow velocity depends on the height of fluid left in the container, the discharge rate of granular
silos is constant. The independence of the discharge rate on the filling height is best demonstrated
by the well-known Beverloo scaling, which relates the flow rate (Q) to the outlet size (L):11 in a
very robust manner, experiments and discrete simulations find Q = C

√
g(L − kd)N−1/2, where N

is the dimension of the problem, d the grains diameter and C and k are constants (we consider
two-dimensional silos only in the following i.e. N = 2). Because it implies that the velocity of the
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material flowing from the silo does not scale like the square root of the pressure, the Berverloo
scaling is commonly accepted as the evidence of a screening effect responsible for a constant and
low value of the pressure (i.e., lower than the hydrostatic prediction) in the area of the outlet.12, 13 We
may suppose that this is why the hourglass was used by sailor men for navigation: the oscillations
of the ship, tilting the device, and thereby changing the pressure inside, probably do not affect the
discharge rate as much as it would in a clepsydra (or water-clock), making the hourglass more
reliable on board. The traditional physical explanation for this screening effect resorts to Janssen’s
analysis: the friction forces mobilized at walls reduce the apparent weight of the material in the silo
and prevent the bottom area to sense the pressure, now partly sustained by the walls.4, 7, 14–16 This
effect is expected to play a role only if the width of the silo is smaller than the filling height. Yet, the
Berverloo scaling also holds for wide silos.17 Moreover, the existence of a Janssen screening effect
would result in the local pressure scaling like the width of the container, yet the Berverloo scaling
involves only the outlet size. Hence, it seems very uncertain that the Janssen effect is responsible
for the Berverloo scaling and the silo constant discharge rate. This was in fact demonstrated in
Ref. 18 where experiments using inclined silos show that the Berverloo scaling holds for any degree
of tilt up to subvertical values. Experimental work using horizontal silos also points at a similar
conclusion.19 On the other hand, measurements showing a dip in the value of the pressure in the area
of the outlet may only reflect the fact that the existence of the outlet itself creates a low pressure
boundary condition, independently of any Janssen screening.13 This does not mean however that
friction is not important during the discharge of a granular silo: in this contribution, we argue that
the role of friction does not involve the walls, but the bulk of the flow through the existence of a
yield stress.

Implementing a plastic rheology (using either the μ(I)-rheology20 or a constant friction) in a 2D
Navier-Stokes solver,21, 22 we simulate the continuum counterpart of the granular silo. Doing so, we
observe a constant flow rate during the discharge and recover the Beverloo scaling independently
of the initial filling height of the silo. However, we show that lowering the value of the friction lead
to a transition toward a different scaling where the filling height becomes active in the discharge
process. These results support the idea that the existence of a frictional yield stress can alone control
the discharge of the granular silo without any Janssen effect entering into play.

II. THE CONTINUUM GRANULAR SILO

The simulations were performed using the Gerris flow solver in two dimensions, which solves
the Navier-Stokes equation for a bi-phasic mixture applying a volume-of-fluid approach.21, 22 The
existence of two fluids translates numerically in different properties (viscosity and density) on the
simulation grid following the advection of the volume fraction representing the proportion of each
fluid. In our case, one fluid stands for granular matter (characterized by the coefficient of internal
friction μ) and the other stands for the surrounding air (with a lower density and lower viscosity,
see Ref. 23 for details); the position of the interface between the two is solved in the course of time
based on the spatial distribution of their volume fraction. The viscosity η of the granular matter is
defined by mean of the friction properties:20

η = min

(
μP

D2
, ηmax

)
, (1)

where μ is the effective coefficient of friction of the granular flow, P is the local pressure and
D2 is the second invariant of the strain rate tensor D: D2 = √

Di j Di j . For large values of D2, the
viscosity is finite and proportional to μ and P; when D2 reaches low values, the viscosity η diverges.
Numerically, this divergence is bounded by a maximum value ηmax chosen to be 104 times the
minimum value of η; we have checked that the choice of ηmax did not affect the results as long as
ηmax is large enough.

Based on earlier work on continuum modeling of rapid non-uniform granular flows showing
the better performances of the μ(I)-rheology compared to constant friction,23 the effective friction
properties μ of the granular continuum is calculated using the following dependence: μ is a function
of the non-dimensional number I = d D2/

√
P/ρ, where d is the mean grain diameter and ρ the
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density (W = 90d in the following, with W the silo’s width) through the relation μ = μs + �μ

1+I0/I ,
where μs, �μ, and I0 are constants.20, 23

Following Ref. 23, �μ and I0 were set, respectively, to 0.28 and 0.4 and not varied. The value
of the static coefficient of friction μs was set to 0.32, 0.2, and 0.1 in order to study its role in the
silo discharge. Moreover, simulations with a constant friction model, i.e., without dependence on I,
were also performed (Sec. V).

The silo is flat-bottomed, of width W , filling height H, and with an outlet of size L (see Figure 1).
The width W is divided in 64 computation cells in the bulk, refined to 256 at the bottom, so that
the outlet is defined using 16 to 72 computation cells. In the forthcoming analysis, all quantities are
normalized as follows: silo height H̄ = H/W , outlet size L̄ = L/W , volume of material left in the
silo V̄ = V/W 2, flow rate Q̄ = Q/W

√
gW , time t̄ = t/

√
W/g, and pressure P̄ = P/ρgW .

A no-slip boundary condition is imposed at the side-walls and at the bottom-wall; additional
simulations with a free-slip boundary condition at the side-walls show that the aspects discussed in
this paper remain unchanged. A zero pressure condition is imposed at the top-wall and at the outlet.

III. A CONSTANT DISCHARGE RATE

Figure 1 shows the time evolution of a continuum granular silo of initial filling height H̄ = 0.9,
and outlet size L̄ = 0.125; the static friction is set to μs = 0.32 (with �μ = 0.28 and I0 = 0.40). The
color scale represents the pressure field. We observe that the pressure field strongly differs from what
would be expected in the hydrostatic case, and is non-uniform in the transverse direction. The region
above the outlet coincides with a low pressure cavity surrounded by two high-pressure dome-like
areas: the pressure jump at the outlet overcomes the frictional yield stress, creating a large shear
and a low viscosity area. Meanwhile, pressure gradients decrease in the bulk, and a highly viscous
mass forms above the outlet. The fact that the yield stress is frictional, and depends on the pressure,
implies that it readapts throughout the discharge, thereby probably allowing the cavity to survive
until the end of it. When the material left in the silo stops flowing, it remains at equilibrium with a
shape depending on the yield stress, i.e., depending on the coefficient of friction μ.

Figure 2(a) shows the volume of material remaining in the silo in the course of time for the same
system. We observe a linear evolution throughout the discharge for the granular fluid, revealing
a constant flow rate as in real discrete granular silos. We measure the value of the viscosity in

FIG. 1. Pressure field during the discharge of a plastic silo of width W , normalized outlet size L̄ = 0.125 and normalized
filling height H̄ = 0.9 (normalized by W ) at t̄0 = 0, t̄1 = 0.8, t̄2 = 7.6, t̄3 = 11.5, and at t̄4 the final state (normalized by√

W/g). The color scale varies from one picture to the other to ensure maximum contrast: the highest bound (red color) is
set to P̄ = 0.6 for t̄0, t̄1 and t̄2, to P̄ = 0.36 for t̄3, and to P̄ = 0.12 for t̄4 (normalized by ρgW ).
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FIG. 2. (a) Volume V̄ of material remaining in the silo as a function of time for an outlet size L̄ = 0.125 and filling
height H̄ = 0.9 in the case of a plastic flow (μs = 0.32, �μ = 0.28 and I0 = 0.40) and in the case of a Newtonian flow

(η = 0.01ρg
1
2 W

3
2 ); (b) Berveloo scaling obtained for L̄ varying between 0.0625 and 0.28125.

the vicinity of the outlet and find a roughly constant value during the discharge equal to η̄ = 0.01
(normalized by ρg

1
2 W

3
2 ). Using this value for the viscosity, we simulate the discharge of a silo filled

with Newtonian fluid; the corresponding volume-vs-time evolution is shown in Figure 2(a), and is
nonlinear, suggesting a dependence on the height of material left in the silo, as in the case of an
hydrostatic pressure field. For comparison, we plot the solution of the (non-dimensional) Torricelli
discharge for an ideal fluid,

dh̄

dt̄
= −L̄

√
2h̄,

h̄(t̄) =
(√

H̄ − L̄√
2

t̄

)2

,

where h̄ is the instantaneous height of material remaining in the silo (normalized by W ) at time t̄
(normalized by

√
W/g). Torricelli’s discharge matches the onset of the discharge of the Newtonian

fluid provided we chose a smaller numerical value for L̄ than that of the simulation (L̄ = 0.0714
instead of 0.125). Comparing the discharge of the Newtonian fluid and the granular plastic fluid thus
points at the plastic property of the flow as responsible for the constant nature of the discharge rate
in the latter case.

We observe that the flow rate remains constant throughout the discharge of the plastic silo over
a large range of outlet size L̄ . Varying L̄ between 0.0625 (i.e., 16 computation cells) and 0.28125
(i.e., 72 computation cells), we measure the flow rate Q̄, and search for a relation satisfying the
shape of the Beverloo scaling:

Q̄ = C
(
L̄ − k

) 3
2 , (2)

where C and k are constants. For a continuum silo, the numerical value of k is expected to be
zero, in contrast to granular silos where the grain diameter imposes a volume of exclusion reducing
the effective size of the outlet. Imposing k = 0, we recover the Berverloo scaling with a good
accuracy, giving C = 1.4 (see Figure 2(b)). Note, however, that making no assumption on the fitting
parameters, the best fit gives k = 0.00938 = 0.85d̄ , where d̄ = 1/90 is the grain diameter used in
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FIG. 3. Volume V̄ of material remaining in the silo as a function of time for L̄ = 0.1875 and filling heights H̄ = 1.5,
H̄ = 2.5, H̄ = 3.5, and H̄ = 4.5 for a μ(I) plastic flow (μs = 0.32, �μ = 0.28, and I0 = 0.40). Inset: Berverloo scalings
corresponding to each case.

the μ(I)-rheology. Although the value of k is not completely negligible, we consider nevertheless
that it is not physically significant.

IV. INCREASING THE FILLING HEIGHT

To check whether the discharge rate remains constant irrespective of the initial filling height, we
perform additional simulations with H̄ = 1.5, 2.5, 3.5, and 4.5, with the same rheological parameters
as previously (μs = 0.32, �μ = 0.28, and I0 = 0.40). Figure 3 shows the volume V̄ left in the silo in
the course of time for an outlet size L̄ = 0.1875 for all four cases. We observe a linear evolution of
very similar slope, suggesting that the discharge rate is essentially constant and independent of the
filling height. However, closer inspection shows that the slope varies slightly during the discharge:
for H̄ = 4.5, for instance, the initial flow rate has decreased of 1.4% halfway through the discharge.
Moreover, a slight increase of the flow rate is observed for larger filling height: approximating the
discharge by an affine function over its full duration, we find a flow rate increase of 1.8% for H̄ = 2.5
and an increase of 3.9% for H̄ = 4.5 compared to the case of H̄ = 1.5.

Measuring the flow rate Q̄ in the early stage of the discharge for the different values of H̄
and different outlet dimension L̄ , we recover the Berveloo scaling (2), but with coefficients varying
slightly with the value of H̄ (Figure 3, inset). This weak influence of the initial filling height is
maximum in the early stage of the discharge, but vanishes at the end: the curves shown in Figure 3
can be superimposed when shifted toward the final stage of the discharge.

Altogether, the flow rate during the discharge of continuum granular material is very weakly
affected by the initial filling height H̄ . By contrast, the pressure field strongly changes with the value
of H̄ , as is visible on the two snapshots shown in Figure 4 for H̄ = 1.5 and H̄ = 4.5 in the early
stage of the discharge. In both cases, however, we observe a low pressure cavity in the vicinity of
the outlet, suggesting that the discharge is affected by this local pressure condition and insensitive
to the mean pressure in the silo.

V. INFLUENCE OF THE INTERNAL FRICTION

We suspect the deviation of the discharge rate from the hydrostatic case to be the result of the
non-Newtonian nature of the μ(I)-rheology, and more specifically of the existence of a yield stress;
accordingly, we expect the value of the coefficient of friction to have important repercussions on
the discharge flow. Figure 5 shows the discharge of a silo with H̄ = 4.5 and outlet L̄ = 0.1875 for
different values of the coefficient of static friction μs = 0.10, μs = 0.20 and μs = 0.32: we observe
that a smaller friction coefficient induces an earlier departure from the linear evolution observed for
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FIG. 4. Pressure field in the early stage of the discharge for two granular plastic silos of initial filling heights H̄ = 1.5 (right)
and H̄ = 4.5 (left), outlet L̄ = 0.1875, and I-dependent friction coefficient μs = 0.32 (�μ = 0.28 and I0 = 0.40). The color
scale is identical on both images: the highest bound (red color) is set to P̄ = 1.3; the pressure jump between two isolines is
0.15.

larger friction. Since friction does not only act upon the yield stress, but also upon the value of the
viscosity, it affects the discharge duration too.

For the three values of the static coefficient of friction, and for a silo with H̄ = 1.5, we vary
the outlet size L̄ between 0.0625 and 0.28125 and measure the flow rate Q̄. For μs = 0.10 and μs

= 0.20, the flow rate is not constant all through the discharge. Hence, we consider the early stage of
the discharge only, where an affine regression seems reasonable. As already seen in Secs. III and IV,
the flow rate in the case μs = 0.32 obeys the Beverloo scaling (see Figure 2); in the case of lower
friction however (μs = 0.10), the Beverloo scaling is no more relevant, and the flow rate increases
linearly with the outlet size L̄ (Figure 5, inset), thus making a dependence on H̄ 1/2 dimensionally
possible.

An other aspect is the importance of the I dependence on the friction model. Although fully
addressing this question implies detailed comparison with discrete systems (either experimental or

FIG. 5. Volume of material V̄ remaining in the silo as a function of time t̄ for L̄ = 0.1875 and filling height H̄ = 4.5, for a
μ(I) plastic flow with μs = 0.10, μs = 0.20, and μs = 0.32 (�μ = 0.28 and I0 = 0.40). Inset: Flow rate Q̄ as a function of
outlet size L̄ for μs = 0.10 and μs = 0.32.
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FIG. 6. Pressure field in the early stage of the discharge for a granular plastic flow with a constant friction coefficient μs

= 0.32 (�μ = 0., left), a I-dependent friction μs = 0.10 (�μ = 0.28 and I0 = 0.40, center), and for a Newtonian flow

of viscosity η̄ = 0.01 (normalized by ρg
1
2 W

2
3 ) (left). Outlet size L̄ = 0.1875, filling height H̄ = 1.5. The color scale is

identical on all images and identical to Figure 4: the highest bound (red color) is set to P̄ = 1.3; the pressure jump between
two isolines is 0.15.

numerical), we can nevertheless check how the height independence of the silo discharge is affected
by suppressing this dependence and set �μ = 0. Figure 6 shows the pressure field in a silo with
μs = 0.32, �μ = 0 and H̄ = 1.5 (to compare with Figure 4): we observe no significant difference
with the case �μ �= 0. Plotting the discharge rate against outlet size allows for the recovery of the
Beverloo scaling as well (not shown). It is thus clear that the existence of a frictional threshold
alone is enough for reproducing the height independence, without the need of a I dependence. The
effect of the latter being to increase the friction close the outlet, it may become important when
comparing quantitatively discrete and continuum granular silo discharge rate. This discussion is
however beyond the scope of this paper.

Figure 6 also presents the pressure field in a plastic silo with weak friction μs = 0.1 and in
a Newtonian silo of viscosity η̄ = 0.01 (normalized by ρg

1
2 W

2
3 ), and shows that the existence of

the low pressure cavity is contingent on the existence of a yield stress induced by sufficiently large
friction (Figure 6).

VI. DISCUSSION

Granular matter forms a specific class of plastic fluids for which yield stress and viscosity are not
independent, but related through friction properties. Hence discriminating between the respective
roles of yield stress and viscosity is difficult. However, the continuum simulations presented in
this paper show that (i) a friction-dependent viscosity (either μ(I) or constant friction) leads to a
constant flow rate as is the case for real granular silo and (ii) decreasing the coefficient of friction
leads to a dependence on the height of material remaining in the silo, as is the case for Newtonian
fluids. Decreasing the coefficient of friction to a value as small as 0.1 may not be physical for
granular matter; however, this extrapolation tends to show that the constant shear rate results from
the existence of a yield stress. For sufficiently large values of the coefficient of friction (i.e., ≥0.3),
the pressure field shows the existence of a low pressure cavity in the vicinity of the outlet, despite
high values of the pressure elsewhere in the silo (Figure 4). The fact that the yield stress (μP)
depends on the mean pressure in the system is certainly crucial in the ability of the cavity to remain
identical all though the discharge. This cavity does not exist during the discharge of a Newtonian
flow, and is very reduced in the case of a plastic flow with a small friction coefficient μs = 0.10
(Figure 6). It thus seems reasonable to conclude that the frictional properties of the continuum
granular material are at the origin of the low-pressure cavity forming above the outlet; this coincides
with a high-shear-low-viscosity region resembling the free fall arch described in granular systems.12

The fact that the flow is controlled by the local conditions close to the outlet rules out the Janssen
effect as explanation for the Beverloo scaling (as did before in Refs. 18 and 19 experimentally). In
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conclusion, the difference between the discharge of an hourglass and a clepsydra seems to reside in
the existence or not of a frictional yield stress.

The ability of the continuum μ(I)-rheology to reproduce the behavior of granular systems when
implemented in a Navier-Stokes solver was discussed in Ref. 23. In this contribution, we show the
ability of the same model to reproduce the silo phenomenology, without discussing in depth the
relevance of the I-dependence. It should be noted that a constant friction model leads to the silo
phenomenology too, as far as height independence and Beverloo scaling general shape are concerned.
More detailed aspects such as comparison of velocity and pressure profiles, inner deformations, and
surface shape are beyond the scope of the present work. They are the subject of a forthcoming
dedicated communication.
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