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Granular material in a silo with two openings can display a ‘flow rate dip’, where a non-monotonic rela-
tionship between flow rate and orifice separation occurs. In this paper we study continuum modelling of
the silo with two openings. We find that the l Ið Þ rheology can capture the flow rate dip if physically rel-
evant friction parameters are used. We also extend the model by accounting for wall friction, dilatancy,
and non-local effects. We find that accounting for the wall friction using a Hele-Shaw model better repli-
cates the qualitative characteristics of the flow rate dip seen in experimental data, while dilatancy and
non-local effects have very little effect on the qualitative characteristics of the mass flow rate dip.
However, we find that all three of these factors have a significant impact on the mass flow rate, indicating
that a continuum model which accurately predicts flow rate will need to account for these effects.
� 2023 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder

Technology Japan. All rights reserved.
1. Introduction

Whether it is in small-scale situations such as a salt shaker, or
large industrial-scale situations such as blasted ore being mined
from a draw-point, granular material is often stored in silos or
silo-like domains. These domains can be challenging to model as
they provide conditions for many different granular phenomena.
In a flowing granular silo the flow behaviour can vary from the
quasi-static regime where the material is static or nearly static,
the dense regime where the granular material flows analogously
to a fluid, and the dilute regime at the orifice where the material
is in near free-fall. Developing models which can capture the flow
of behaviour in such a complex domain is valuable to inform indus-
trial silo design, as well as understanding granular flows in general.

One interesting flow rate phenomena is the flow rate ‘dip’,
which can arise when a silo has multiple orifices. Previous experi-
ments done with spherical steel beads in a two opening silo have
shown a monotonic decrease in flow rate as the orifice distance
increases [1]. However, experiments done using coarser, more
industrially relevant materials result in a flow rate dip, where
the flow rate for a silo with two openings in close proximity to each
other is lower than the flow rate for a silo with larger separations
between the openings [2]. A multiple orifice silo has been modelled
using the kinematic and plasticity models [3,4], however due to the
flow rate being prescribed by the choice of parameters, the flow
rate dip could not be analysed.

One method of modelling these flows is using Discrete Element
modelling (DEM) [5]. This is a powerful method capable of predict-
ing granular dynamics by considering interactions of pairs of par-
ticles, and can replicate some of the dynamics of the two orifice
silo [6]. However, because DEM requires modelling each particle
individually it is computationally expensive, with the feasible
number of particles that can be simulated being orders of magni-
tude smaller than the number of particles that are seen in an
industrial context.

Alternatively, granular material may be modelled as a continu-
ous pseudo-fluid. Such a continuum model could capture the
desired macro-behaviour of granular flows while bypassing the
computational overhead involved with modelling the micro-
behaviour of granular material. As such a continuum model cap-
able of accurately replicating the behaviour of granular material
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Table 1
Parameters used throughout this paper, with lengths being given as multiples of the
particle diameter d. An asterisk indicates the value of the parameter varies in some
simulations, with the value in this table indicating the value used when not otherwise
specified.

Parameter Value

Relative density of air qair=qgranular 1:7� 10�3

Orifice width W 9:375d
Domain width Wsilo 150d
Domain height Hsilo 150d
Separation length L 18:75d�

Static friction ls 0:62�

Friction differential Dl 0:48�

Inertial number scaling I0 0:6
Non-local model strength A 0:5�

Maximum solid fraction /max 0:6
Minimum solid fraction /min 0:2
Solid fraction gradient /grad 0:2�

Wall friction coefficient F 0:5�
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in a silo is relevant to many industries, however such a model is
difficult to develop, with granular materials exhibiting many phe-
nomena that are difficult to describe.

Some continuum models already exist, most notably the l Ið Þ
model [7,8]. This model captures the transition between quasi-
static and dense flows (with dilute flows being predicted inaccu-
rately [9]) using the dimensionless inertial number I. The inertial
number represents a ratio between two timescales: how long it
takes for granular material to move due to shear, and how long it
takes for confining pressure to return dilated material to a resting
state. As such, high I represents the dilute regime where the mate-
rial flows in a ‘gas-like’ manner with shear rate being more impor-
tant than confining pressure, while low I represents the dense
regime with a more ‘liquid-like’ flow and longer lasting particle
contacts, with the flow approaching a ‘solid-like’ quasi-static
regime as I ! 0. The inertial number is used to modify the fric-
tional behaviour of the continuum model, which can be used to
model flows in multiple different configurations.

However, while the l Ið Þmodel can give good qualitative predic-
tions for a silo [10–12], the quantitative flow rate predictions are
not accurate [13]. The l Ið Þ rheology does not account for several
key phenomena that can occur in a granular flow, which may
explain this discrepancy. The l Ið Þ model applied to a pseudo-2D
silo does not account for the friction of the front and back walls,
which other works have modelled as a Hele-Shaw like friction
[14]. Another effect which is not modelled is dilatancy, where a
flowing mass of granular material will be less densely packed than
a stationary mass [15]. This packing density likely significantly
affects the mass flow rate for a silo, and as such will need to be
accounted for in a continuum model which is expected to predict
the mass flow rate. It also does not account for non-local effects
[16–19], which are where the properties of flow at a point are
determined by the flow behaviour of nearby material and not sim-
ply by the forces at that point. The l Ið Þ model is also not well
behaved for all parameters and domains [20,21].

Other continuum models exist and have been applied to silos.
Several of these models, including plasticity models [22,23], the
kinematic model [24,25], and the stochastic model [26], can give
good descriptions for the qualitative behaviour of flow within the
silo. However, each of these models have the flow rate determined
by the choice of a parameter. This means that while these models
can be useful for determining mixing behaviour and other such
phenomena, they have little use when trying to determine quanti-
tative flow rate behaviour.

In this paper we examine the two opening silo, as depicted in
Fig. 1 with parameters given in Table 1. Although this system is
Fig. 1. Schematic of the system modelled. Two openings of diameter W separated
by a distance L allow the granular material to drain. While the simulations are 2D,
experiments are done with some thickness Wd with the assumption that
Wd � Wsilo so that the silo can be considered 2D for the purpose of simulations,
with 3D effects being accounted for in the Hele-Shaw extension.

2

3D, we assume that the thickness is small so that it can be treated
as a 2D system.We focus on using the l Ið Þ rheology, extending it to
capture Hele-Shaw wall friction, dilatancy, and non-local effects.
We additionally use the kinematic model for a simple comparison
model for verification, while also demonstrating that it is unsuit-
able for double opening silos. We examine the flow rate phenom-
ena using the l Ið Þ model, determining the effects each of the
extensions have on mass flow rate magnitude and the flow rate
dip. We use data from other experiments [2] for a comparison
for the flow rate dip.

2. Model and implementation

2.1. The l Ið Þ model

The l Ið Þmodel, as described by [7] and extended to 3D by [8], is
the baseline model that we use to describe the granular flows we
are investigating. The model uses the incompressible Navier–
Stokes Eqs. (1)

@tuþ u � ru ¼ 1
q �rpþr � 2gDð Þ½ � � g;

r � u ¼ 0;
ð1Þ

where u is the velocity vector, q ¼ /qgranular þ 1� /ð Þqair is the den-
sity derived from the packing fraction / and the mix of material and
gas density (qgranular and qair respectively), D is the strain rate tensor

given by D ¼ ruþ ruð ÞT
h i

=2, and g is the acceleration due to grav-

ity. The relevant parameters are given in Table 1.
These equations are combined with the l Ið Þ rheology, which

assumes that the granular friction coefficient varies only on the
inertial number I, which is given by

I ¼ j _cjdffiffiffiffiffiffiffiffiffi
p=q

p ; ð2Þ

where _cij is the shear rate tensor given by

_cij ¼
@ui

@xj
þ @uj

@xi
¼ 2Dij; ð3Þ

and j _cj is the second invariant of the shear rate tensor given by

j _cj ¼
ffiffiffiffiffiffiffiffiffiffi
_cij _cij
2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DijDij

q
; ð4Þ

d is the particle diameter, p is the pressure, and q is the material
density.
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While other formulations of the relationship of l and I are pos-
sible [27], in this paper we make the assumption that the rheology
is a kind of Coulomb friction with a coefficient of the form

l Ið Þ ¼ ls þ
Dl

I=I0 þ 1ð Þ ; ð5Þ

where ls;Dl, and I0 are fitting parameters. Eq. 5 defines the friction,
which is implemented as an effective viscosity defined as

g ¼ l Ið Þp
j _cj ; ð6Þ

which is used in the Navier–Stokes equations. This gives us the
basic l Ið Þ model.

In order to solve the incompressible Navier–Stokes equations
from the l Ið Þ model we use the numerical scheme described by
Popinet [28], which is implemented by Lagrée & Staron [29] with
the framework Basilisk [30]. The Navier–Stokes Equations can be
transformed using a projection method into a Poisson equation
and a Helmholtz equation. The simulation uses a volume of fluid
method representing the granular material as well as the air
[31]. The boundary conditions are no-slip at the walls and base,
and zero pressure at the top of the silo and inside the opening.

Another complication posed when implementing the l Ið Þ
model is the static zones. A static region of material means that
Eq. 6 gives an unbounded viscosity, and in a flat-bottomed silo
there are some areas where there will be zero flow. To avoid diver-
gent viscosity, a maximum viscosity gmax is enforced, i.e. the finite
g� is used, given by g� ¼ min g;gmaxð Þ, where g is the viscosity cal-
culated from Eq. 6 and gmax is a large constant. This leads to a small
creeping flow in these regions which should be static in a physical

silo. For our simulations we use gmax ¼ 1800
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d5g�1

q
, which is

sufficiently large such that the creeping flow is negligible com-
pared to the flow from the silo draining due to gravity.

It should be noted that this model assumes that the stress and
strain rate tensors are aligned. The l Ið Þ model relies on visco-
plastic theory which assumes that these tensors are in the same
direction, which is not always the case [32]. Also, the model is
not well-posed, so may fail for some parameters and some
domains [20,21]. The parameters and domain studied in this paper
do not display evidence of numerical instabilities and the inertial
number is in the well-posed region outside of the ‘static’ zones
[20], however caution should be applied when using these models.

In order to avoid applying different boundary conditions within
the length of a single cell, all lengths are chosen to be some integer
multiple of the cell width (which due to the tree-based discretiza-
tion implementation used [33] is the domain width divided by 2n,
where n determines the resolution of the simulation and is chosen
to be n ¼ 8 for this work).

2.1.1. Hele-Shaw friction
In implementing the l Ið Þmodel in a 2D silo, we assume that the

granular material is in a true two dimensional system. In reality,
the experiments are done in a system that only approximates
two dimensions, with front and back walls being separated by a
small non-zero distance [2]. It is possible to improve the compar-
ison to experimental data by accounting for the friction between
the granular material and the front and back walls [34].

The wall friction provides a force lwp in the opposite direction
of the 2D flow. In order to account for this wall friction, we modify
Eq. 1. Since we assume that the variation of flow over the thickness
is negligible (i.e. the flow is only displaying 2D-like behaviour), the
velocity can be updated by calculating the Hele-Shaw friction,
which results in an extra term in the Navier–Stokes equations
3

@tuþ u � ru ¼ 1
q �rpþr � 2gDð Þ½ � � g� 2lwpu

Wd juj ;

r � u ¼ 0;
ð7Þ

where lw is the friction coefficient between the granular material
and the walls, Wd is the distance between the front and back wall,
p is the pressure, and u is the velocity.

To implement wall friction, we calculate the Navier–Stokes
equations, then apply an update to the velocity from the front
and back wall friction [14]. We take the velocity already calculated,
u, and calculate an update to the velocity term

Du ¼ �2lwpuDt
Wdjuj ; ð8Þ

with Dt as the time step. If the update to the velocity is greater than
the friction-free velocity (which could result in unphysical upward
flows), the velocity is instead set to zero. This corresponds to fric-
tion being greater than the other net forces and completely arrest-
ing the flow. This updated velocity is then fed into the unmodified
Navier–Stokes equations for the next time step.

Note that the parameters lw and Wd are both constant and are
not used elsewhere. Therefore, in order to simplify the parameter

set we combine them by choosing a parameter F ¼ 2lw
Wd

which we

vary to test the wall friction model. Then Eq. 8 becomes

Du ¼ �FpDt
u
juj : ð9Þ

Using the amaranth experimental data as a comparison [2], the F
value is 4lw. It is unclear what value of lw should be used, with val-
ues from 0:1 to 0:25 being used in similar domains [35,14], corre-
sponding to F ¼ 0:4 and F ¼ 1 respectively. The complications of
dynamic and rolling friction and the influence of wall smoothness
make determining the correct value difficult. We find the simula-
tions become unstable for F > 0:5, so we focus on cases where
F � 0:5 which is sufficient to show that wall friction has a signifi-
cant impact.

2.1.2. Dilatancy
While assuming the granular material is incompressible is a

first order approximation that simplifies the numerical methods,
in reality granular material is known to dilate when sheared
[36,15]. Dilatancy introduces compressibility, meaning that mod-
els which fully take into account the compressible Navier–Stokes
equations are complex [37–39]. However, over the range of inertial
numbers relevant to a silo the packing fraction seems to linearly
decrease with the inertial number I [40]. We can implement this
linear dependence as a simple model for dilatancy, with

/ ¼ max /max � /gI;/min

� � ð10Þ
where /g is the linear gradient parameter, /max is a constant repre-
senting the packing fraction for a material that is not being sheared
(0:6 is used throughout this paper), and the minimum packing frac-
tion is set to /min ¼ 0:2, in order to prevent non-physical negative
packing fractions. While other formations of the relationship of /
to I are sometimes used [41], for simplicity we limit our scope to
only consider linear dependence. This packing fraction is used to
calculate the bulk density of the material. With non–homogeneous
density the incompressible assumption r � u ¼ 0 is replaced with a
‘source term’, which is derived from conservation of mass. This
source term is given by

r � u ¼ 1
q

@q
@t

þ u � rq
� �

; ð11Þ

where q is the bulk density. The dilatancy then has flow on effects
to the rest of the relevant simulation fields, and is incorporated into



S.K. Irvine, L.A. Fullard, D.J. Holland et al. Advanced Powder Technology 34 (2023) 104044
the mass flow rate (which is directly proportional to the volumetric
flow rate in the absence of dilatancy). The bulk density is dependent
both on the material density as well as the packing fraction of the
granular material, determined by the linear dilatancy model in Eq.
10 (if there is no relationship between / and I, the incompressible
assumption is recovered). The source term dilatancy model approx-
imates the source term and incorporates it in the projection
method.

2.1.3. Non-local effects
The l Ið Þ model and extensions are all local models, meaning

that the properties of flow at a point are determined only by other
properties at that point. However, granular material exhibits non-
local effects, meaning that the behaviour of the material around a
given point can affect the flow at that point. An example of a geom-
etry which displays non-local effects clearly is flow down a slope,
where there is a difference between the angle at which flow stops
when the slope is lowered and the angle at which it starts when
the slope is raised [42]. This difference exists because the flowing
particles agitate their neighbours, maintaining flow when a local
model would predict no flow is possible. Another example is an
annular shear cell, where local models predict flow sharply going
to zero in the areas where the yield criterion is not met, while in
experiments an exponential decay is observed [17].

In order to capture these non-local effects, we use a granular
fluidity model [18,16,43]. This model finds the local ‘fluidity’
(which can be conceptualised as an inverse viscosity), and then
‘spreads out’ the fluidity into nearby regions, representing the agi-
tation caused by flowing particles in a neighbourhood that create
non-local effects. The fluidity g (not to be confused with gravity)
is related to the l value by the relation j _cj ¼ lg. The fluidity has
some local value gl, which corresponds to the fluidity if there were
no non-local effects. The local gl is then ‘spread out’ by the Lapla-
cian term

g ¼ gl þ n l Ið Þð Þ2r2g; ð12Þ

where n l Ið Þð Þ is given by

n l Ið Þð Þ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ls þ Dl� l Ið Þ
Dl l Ið Þ � ls

� �s
ð13Þ

where A is a parameter which determines how strong the non-local
effects are, with A ¼ 0 corresponding to a purely local model. With
the fluidity g calculated, the relations _c ¼ lg and g ¼ lP

_c can be com-

bined to give the effective viscosity as

g ¼ p
g
; ð14Þ

which is used in Eq. 1 in the same manner as the base l Ið Þ model.
Boundary conditions are zero fluidity g ¼ 0 at the walls (corre-
sponding to infinite viscosity i.e. no-slip) and zero normal flux
gn ¼ 0 at the opening and top. A similar non-local fluidity model
makes the model well-posed [44] so it is possible that this model
is well-posed, however additional research is required. In addition,
combining non-local fluidity with the additional models for Hele-
Shaw and dilatancy has unknown stability.

2.2. Kinematic model

The Nedderman Tüzün kinematic model [25] makes the
assumption that a gradient in vertical velocity causes horizontal
motion, i.e. u ¼ �B @v

@x, where u and v are the horizontal and vertical
velocity respectively and B is a constant. This assumption, com-
bined with the assumption that material is incompressible, gives
4

a relatively simple model of granular flow taking the form of the
heat equation [4],

@v
@y

¼ B
@2v
@x2

: ð15Þ

This partial differential equation can be solved exactly across the
infinite half-plane with a Dirac delta v ¼ d xð Þ boundary condition
at y ¼ 0, corresponding to an infinitesimal orifice. The solution of
this boundary value problem is

v ¼ �Qffiffiffiffiffiffiffiffiffiffiffiffi
4pBy

p exp � x2

4By

� �
; ð16Þ

where Q is the flow rate. For a silo with two openings separated by
some distance L, the boundary condition at y ¼ 0 is
v ¼ d x� L=2ð Þ þ d xþ L=2ð Þ, resulting in a solution of the form

v ¼ �Qffiffiffiffiffiffiffiffiffiffiffiffi
4pBy

p exp
x� L=2ð Þ2
�4By

 !
þ exp

xþ L=2ð Þ2
�4By

 !" #
: ð17Þ

Note that the kinematic model is scaled by the prescribed flow rate,
Q. For the two opening case the flow rate for any non-zero separa-
tion is simply twice the flow rate of a single orifice (i.e. 2Q) and does
not vary with separation. In order to account for orifice interaction a
Beverloo-like relation of the form Q Lð Þ would need to be developed.
As such, in its original form, the kinematic model of granular flow
from a silo is unable to capture either the monotonic decrease seen
in previous experiments [6,1] or the flow-rate dip phenomenon. As
such, we limit the use of the kinematic model to only model the sin-
gle orifice silo.

3. Results

3.1. Single orifice silo

We test the l Ið Þ model by examining the single orifice silo,
which is a well studied 2D adaption of a common industrial
domain. By applying the base l Ið Þ model to the single orifice silo,
we obtain the velocity profile shown in Fig. 2. The flow matches
the qualitative behaviour we expect to see in a flat-bottom silo,
with static zones in the corners (with near-static creeping flow
caused by the regularisation on viscosity), high flow near the ori-
fice decreasing rapidly as points further from the orifice are consid-
ered, and ‘mass flow’ like behavior in the upper regions of the silo.

We also use the Nedderman Tüzün kinematic model [25] for
comparison, which finds the vertical velocity v to be

v ¼ �Qffiffiffiffiffiffiffiffiffiffiffiffi
4pBy

p exp
�x2

4By

� �
; ð18Þ

where Q is the mass flow rate (which is prescribed), B is a fitting
parameter, and x; y are the horizontal and vertical distance from
the orifice, which is modelled as a single point. Note that even if
the kinematic model gives a sufficiently accurate prediction for
the qualitative behaviour, a limitation of the model is that the flow
rate is prescribed by Q and so provides no prediction for flow rate.
As such, we use the kinematic model for comparing qualitative
behaviour to the l Ið Þ model before using the l Ið Þ model to examine
the flow rate behaviours.

A comparison between the kinematic model and the l Ið Þ model
is shown in Fig. 3, which shows the vertical velocity at various dif-
ferent horizontal slices in the silo. The l Ið Þmodel predicts a ‘flatter’
velocity curve for large heights than the kinematic model. We
expect that in the upper middle of the silo the flow transitions to
plug flow, which the kinematic model is unable to capture. This
indicates that plug flow is a phenomena that the l Ið Þ model can
capture that the kinematic model cannot. While the kinematic



Fig. 2. Velocity magnitude for a single opening silo, with a log scale (left) and linear scale zoomed to the opening (right). The box in the log plot indicates the area covered in
the linear plot. The l Ið Þ parameters used are (ls ;Dl; I0) = (0:62;0:48;0:6), with an opening diameter of 0:625.
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model could give a closer fit for any particular height if the B
parameter is varied, this is requires a height dependent B parame-
ter which is not justified by the assumptions of the kinematic
model.

To further validate the l Ið Þ model we examine the effect of ori-
fice width on the mass flow rate. For a silo with a single orifice we
expect that the flow rate follows the Beverloo–Hagen relation,
which for a 2D silo has the form [14]

Q ¼ Cq
ffiffiffi
g

p
W � kdð Þ1:5; ð19Þ

where Q is the 2Dmass flow rate, C and k are fitting parameters, q is
the bulk density, g is here gravitational acceleration, W is the orifice
width, and d is the particle diameter. Experiments suggest the k
should be in the range 1 < k < 2, although theoretical arguments
have been made that k should be 1 exactly [45,46].

In Fig. 4 we see a comparison of the Beverloo relation with the
simulated l Ið Þ silo. The flow rate is measured by taking the mass of
granular material remaining over time and fitting a straight line
(omitting the first time unit of flow to avoid transitional effects
from the initial conditions). For the k ¼ 0 case we see results con-
sistent with the expected Q / W1:5 relationship. The kd term is
often attributed to single particle interactions, so we do not expect
that it would be captured by this continuum model. Nonetheless,
the l Ið Þ model seems to capture this kd term with k 	 1:92, and
the Beverloo model has a clear discrepancy with the simulations
when this term is omitted. This may suggest that the kd term is
not caused by individual particle interactions or the ‘‘empty annu-
lus” theory, but is instead primarily caused by the friction near the
orifice. Note that the low orifice widths represent unphysical silos;
for orifice widths less than 5d, jamming becomes a significant fac-
tor and no meaningful flow rate measurement can be achieved
experimentally. In contrast, the l Ið Þ model gives non-zero predic-
Fig. 3. Kinematic model (lines) compared with l Ið Þ model (points) in a single
opening 2D silo. The vertical velocity from simulations and kinematic model are
compared for various different heights. One set of kinematic parameters is fitted
over the entire silo.

5

tions for the flow rate for all silos where the orifice width is greater
than zero.

In Fig. 5, the Beverloo relation is examined when non-local
effects, dilatancy, and/or wall friction are considered. Non-local
effects and dilatancy seem to decrease the flow rate, with non-
local effects having the stronger effect for these parameter values.
Wall friction also seems to increase the flow rate for high orifice
widths, however low orifice widths it seems to increase the flow
rate. This could be captured by decreasing the kd term, however
this results in lower kd values seen in some experiments and the-
ories. However, it should again be stressed that this analysis is
done including non-physical silos with orifice widths too small to
give consistent flow, and as such this analysis may have limited
application to physical silos.

In Fig. 5 we also combine non-local effects with combinations of
dilatancy and wall friction. Adding dilatancy or wall friction when
non-local effects are present decreases the flow rate, but to a lesser
extent compared to when non-local effects are absent. The
increased flow rate for low orifice widths also seems to be sup-
pressed when non-local effects are present. Any continuum model
wishing to capture the flow rate accurately will need to account for
each of these effects.

3.2. Double orifice flow rate dip

A comparison of the behaviour for kinematic and l Ið Þ models in
the two opening silo is given in Fig. 6. When applying the l Ið Þ
model to the two opening silo we obtain two dips, while the kine-
matic model shows almost no sign of this. The kinematic model
can capture the double dip pattern if parameter values distinct
from the values for other heights in the silo are used (which may
improve the kinematic model for a single silo as well [24]). The
black dotted line in Fig. 6 shows the prediction of the kinematic
model using parameters fitted only over a horizontal line near
the bottom of the silo. In this case the kinematic model does show
the double dip behaviour we expect from this domain, although it
predicts the dip occurs less gradually than the l Ið Þ simulations.
This is possibly related to the lack of prediction for plug flow dis-
cussed in Section 3.1.

For a silo with two openings, when different separations
between the openings are examined, unexpected phenomena arise.
Fullard et al. [2] has shown that a ‘dip’ occurs in mass flow rate for
small separations. For silos with two orifices approximately 7:5
particle diameters apart, a minimum flow rate is reached, where
either increasing or decreasing the separation distance would
increase the flow rate. It is intuitive that the flow is less than the
zero separation case (which corresponds to a single opening with
double width), however the observation that the flow rate for small
separations is less than the flow rate for large separations is less
intuitive. The Beverloo relation can be applied to the zero



Fig. 4. Flow rate bQ ¼ Q=

ffiffiffiffiffiffiffiffi
gd5

q
compared to orifice width on a 2

3 flow rate scale (left) and a linear scale (right), with k ¼ 0 and fitted k ¼ 1:92.

Fig. 5. Mass flow rate bQ ¼ Q=

ffiffiffiffiffiffiffiffi
gd5

q
for various single orifice widths and combinations of non-local effects, dilatancy, and wall friction. The points show the simulation, while

the lines give the fitted Beverloo relation with k ¼ 1:92. When relevant, the non-local strength is set to A ¼ 0:5, dilatancy gradient is set to /g ¼ 0:2, and wall friction strength
is set to F ¼ 0:5.

Fig. 6. Kinematic model (lines) compared with l Ið Þ model (points) in a 2D silo with
one two openings. The vertical velocity from simulations and kinematic model are
compared for various different heights. One set of kinematic parameters is fitted
over the entire silo, however a set of kinematic parameters is fitted just on the
H ¼ 0:31 case to display the double dip behaviour (indicated by the dotted line).
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separation and infinite separation cases, giving the flow rates as

Q ¼ C 2W � kð Þ1:5 for L ¼ 0 and Q ¼ 2C W � kð Þ1:5 for L 
 W . If the
k term is omitted the flow rate in the infinite case is less than
the zero separation case by a factor of 1=

ffiffiffi
2

p
(approximately 0:7),

which corresponds to the value we expect the flow rate to reach
at infinite separation (with the k term decreasing the limit value
when accounted for). While the Beverloo relation does give the
behaviour of the zero separation case and the expected infinite
separation value, it does not provide any insight to the behaviour
between these two cases.

When examining the two opening silo over multiple separation
distances, we find the l Ið Þ parameters (given in Eq. 5) have a big
6

impact on the shape or existence of the flow rate dip. We examine
3 different sets of parameters, with (ls;Dl; I0) being set to
(0:47;0:38;0:6) for a low friction simulation, (0:62;0:48;0:6) for a
medium friction simulation, and (0:77;0:58;0:6) for a high friction
simulation. The velocity profile of two opening silos using the med-
ium friction values for various different orifice separations is given
in Fig. 7, with low and high friction both giving similar qualitative
behaviour. For low separation distances, the fast regions near the
orifice merge together creating a single fast region, while for large
separations the fast regions stay relatively independent, and main-
tain higher independent speed.

The flow rates over different separations are shown in Fig. 8 for
different friction values and some experimental data taken from
[2]. The dotted line also shows the doubled flow rate for a single
opening case with the orifice width used for the double opening
cases, which should give the flow rate for arbitrarily large separa-
tions (since interactions between the orifices are negligible, the silo
will act as two single orifice silos). For the low friction case, we see
that the flow does not dip significantly, instead decreasing in what
seems to be a monotonic pattern. The low friction case does go
below the expected infinite separation value; this could be because
of the side walls affecting the flow for large orifice widths. For
medium friction values, the flow rate dips in a similar manner to
the experiment, though the dip is more gradual than the experi-
mental data, with the dip occurring over a greater separation range
than the experiment shows. The medium friction data also does
not seem to have as large of a difference between the minimum
dip value and the large separation value. The high friction values
seem to have similar dipping behaviour to the medium friction val-
ues. Some tests with high friction values are numerically unstable,
and as such for the remainder of this paper we use the ‘medium’
values to test the other additions to the model.



Fig. 7. Velocity in two hole silos with various different orifice separations. The white box in the log plots indicate the area examined in the linear plots.
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Fig. 8. Flow rate bQ ¼ Q=

ffiffiffiffiffiffiffiffi
gd5

q
versus opening separation length for two opening silos with different friction values. The left plot shows the raw flow rate, while the right plot

shows flow rate normalised by the zero separation case. The l Ið Þ parameters (ls ;Dl) are (0:47;0:38) for low friction, (0:62;0:48) for medium friction, and (0:77;0:58) for high
friction. The doubled flow rate for a single orifice silo with medium friction values is provided for comparison (medium limit dotted line), as well as the experimental
‘‘Amaranth small” data from [2].
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3.2.1. Hele-Shaw Wall friction
In Fig. 9 we show the flow rate as a function of orifice separation

for medium l Ið Þ parameters combined with various values of the
wall friction parameter F. Accounting for the Hele-Shaw wall fric-
tion given by Eq. 9 has a significant effect. As intuitively expected,
increased friction decreases the overall flow rate for all separation
values. The dipping behaviour of the flow rate occurs for all of
these different wall friction values, however greater wall friction
results in the dip deepening. For the normalised plot the flow rate
seems to recover to the same normalised point independently of
the friction values, indicating that wall friction is impactful when
the separation between orifices is low while not changing the rela-
tionship between the zero separation case and the infinite separa-
tion case.

3.2.2. Dilatancy
The effect of dilatancy on the relationship between mass flow

rate and orifice separation distance is shown in Fig. 10. Increasing
the dilatancy decreases the mass flow rate for all separations as
expected, with a realistic parameter of 0:2 [36] giving approxi-
mately 20% less flow than the incompressible case. The flow rate
dip occurs for all parameters tested, with the normalised flow rate
recovering with increased separation at similar rates. With
increased dilatancy, the normalised flow dips deeper, indicating
that dilatancy heavily depends on the orifice size. Since the flow
rate dip recovery is somewhat consistent for the different parame-
ters tested, dilatancy seems to primarily affect the flow rate dip by
increasing the difference between the zero separation case and the
non-zero separation cases.
Fig. 9. Flow rate bQ ¼ Q=

ffiffiffiffiffiffiffiffi
gd5

q
versus opening separation length for two opening silos wi

the right the flow rate normalised by the zero separation case is shown.

8

3.2.3. Non-local effects
In Fig. 11, non-local effects have been implemented for a two

opening silo. The non-local effects are controlled by a single chosen
parameter A. Increased non-local strength decreases the flow rate
greatly, with a feasible non-local parameter 0:5 [17] resulting in
approximately half of the flow rate compared to the local case.
When examining the normalised plot, increased non-local strength
seems to counteract the flow rate dip. The dip occurs for all param-
eters tested, however the dip is shallower when the non-local
parameter A is greater. The normalised flow rate seems to recover
to the same value, which indicates that non-local effects has a sim-
ilar impact for the single opening with double width silo and the
silo with two openings separated by a large distance. However,
the non-local effects do have a large impact on the flow rate dip
when the distance between openings when the separation is low
(but not zero). This indicates that non-local effects are important
for capturing the flow rate dip.

Fig. 12 shows the strength of non-local fluidity g normalised by
the local fluidity gloc over a silo, which we use to represent the
influence of non-local effects. This Laplacian coefficient is relatively
large over most of the domain, however it drops rapidly near the
orifices. This behaviour is consistent with what we expect from
Eq. 13 because near the orifices I is large, hence l Ið Þ approaches
ls þ Dl, meaning that n l Ið Þð Þ approaches zero. This means that
non-local effects are dominant over most of the silo, however near
the openings non-local effects are negligible. Interestingly, in
between the orifices there is a small zone for which g=gloc is larger,
indicating an increased relevance for non-local effects. This zone
may explain why non-local effects decrease the impact of the flow
th different wall friction values. The raw flow rate dip is shown on the left, while on



Fig. 10. Flow rate bQ ¼ Q=

ffiffiffiffiffiffiffiffi
gd5

q
versus opening separation length for two opening silos with different strengths of dilatancy, determined by the value /g . The raw flow rate dip

is shown on the left, while on the right the flow rate normalised by the zero separation case is shown.

Fig. 11. Flow rate bQ ¼ Q=

ffiffiffiffiffiffiffiffi
gd5

q
versus opening separation length for two opening silos with different strengths of non-local effects, as determined by parameter A. The raw

flow rate dip is shown on the left, while on the right the flow rate normalised by the zero separation case is shown.

Fig. 12. A log-scale contour plot of a two opening silo displaying the non-local
influence gnl=gloc , which is used to show where non-local effects are strong
compared to local effects.
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rate dip for small separation values, since this zone may smooth
out the flow for small separations.
4. Conclusion

We have implemented a continuum model based on the l Ið Þ
rheology, and applied it to a two opening silo, which is a domain
which displays many challenging phenomena. The l Ið Þ model fol-
lows the expected behaviour described by the Beverloo–Hagen
relation for a single opening silo, despite not modelling single par-
ticle interactions.

For a double opening silo, the base l Ið Þ model is capable of cap-
turing the transition from monotonically decreasing relationship
9

between flow rate and orifice separation distance for low friction
materials to the more complex flow rate dip which is seen in more
realistic higher friction materials via the l Ið Þ parameters. This
shows that the flow rate dip is a frictional phenomena, with higher
friction being required to obtain the flow rate dip.

We also extended the l Ið Þmodel by accounting for wall friction,
dilatancy, and non-local effects. These effects all have a strong
impact on the mass flow rate in each geometry we tested. We find
that wall friction effects may be a significant factor for the �kd
shift term in the Beverloo–Hagen relation, although caution is nec-
essary as this is partially based on theoretical data where physical
silos would jam. Each of these effects also had unique impacts on
the flow rate dip, with wall friction strengthening the dip, non-
local effects weakening the dip, and dilatancy decreasing the flow
rate for the smaller orifice sizes used for non-zero separations. The
extended model that incorporates all three of these effects matches
the experimental model better than the base l Ið Þ model.
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