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Abstract

The present study aims to establish a simple mechanistic model for river bank erosion. Recent experiments demonstrate that
small-scale laminar flumes can develop erosion structures similar to those encountered in Nature. From the Saint-Venant Equations,
a classical sediment transport law and a simple avalanche model, it is shown that bank failure caused by flow erosion can be
represented through simple boundary conditions. These conditions are able to deal with the water level adjustment imposed by a
constant water outflow condition. Finally, they are implemented to approach numerically the widening of a laminar river. 7o cite this
article: O. Devauchelle et al., C. R. Geoscience xxx (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Condition de berge mobile pour une riviere expérimentale laminaire. La présente étude se donne pour objectif d’établir un
modele simple de berge érodable. De récentes contributions ont démontré expérimentalement que dans des microrivieres de
laboratoire, parcourues par un écoulement laminaire, I’érosion peut produire des structures similaires a celles observées en milieu
naturel. Les équations de Saint-Venant, en régime laminaire, associées a une loi de transport sédimentaire classique ainsi qu’a un
modele simplifi€¢ d’avalanche, permettent de déterminer un ensemble de conditions aux limites décrivant I’effondrement des berges
sous I’effet de I’érosion et capables de prendre en compte des variations du niveau de I’eau de 1I’écoulement. Cette derniére propriété
est indispensable si 1’on souhaite imposer le débit total de la riviere. Enfin, ces conditions sont mises en ceuvre dans le cas d’une
microriviere rectiligne qui s’élargit sous I’effet de 1’érosion. Pour citer cet article : O. Devauchelle et al., C. R. Geoscience xxx
(2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The Saint-Venant equations, when associated to a
sediment transport law, are able to represent the
formation of various river patterns as fluid-structure
instabilities. The most obvious example is the develop-
ment of alternate bars in a straight channel [5,15]. The
same bar instability is also responsible, at first order, for
the formation of braided patterns [13,30]. A close
relationship between bar instability and meander
formation has been suggested earlier, to such an extent
that both phenomena were hardly distinguished in the
first contributions [17,5,30]. However, to investigate this
relationship quantitatively, one needs to add a crucial
ingredient to the model, namely a bank erosion law.

Advances in this direction may be credited to [21]
and [2]. Both contributions use a heuristic bank erosion
law, according to which the normal velocity of the bank
is a continuous function of the water velocity near the
bank. This model allowed to reproduce accurately
wavelength of meanders, and shed light on the “bend
instability” mechanism [2]. However, this heuristic
bank erosion law presents serious drawbacks. First, it
has not yet been derived from a detailed physical model,
and thus lacks theoretical support. Second, it does not
conserve sediment mass. In addition, the mechanisms
leading to bank recess (undermining, bank failure)
differ from bank advance processes (deposition,
vegetation growth, etc.). Thus a bank erosion law
should necessarily be discontinuous as the bank velocity
changes sign. Last, there is no reason to believe that this
law is a function of the mean water velocity only. Itis a
priori a function of every other model quantities, say
water depth or bank height at least.

Since the contributions of [21] and [2], few attempts
to derive bank erosion laws have been made. Among
them are the work of [23], and more recently [8,10]. The
later succeeded in numerically implementing complex
bank erosion laws designed to take various phenomena
into account (bed degradation, lateral erosion, bank
collapse). Although [12] demonstrate the ability of their
two-dimensional model to reproduce river meandering,
the complexity of bank erosion laws pleads for a
simplified analysis in the case of straight rivers, where
only the transverse coordinate remains. This configura-
tion also presents its own interest: the question of river
width selection has been the subject of abundant
research [18,31,32]. As a consequence, laboratory
experiments were performed, and provide straight-river
widening data [19,20,25].

The present study aims to derive a one-dimensional
erosion law for a laminar flume on non-cohesive

granular material, by means of a simplified but
mechanistic approach. Our motivation is based on
recent works tending to demonstrate that laminar flows
may generate erosion patterns comparable to those
encountered in Nature. This is true for rivers
[11,26,28,37], but also for submarine canyons [27].
The main advantage in considering laminar flows is
experimental: experiments involving laminar flumes of
centimetric width are much more easily performed than
their turbulent counterparts. The typical Reynolds
number of a microscale experimental flume remains
below 500 [29], a value low enough to approximate the
flow by a laminar velocity profile [26].

This low value of the Reynolds number prevents
direct upscaling from experiments to the field. However,
the natural geometric aspect ratio, as well as the Froude
number, can be respected. In that case, the shallow-
water equations used here differ from the classical
turbulent ones only by the value of the Boussinesq
coefficient and by the friction term [11]. This analogy
explains the qualitative similarity between laminar
microrivers and natural ones. Thus microscale flumes
should be regarded as powerful tools for the investiga-
tion of some geomorphological mechanisms, even
though upscaling should be performed with great care
[28].

This paper is organized as follows: a first section is
devoted to a general two-dimensional model for erosion
by laminar flows. Then the simple case of a rectilinear
river is studied. Its limitations are discussed, and
motivate the bank model presented in the next section.
Finally, bank conditions are numerically implemented
to represent the widening of a laminar river at constant
water discharge.

2. Two-dimensional laminar flow and erosion
2.1. The Saint-Venant equations for the flow

Experimental laminar flumes generally imply shal-
low flows. Their typical depth is about 5 mm, whereas
their width and length are of the order of 10 cm and 1 m
respectively [26]. Consequently, the effects of the
vertical water velocity may be neglected. This leads to
the shallow-water approximation. The laminar Saint-
Venant equations result from the vertical integration of
Navier-Stokes equations, under the assumption that a
parabola fits the vertical velocity profile (Nusselt film).
A Nusselt film remains stable only for a Reynolds
number below 5/(4S) (S being the mean slope of the
flume [39]). Consequently, above this value the laminar
Saint-Venant equations fail.
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Another limitation of the model is due to the
formation of ripples on the bed [9]. Again, keeping the
Reynolds number low enough allows the bed to remain
flat during an experiment. Similarly, alternate bars may
grow in the channel, and one has to reduce the aspect
ratio of the channel to avoid this drawback [11,19].

We hereafter assume that the flow characteristic time
is much smaller than the erosion time. This is a common
hypothesis in geomorphology [30]. It allows to neglect
the time derivative in the flow equations. Momentum
balance then reads
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Fig. 1. Simplified scheme of a microriver bank, and associated
notations. By definition, avalanches occur only between point A
and point B.

) u
5F (u-V)u=_Se,—Vp Sdz, (1)
where u, F, S, n and d denote the vertically averaged
water velocity, the Froude number, the mean slope of
the plane, the water surface elevation and the flow
depth, respectively. These quantities were made non-
dimensional, by mean of the typical velocity U and
the typical depth H. The Froude number is then
F = U/+/gH. The 6/5 coefficient on the left-hand side
of this equation is the Boussinesq coefficient for a
laminar flow. In the following, x and y are the mean
flow direction and the transverse direction, respectively
(see Fig. 1).

As for the momentum equations, the water mass
conservation equation can be vertically integrated. This
procedure leads to

V - (du) = 0. 2)

From the solution of Egs. (1) and (2), one can
deduce the shear stress T exerted by the stationnary
flow: T=u/d.

2.2. Sediment transport equations

2.2.1. The Exner equation

If the sediment particles are large and dense enough,
their settling velocity is comparable to, or larger than,
the water velocity. In that case, they remain at the river
bed surface, and the flow transports them as bedload [6].
This mechanism is the dominant flow-induced transport
in most experimental flumes, where suspension is
negligible. Then, the bed topography evolution can be
determined by means of the Exner equation [14]:

dh+V-q=0, 3)

where q denotes the horizontal sediment transport flux
per unit length.

Bedload transport is induced by two forces: the
tangential stress exerted by the flow, and gravity. A
complete transport law should combine both effects

Schéma simplifié d’une berge de riviére expérimentale.

[22,23]. However, for the sake of simplicity, we will
hereafter separate these effects. We assume that the total
sediment flux is the sum of an avalanche flux,
independant from the flow, and an erosion flux induced
by the shear stress 7. Then

1
q:qe—i_gqav (4)

where q., and q, denote the erosion and avalanche
sediment fluxes, respectively. The small non-dimen-
sional parameter ¢ indicates that avalanches occur at
short time scales, as compared to erosion (see Section
2.2.3.).

2.2.2. Erosion by water

Numerous bedload models can be found in the
literature [33]. It is usually considered that the intensity
of the flux is a function ¢ of the Shields parameter 9:

191l = ¢(6), (5)

where 6 = pv||||/(ps — p)/d,. The quantities p, p;, v and
d, denote water and sediment densities, water viscosity
and the mean diameter of sediment grains. The shape of
function ¢ itself is the subject of intense research (see
[7] among others). It obviously vanishes at the origin on
a flat bed. It is also generally accepted that it is a
positive, growing and convex function. The main ques-
tion about ¢ concerns the existence of a threshold,
below which no grain moves. The analysis presented
below (excepted the illustrative case of Section 3.1)
holds for any erosion law ¢. For illustrative purposes,
we will set ¢ = 6° with B=23.75, as this empirical
formulation fits correctly Charru and Heiff’s data [7],
as well as the experiments of Malverti, Lajeunesse and
Métivier [28]. Way above the threshold, most formula-
tions tend to a power law. Of course, for a river slightly
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above the threshold, a more specific analysis would be
required.

Regarding the direction of the sediment flux, we are
not aware of any definitive model supported by
experimental evidence, despite some recent important
advances [16,23,36]. However, for moderate bottom
slope, many authors suggest that the two-dimensional
sediment flux may be expressed as follows:

u

q. = ¢(9) <— - )/Vh> ) (6)
[[uf

y is a constant (or a two-dimensional tensor) of order

one [34,35,38]. The sediments are transported essen-

tially along the water velocity direction (u/||ul|). This

direction is then corrected downwards by the bottom
slope (yAh).

2.2.3. Avalanches

A complete dynamical model for granular flows is
far beyond the scope of the present study. In order to
take the effects of avalanches into account, we use a
simple heuristic model, proposed by [1].

In non-cohesive granular materials, avalanches are
intermittent and local phenomena, occurring only if the
surface slope exceeds a critical angle denoted «.. [3,4].
If we neglect the effect of inertia, the avalanche flux can
be modelled by a growing function of the slope,
vanishing below the threshold [24]:

Vh

@, = ¢(IVAl) T

(N
where ¢ vanishes below «..

Measuring the intensity of sediment transport by
avalanches on a microscale river would not be an easy
task. However, a rough order-of-magnitude analysis
allows to compare avalanche transport to flow-
induced transport. Both can be scaled by V./d*
where V, is the settling velocity [7]. During an
avalanche, all the surface grains are driven by gravity,
and thus are moving at velocities of the order of
V.. The associated flux is then of order V/d”. On the
other hand, erosion moves only a small fraction of the
bed surface particles: for a Shields parameter equal to
0.3 (typical in laminar flumes), the erosion flux is
less than 0.05V/d*> [7]. Consequently, the small
parameter ¢ introduced in Section 2.2.1 is of the order
of 0.05.

In the general case, the system formed by the above
equations cannot be solved easily, even numerically,
due to the large time-scale separation between
avalanches and erosion. Instead, one can take advantage

of the small value of ¢ to derive integral conditions
describing avalanches. It is the purpose of the following
developments.

3. Laminar flume widening

3.1. A simple case: no avalanche and constant
water level

In a first attempt to evaluate some solutions of the
above erosion model, one may consider a straight river,
without any avalanche. This simple case can be
analytically solved as follows.

Since the flume cross-section is invariant with
respect to any translation in the flow direction (that
is, x), the full problem reduces to one-dimensional
equations, where only y and ¢ remain. The Saint-
Venant Eqs. (1) and (2) then read 6=0:«d and
0. = pgSH/(ps — p)ds. In the same way, the Exner
equation becomes

Oh=—dyq, q=4q.+ %qm (®)
where the sediment fluxes are

q. = —v$(0.d)oyh, ©)
6 = —(|ah]) sign (3,h). (10)

Note that g, and ¢, are transverse fluxes. Indeed, the
sediment flux along the x-direction remains constant in
a straight river, and thus does not influence its
morphology.

If one assumes that no avalanche occurs, and if one
represents the erosion function by a power-law
(p(0) =¢f ), then a simple analytical solution can be
derived [11]":

1 2 1/
P S 7 (11)
t1/(B+2) 2(B+ 2);2/(ﬂ+2)

where A is a constant linked to the river section area.
This solution is valid only if n =0 at any time.

This solution illustrates the limitations of a model
without avalanches. Indeed, for 8 > 1 (this is usually
the case in the literature), the bed transverse slope d,h
diverges at the bank (that is, for #=0). For a non-
cohesive sediment, such steepness triggers avalanches.
Consequently, there must be a domain in the bank
neighbourhood where avalanches occur. This idea

! There is a typo in the relation (22) of [11]. The correct equation is
given here.
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inspired the bank model presented in the following
section.
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B itself
q(b(1),1) = nb. (16)

3.2. Non-cohesive bank conditions

3.2.1. Model description

A realistic non-cohesive bank model should describe
the effect of avalanches that undermine the bank foot. It
should also be able to take water level variations into
account, so that the total water outflow Q can remain
constant (see Section 3.3.1). The simplest way to do so
is to assume that avalanches are contained at the bank
foot, as on Fig. 1. We define a point A which x-
coordinate is denoted by a:

<o, on [0,a)
8yh{ >a. on [a,b] (12)

The bank height is represented by a discontinuity of
the topography & at point B (with coordinate b) where
the flume depth vanishes. This assumption corresponds
to experimental flumes behaviour. Indeed, above the
water level, sediments are wet but unsaturated, and
capillarity then introduces the cohesion required to
maintain vertical banks.

Finally, for the sake of simplicity, the sediment
topography out of the river bed is assumed to be
uniform, and arbitrarily set to zero.

3.2.2. Boundary conditions

Boundary conditions at point A rest on the continuity
of both bed topography and sediment flux. The first
condition comes from the absence of cohesion in the
fully saturated sediment, which cannot sustain an
infinite slope. The second condition is imposed by the
sediment-mass conservation. Thanks to the continuity
of both 4 and ¢ at point A (that is, for x = a(f)), one may
write

h(a(t),t) = h_(t), (13)
qla(t),1) = q_(1), (14)

where /_ and ¢g_ denote the limit values of 4 and ¢ at the
left-hand side of point A. Both are functions of time
only.

Point B is the intersection of the water surface with
the topography, thus

h(b(1),1) = n. (15)

The sediment mass conservation at point B requires
that the flux be the product of the topography
discontinuity with the horizontal velocity of the point

Associated to these boundary conditions, Egs. (8),
(9), associated with (10) can be solved on segment [a,b],
provided the boundary conditions ¢g_ and /_ are fixed.

The following section is devoted to the derivation of
bank conditions, based on the small value of ¢. In Section
3.3, the derived equations are presented and solved.

3.2.3. Asymptotic analysis of the bank foot
3.2.3.1. Series expansion. To take advantage of the
quick avalanche hypothesis (that is, ¢ is small), we will
hereafter assume that the bank foot zone geometry is
constrained by the first order of the sediment transport
equation. In other words, the bed slope near a receding
bank is close to the critical slope «. Order-one
perturbations of this slope then control the sediment
flux, even though they are geometrically negligible.
Mathematically, these results are obtained by means of
a perturbation analysis in .

The height of the river bed may be expanded as
h = ho + ¢hy + O(¢*). Similarly, let us define g, and
q.. for the erosion flux, g, and g, for the avalanche
flux and by and b, for the bank position’. To zeroth
order, the flux boundary condition (14) gives:

qa,() = Oa Qe,() + Qa,l =4, (17)

for y = a. In the same way, the boundary conditions (13),
(15) and (16) lead respectively to:

h():]’l,, ]’l]ZO for y=a, (18)

h0|b0 =n hl‘bo + bl(ayho)|b“ =0, (19)

%,o|b0 =0, 7717.0 = qe,0|h0 + qa,1|h0 + bl(a_vqa,o)|b0-
(20)

Finally, imposing the definition of point A (12)
requires that

dyho > ae,  dyhy > 0. (21)

3.2.3.2. First integration of the Exner equation. At
order 1/e, the Exner Eq. (8) reads

%qa0 =0 (22)

2 Developing b and not a is an arbitrary choice (the reverse would
lead to the same results), since the only physically meaningful
quantity is the distance between a and b.
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for any y on [a,b]. Boundary conditions (17) and (20)
then lead to g, =0 on [a,b]. Now, the avalanche flux
expression (10) leads to g,o= —@(dyh). Given the
avalanche law ¢ and relation (21), one can impose
a vanishing flux g, only by setting d,ho = o. Finally,
the topography profile at zeroth order is solved,
taking the boundary condition (18) into account:
ho=0a(y — a) + h_. The boundary condition (19) at
the bank foot then imposes the geometrical bank rela-
tion

a.(bp—a)=n—h_. (23)

3.2.3.3. Second integration. The bank relation (23)
does not provide enough constraints. Fortunately, the
next order of our expansion is easily reached. The Exner
Eq. (8) imposes 0dig=—0yg.0—0,q,,1. Taking the
boundary condition (17) into account, this equation
can be integrated into

Qa1 = (y - a)(afd - h*) ~4ep +q_, (24)

keeping in mind that ¢ and /_ are functions of time only.
The flux boundary condition at the bank (20) imposes
that

nbo = (bo — a)(acd —h-) +q_, (25)

where the leading order of the Exner Eq. (22) has been
used.

The next step requires the development of the
sediment flux expressions (10) and (9) to order one and
zero respectively:

a1 = _8}*h1§0/(ac)7 (26)
Gep = —vated(0:(n — ho)). 27)

It is then possible to integrate Eq. (24) from a to any
y. This provides an expression for the bed topography at
order one:

e
= ) (5(y -

(@000 h) - 901 - ). 29)

*

a)*(@ed —h-) + (v = a)q_

where @ refers to the primitive of ¢ which vanishes
when its argument does. An example of this order one
perturbation is shown on Fig. 2. Finally, the remaining
boundary condition (19) fixes the position b, of the bank
foot at order one.

3.2.3.4. Slope boundary condition. As long as the
river widens, sediments are transported from the bank

0 T T

b[) + 65)1 b0§
57 5.8 5.9 6 6,‘1 6?2 - 6.3

Fig. 2. Example of the first-order development presented in Section
3.2.3. This picture corresponds to time 7= 10 of the laminar river
widening of Fig. 3. Solid line: ho; dashed line: Ay + €h;. To enhance the
effect of order one in the perturbation theory, ¢ is arbitrarily set to 10.
In practice, the zeroth order is enough to derive the boundary condition
for the bed evolution equations.

Développement a I’ordre un de la berge, selon le modeéle présenté dans
le paragraphe 3.2.3.

toward the bed, that is, g_ < 0. Since, by definition, no
avalanche occurs on [0,a), ¢g_ is due to erosion only,
and:

g = —y(0.d_)h (29)

Its minimum value is then ¢_ > — y¢(6.d_)o, =
Geol,- From boundary condition (17) we then deduce
that g, ; > 0, which can be satisfied only if ¢, ; =0. In
other words, the sediment flux due to avalanches
vanishes at y = a. Consequently, relations (29) and (17)
lead to the following boundary condition:

Wh_ = a,. (30)

3.2.3.5. Self-consistency of the development. The
bank model presented here requires that the topography
slope d,h remains above the avalanche angle on [a,b]. At
order one, inequality (21) must be satisfied. Rewriting
Eq. (24) by means of relation (26), the previous inequal-
ity reads f(y)=(y— a)(@ed — ) — quo+g_ <0.
Indeed, whatever the avalanche law ¢, the sediment
flux increases with the topography slope, and thus the
quantity ¢'(«.) is positive. We will see hereafter that f is
indeed negative on [a,by], for some very general
hypotheses on the sediment transport laws.

The second derivative of f reads ya’¢' (8(n — ho),
and thus remains positive. Consequently, the first
derivative f’ is a growing function. Its value in b,
is f'(bo) = aca—h — ya’¢/(6(n — hy)) We may
assume that the derivative of the erosion law ¢ vanishes

(2008), doi:10.1016/j.crte.2008.07.010
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for a vanishing Shields parameter. Also, for wide rivers
(see Section 3.3), a>> h_ and f'(by) is positive.

The sign of /' in a is not obvious. However, it will be
shown below that the sign of f' must change on [a,bo],
thus f'(a) must be negative.

Consequently, the variations of f are the following:
f(a) =0, then f decreases until it reaches a minimum,
then increases up to f(by) = nby. For a widening river,
by is positive, whereas 1 is negative. Thus f(b,) remains
negative, proving both that f must change sign as
assumed above, and that f is negative on the whole
segment [a,bg].
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3.3. Widening and overflow

3.3.1. Numerical results
The bank model derived in Section 3.2.3 allows us to
impose a constant water outflow. Let Q be this outflow:

Qz/muddyzz/a(n—hfdy, 31)
—00 0

where we have neglected the small amount of water
flowing near the bank, through the segment [a,b]. By
imposing that Q remains constant while the river
widens, we impose a condition that replaces the con-
stant water level imposed in Section 3.1.

If we associate the water outflow condition (31) to
the boundary conditions (30) and (25), we finally end up
with the following system:

oh  9q
ot ay . (32)
= — % — h e
q=—v,$0.(n —h)) 5
a oh
/ (n=h)dy=0,, | =0, (33)
0 Y 1o

oh

By (34)

aC7 Olcq

oh
()

To obtain the above system, the first derivative of the
relation h_ = h(a(t),t) has been used.

The solution of this system for a given initial
condition can be approached numerically. We employed
an explicit finite-difference scheme to produce the
results presented on Fig. 3.

Under the effect of erosion and slope-induced
sediment diffusion, the laminar river widens and
becomes shallower. Eventually, the water level reaches
the bank top, and water overflows. At that point, our
model fails.

a a

Fig. 3. Widening of a straight microriver, at constant water outflow,
using the bank conditions of Section 3.2.3. The spatial scale is
arbitrary, but the aspect ratio is preserved. Parameter values are:
0:=1,a.=0.6,p0) = 6>73, ¢'(a,) = 1. The initial section of the river
is a rectangle of width @ = 5 and depth 2 = —1. The initial water level
is n = —0.4. This level increases as the bed widens, until it reaches the
bank height. If the sediment transport law ¢ has no threshold, water
eventually overflows.

Elargissement d’une riviere expérimentale laminaire, pour un débit
d’eau constant. La riviére finit par déborder de son lit si le sédiment
sur lequel elle s’écoule n’est pas cohésif.

3.3.2. Sediment mass and water outflow constraints

The river overflow described above can be under-
stood in a simple way. Bank erosion tends to widen the
bed. However, due to the invariance in the main flow
(that is x) direction, the sediment-mass conservation
imposes that the flume section area S be conserved. In
other words,

S~ C/WH (35)

is a constant, where W and H respectively stand for
the typical width and height of the river. C; is a shape
constant of order one. Thus widening implies shallowing.

The water outflow Q is also a constant, which may be
approached by

0~ C,W(n+H) (36)

for a laminar flow (C; is a shape constant). To maintain
the outflow to its initial value while the river height
decreases, the water level must increase. From relations
(35) and (36), we can express the water level as a
function of the river width:

o\ s
~ | — — . 37
1 (WC2> We, 37)

In Fig. 4, the above expression is compared with the
numerical solution of Fig. 3, after setting arbitrarily C;
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n-0.2 ’

-0.25 4

-0.35}/
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a, W

Fig. 4. Water level of a widening laminar river vs its bed width. Solid
line: numerical solution (the same as in Fig. 3); dashed line: simplified
relation (37). The conservation of sediment mass and water discharge
explains the overflow.

Evolution du niveau de I'eau au cours de I'élargissement. Trait plein :
solution numérique ; trait pointillé: Eq. (37).

and C, to one. Even though the two curves differ
significantly, the simplified expression (37) reproduces
qualitatively the behaviour of the numerical solution. In
particular, for a very large river V> 1), Eq. (37)
becomes 7 ~ (Q/W)'? >0, therefore predicting an
overflow. The fact that the numerical solution does not
keep a rectangular shape explains the difference
between the two curves.

4. Conclusion

Under well established conditions (experimental
laminar flumes on non-cohesive sediment), simplified
bank conditions can be established. These conditions
respect the sediment mass conservation. They are
derived from the basic mechanism that controls bank
erosion. If the sediment transport law does not include
any threshold, the river bed widens until water
overflows.

The model presented in this study is limited to a
specific system. However, the method used here is quite
general, and can probably be adapted to different
situations (cohesive banks, vegetation growth, etc.). In
addition, it can easily be generalized in two horizontal
dimensions, provided the curvature of the bank remains
small as compared to the flow depth.

Straight river widening experiments are found in the
literature, but most contributions focus on the equili-
brium width. Also, to our knowledge, no experiments
were performed at low Reynolds number. Measure-
ments on a laminar straight river are presently being
performed at the Institut de physique du globe in Paris.

Their comparison with the results presented in this
paper is the subject of future work.
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