Vendredi 10 Septembre 2004- 29ème congrès SB

Asymmetrical effects in a 2D flow, application to pharyngeal fluid flow in obstructive sleep apnea

LAGRÉE P.-Y. LMM/CNRS-PARIS6 VAN HIRTUM A. ICP/CNRS-INPGrenoble

Apnée du Sommeil

- OSA (Obstructive Sleep Apnea): cessation de la respiration pendant le sommeil
- 4% des hommes 2% des femmes
- conséquences cardiovasculaires, hypertension
- traitement "mécanique"/
- opération (50 à 78% de réussite)

PAROIS RIGIDES

Mécanisme

- la diminution de section
- entraîne une accélération
- donc une dépression
- d'où la fermeture du conduit

ce que nous allons présenter:

- Différents jeux d'équations simplifiées pour le fluide
- comparaisons avec des calculs Navier Stokes
- comparaisons expérimentales

Navier Stokes

Castem 2000

Navier Stokes

Navier Stokes

ReducedNavier Stokes

avec un adimensionnement ad hoc

premiers exemples

pression RNSP et NS sur les deux parois

frottement pariétal RNSP et NS sur les deux parois

- Légère dissymétrie
- décomposition Fluide Parfait/Couche limite
- Utilisation d'une méthode intégrale

Epaisseur de déplacement de la couche limite

Utilisation d'une méthode intégrale

Utilisation d'une méthode intégrale

les deux couches limites finales "conduit" réel

Relation de couplage

• Fluide parfait flux corrigé:

$$U_0(1 - (f_h + \delta_1^h) - (f_b + \delta_1^b)) = 1$$

variation de pression au travers de la section

$$\Delta P_0 = \varepsilon^2 \Big(\frac{\left(\left(f'_h + \delta'^h_1 \right)^2 - \left(f'_b + \delta'^b_1 \right)^2 \right)}{1 - \left(f_b + \delta^b_1 \right) - \left(f_h + \delta^h_1 \right)} + \frac{\left(f''_h + \delta''^h_1 - f''_b - \delta''^b_1 \right)}{2} \Big).$$

$$\varepsilon = Re^{-1}$$

 $\frac{d}{dx}\left(\frac{\delta_1^h}{H}\right) + \frac{\delta_1^h}{u_e^h}\left(1 + \frac{2}{H}\right)\frac{du_e^h}{dx} = \frac{f_2H}{\delta_1^h u_e^h},$ $\delta_1^h = F(p_e^h)$

 $\frac{d}{dx}\left(\frac{\delta_{1}^{b}}{H}\right) + \frac{\delta_{1}^{b}}{u_{e}^{b}}\left(1 + \frac{2}{H}\right)\frac{du_{e}^{b}}{dx} = \frac{f_{2}H}{\delta_{1}^{b}u_{e}^{b}},$

 $\delta_1^b = F(p_e^b)$

$$\frac{d}{dx}(\frac{\delta_{1}^{h}}{H}) + \frac{\delta_{1}^{h}}{u_{e}^{h}}(1 + \frac{2}{H})\frac{du_{e}^{h}}{dx} = \frac{f_{2}H}{\delta_{1}^{h}u_{e}^{h}}, \qquad \delta_{1}^{h} = F(p_{e}^{h})$$

$$U_{0}(1 - (f_{h} + \delta_{1}^{h}) - (f_{b} + \delta_{1}^{b})) = 1$$

$$\frac{d}{dx}\left(\frac{\delta_1^b}{H}\right) + \frac{\delta_1^b}{u_e^b}\left(1 + \frac{2}{H}\right)\frac{du_e^b}{dx} = \frac{f_2H}{\delta_1^b u_e^b}, \qquad \delta_1^b = F\left(p_e^b\right)$$

$$\frac{d}{dx}\left(\frac{\delta_{1}^{h}}{H}\right) + \frac{\delta_{1}^{h}}{u_{e}^{h}}\left(1 + \frac{2}{H}\right)\frac{du_{e}^{h}}{dx} = \frac{f_{2}H}{\delta_{1}^{h}u_{e}^{h}}, \qquad \delta_{1}^{h} = F\left(p_{e}^{h}\right)$$

$$\Delta P_{0} = \epsilon^{2}\left(\frac{\left((f_{h}^{\prime} + \delta_{1}^{\prime h})^{2} - (f_{b}^{\prime} + \delta_{1}^{\prime h})^{2}\right)}{1 - (f_{b} + \delta_{1}^{h}) - (f_{h} + \delta_{1}^{h})} + \frac{(f_{h}^{\prime \prime} + \delta_{1}^{\prime \prime h} - f_{b}^{\prime \prime} - \delta_{1}^{\prime \prime b})}{2}\right).$$

$$U_{0}\left(1 - \left(f_{h} + \delta_{1}^{h}\right) - \left(f_{b} + \delta_{1}^{b}\right)\right) = 1$$

$$\frac{d}{dx}\left(\frac{\delta_{1}^{h}}{H}\right) + \frac{\delta_{1}^{h}}{u_{e}^{b}}\left(1 + \frac{2}{H}\right)\frac{du_{e}^{b}}{dx} = \frac{f_{2}H}{\delta_{1}^{b}u_{e}^{b}}, \qquad \delta_{1}^{b} = F\left(p_{e}^{b}\right)$$

couche limite amincie

Х

modèle expérimental

Figure 10. Normalized pressure at position p_1 for $h_{min} = 1.45mm$: measured data (+), Thwaites (>) and RNSP (x).

Figure 13. Normalized pressure at position p_1 for $h_{min} = 3.00mm$: measured data (+), Thwaites (>) and RNSP (x).

Figure 14. Normalized pressure at position p_2 for $h_{min} = 3.00mm$: measured data (+), Thwaites (>) and RNSP (x).

Figure 11. Normalized pressure at position p_2 for $h_{min} = 1.45mm$: measured data (+), Thwaites (>) and RNSP (x).

Figure 12. Normalized pressure position p_3 for $h_{min} = 1.45mm$: measured data (+), Thwaites (>) and RNSP (x).

Figure 15. Normalized pressure at position p_3 for $h_{min} = 3.00mm$: measured data (+), Thwaites (>) and RNSP (x).

Figure 8. Longitudinal velocity profile with a step of $\Delta x = 1.0$ mm for $h_{min} = 3.00$ mm and $\phi = 40$ /min: measured data (+), Thwaites (>) and RNSP (x).

Conclusion

- méthode TRES rapide
- très bonne prédiction (par rapport à Navier Stokes) des différents phénomènes
 - ici 2D asym
 - (2D sym.: OK)
 - (Axi :OK)
 - (incursion dans l'instationnaire)

- prédiction assez correcte par rapport à l'expérience (transition...)
- Application à une paroi souple...

Vendredi 10 Septembre 2004- 29ème congrès SB

• P.-Y. Lagrée & S. Lorthois:

"The RNS/Prandtl equations and their link with other asymptotic descriptions. Application to the computation of the maximum value of the Wall Shear Stress in a pipe", to appear in Int J Eng Sci.

- A.Van Hirtum, X. Pelorson & P.-Y. Lagrée: "In-vitro validation of some flow assumptions for the prediction of the pressure distribution during obstructive sleep apnea". sous presse Medical & biological engineering & computing
- P.-Y. Lagrée, E. Berger, M. Deverge, C. Vilain & A. Hirschberg: "Characterization of the pressure drop in a 2D symmetrical pipe: some asymptotical, numerical and experimental comparisons". sous presse ZAMM
- M. Deverge, X. Pelorson, C. Vilain, P.-Y. Lagrée, F. Chentouf, J. Willems & A. Hirschberg (2003): "Influence of the collision on the flow through in-vitro rigid models of the vocal folds". J.Acoust. Soc.Am. 114, pp. 3354 - 3362.

Utilisation d'une méthode intégrale

Utilisation d'une méthode intégrale

