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Introduction
The flow in the glottis is an example of fluid structure
interaction. The wall has a stenosed shape and is elastic.
This kind of problem is mainly solved by simplified
methods for the fluid and the solid (Lous et al. (1998),
Titze (1988)): 1-D approximation, Bernoulli law and flux
conservation, finally the wall is simplified as a system
of spring and masses. Here we use a more complex
description though we do not solve complete Navier
Stokes equations as Luo and Pedley (1998) do.

Method
The advantage of the first simplified 1D approach is that
most of physical phenomena are incorporated in the
model, though simplified (this is necessary to allow a
real time computation). The second one (full NS 2D) is
to slow, but takes into account all the phenomena. Here,
we will use asymptotic expansion to simplify the flow,
because we believe that this kind of simplification
allows to scale some of the most salient features of the
flow and leads to a numerical problem which maybe
solved with a reasonable computing time.

We will use the oversimplified "one mass model" (Titze
(1988)). This simple model  consists in a system of two
mass/ spring of opposite displacement. We suppose that
the stenosis is of shape yw(x,t)=f(x) h(t), where f(x) is a
given fixed shape and h(t) is solution of a mass spring
relation:
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The ad hoc coefficient w 0
2 is the equivalent oscillating

frequency of the tissues (dissipation is neglected). Here
F(t) is proportional to the integral of the fluid pressure
on yw(x,t).

We solve for the fluid the so called RNSP(x)  equations
(Reduced Navier Stokes with no transverse pressure
variation). Those equations are a dimensionalised by the
distance between the wall h0 for y, and h0Re for x:
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those equations are valid for Re=U0h0/n>>1. The fluid
and the solid are coupled by the localisation of the wall:

u(x,yw(x,t)=0 and v(x,yw(x,t))=
∂yw
∂t   and by the integral of

the pressure over the bump.

Results :
If the system is solved with an imposed flux of velocity,
self sustained growing oscillations appear. This is
explained by a linearized "triple deck" theory. But, if the
pressure drop over the whole domain (Dp) is imposed,
then, there exist a threshold value Dp0: if Dp<Dp0,
oscillations are damped, else, they are growing. On the
figure we see the cycle of the force versus the minimum
section of the glottis.

Figure : Force exerted by the air on the glottis as a
function of the section S at the throat (the curve is
parametrized by the time). Near the critical case Dp=Dp0:
during one half period the work furnished to the wall is
positive, it is negative during the second half period.

Discussion and conclusion :
The chosen description is asymptotically coherent. The
limits for the flow are the long bump approximation
(linked to the choice of scales), and the fact that the two
walls do not touch. Those  hypothesis make it difficult
to apply this work to real biomechanics cases,
nevertheless those results confirm some aspects of the
previous simple descriptions. Of interest is the observed
fact that a single (symmetrical) oscillator is enough to
obtain a self oscillatory system, which is a new result,
in previous studies only "two mass models" where able
to oscillate.  A more detailed resolution for the solid is
on progress.
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