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Summary

The exact prediction of the oscillating frequency of �utes and organ pipes is of great interest for
instrument makers. For the time being, the prediction of this frequency relies on the calculation of
the passive resonance of the pipe. However, the oscillating frequency is often found to be slightly
higher than the resonance frequency, in order to enhance the spectral content of the sound. The aim
of the present research is to include the in�uence of the blowing conditions in the prediction of the
oscillating frequency. Following previous descriptions, we develop a model of �ute as a loop system.
The mechanism of sound generation is split into di�erent lumped parts: the jet, the aero-acoustics
source and the resonator. The linear study of this model shows that the frequency is de�ned with
respect to the phase of the loop gain: the delay due to the jet (which convects the acoustics vibration
from the �ue exit to the edge) is balanced by the phase shift of the resonator. This model shows
the in�uence of the frequency dependance of the resonator phase. An experimental setup is proposed
to modify the propagation losses of a pipe in order to appreciate the in�uence of Q factor on the
frequency dependency toward the jet velocity.

PACS no. 43.75Ef, 43.75Qr

1. Introduction

One part of the making of organ pipes consists in ad-
justing parameters to settle the note and the timbre.
Some rules result from experiences through centuries
and have been preserved and written down by organ
makers [7]. Others have been partially explained by
the acoustics and have been taken over by makers.
For instance, the relation between the frequency f of
a note and the length of a flue organ pipe is some-
times given by L = c/2f − 5/3� where c is the speed
of sound in the air, � is the diameter of the pipe [20].
This formula, easy to use, is based on a passive de-
scription of the pipe acoustics. It includes correction
such as the end correction of radiation.

However it is well known by makers that frequency
also depends on the supply pressure or the jet velocity
Uj . The frequency depends on the excitation param-
eters or more precisely on all the parameters which
enable the sound production: the frequency also de-
pends on an active description of the behaviour.
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This paper investigates the influence of a passive
parameter of the pipe, the quality factor (Q factor),
on the active solution, the dependence of the oscil-
lating frequency f toward the jet velocity Uj . In the
first section, a simplified model is quickly presented
including the passive description of the resonator. The
second section describes the experimental variation of
Q which is used in an active configuration in the third
section.

2. Theoretical background

The model commonly used to describe auto-
oscillation of flute-like instruments is based on a three
elements loop system [19, 10]. The difference of pres-
sure between the reservoir and the flue exit creates a
flow. At the flue exit, the jet is sensitive to the acoustic
field while it crosses the window to the edge. The jet-
edge interaction creates an aeroacoustic source. The
source is coupled with the resonator which amplifies
the acoustic field. We present here the different parts
of the model based on [2] and the results obtained by
linear analysis of the system.
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Figure 1. Active end of the pipe. The jet is sensitive to
the acoustic velocity vac near the �ue exit. While the air
is moving, the perturbation made by the acoustic �eld
grows. At the labium it alternately injects air in each side
of the edge.

Jet

Based on works of Rayleigh [15], perturbations on the
jet are amplified while convected downstream. The
amplification is described, on a linear framework, by
eαix where αi is the coefficient of amplification and x
the distance from the perturbation.

The initial perturbation by the acoustic velocity,
called the receptivity, has been studied by De la
Cuadra [8]. From visualisation of a jet in presence of
an acoustic field, he proposed the expression of the ini-
tial perturbation η0 = hVac/Uj , where h is the height
of the flue exit, Vac the amplitude of the acoustic ve-
locity and Uj the jet central velocity. Gathering the
amplification term due to the development of the jet
and the receptivity η0 in a same expression leads to
the transverse displacement of the jet at a distance x
from the flue exit.

η(x, t) =
h

Uj
eαixvac(t−

x

cp
), (1)

where vac is the acoustic velocity at the flue exit and
cp is the phase velocity of perturbations on the jet.
That is, the jet perturbation η(t) ≡ η(W, t) which
reaches the edge at a distance W from the flue exit
corresponds to the acoustic velocity amplified by a
term heαiW /Uj and delayed by a time τ = W/cp. De
la Cuadra proposed experimental value of αi ' 0.4/h
and cp ' 0.3Uj .

Aero-acoustic source

The interaction jet/edge is fundamental in flute-like
instrument acoustics since it is the source of the acous-
tic vibration. Therefore it has been studied in detail
by several authors. We adopt here the jet-drive de-
scription proposed by Coltman [3, 4, 5] and devel-
opped by Verge [18, 17]. Work by Dequand [9] indi-
cates that this model is accurate at low values of the
Strouhal number Str = fW/Uj with f the frequency.
The injection of air from both side of the edge creates
of pressure difference

∆p = −ρδd
Sm

dQ1

dt
, (2)

where Q1 is the oscillating part of the flow entering
in the pipe, ρ is the air density, Sm = WH the mouth

section, H the mouth width and δd the distance be-
tween the two sources. Verge considers each source is
about one jet height behind the edge of the labium:
δd ' 2h. As a first approximation, the spreading and
associated slowing down fo the jet [16] is neglected
and the jet velocity U is invariant along the mouth
width, the flow Q1 is given by

Q1 =

〈
H

∫ y0−η(t)

−∞
U(y)dy

〉
. (3)

The bell shape of the jet is assimilated to a Bickley
profile U(y) = Uj sec2(yb ), where the jet velocity Uj
and width b are constant. Finally the resonator is then
driven by :

∆p(t) =
ρδdbUj
W

d

dt

[
tanh

η(t)− y0
b

]
. (4)

Resonator

The resonator is a passive element of the loop system.
However it has a main function in the sound gener-
ation : it enables to select and amplify the acoustic
vibration near its eigen frequencies. Since the instru-
ment is driven by a source pressure (4) we look for
a passive description as an admittance Y = Vac/∆P
where Vac is the complex amplitude of the acoustic ve-
locity and ∆P is the source in the frequency domain
(it can be seen as the Fourier transform of (4)).

The admittance is calculated by considering the
propagation in the pipe, with losses, and the radia-
tion impedances from the mouth Zm and the passive
end Zl. The two last are taken from [18] and [6] re-
spectively. Special attention to the losses is needed
and so a term of losses due to constriction of the pipe
is add to the mouth radiation [13].

The admittance is calculated at the entrance of the
pipe, where the acoustic field acts on the jet. Using
the notation ηi = arg tanh (Zi/Zc) with i = l,m we
write [2]:

Y = Yc
cosh (Γl + ηl) cos ηm
sinh(Γl + ηl + ηm)

, (5)

where Yc = S/ρcSm, l the length of the pipe, Γ is the
complex wave number. For our geometry, the wave
number is simplified with the wide duct approxima-
tion :

Γ = α+ j
ω

vφ
, (6)

where

α =
ω

c

[
α1

rv
+
α2

r2v

]
and vφ = c

[
1 +

α1

rv

]−1
,(7)

with α1 = 1.044, α2 = 1.080, rv =
√

2R/δv and
δv =

√
2µ/ωρ the viscous boundary layer thick-

ness. The expression (6) includes viscous and ther-
mal losses: they are both accounted for by rv depen-
dency. Thus, damping and dispersion that occurs dur-
ing propagation are entirely described by the ratio be-
tween the radius of the pipe and the boundary layer
thickness.
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Figure 2. Left: Dimensionless amplitude and phase of two
admittances Y whit di�erent Q factors versus dimension-
less frequency (axes are switched). Right: Dimensionless
frequency f/f1, solution of (9) with the two previous ad-
mittances, versus dimensionless jet velocity θ = Uj/Wf1.
Dotted line represents the �rst resonance frequency.

Linear Analysis

Whereas the determination of oscillation thresholds
seems to be predictible with a full numeric resolu-
tion of the non-linear system, a linearised solution
still gives major result about oscillating regime. This
section presents the method of linear analysis of the
looped system.

The linearisation of equation (4) coupled to linear
equations (1) and (5) and written in the frequency
domain leads to the loop gain

G = µY (ω)e−iωτ iω, (8)

where µ = heαiW ρδd/W . As Powell showed in 1961
[14], the study of G provides a necessary but not suf-
ficient criterion for the establishement of oscillation.
First, assuming the phase shift around the loop must
be an integer mutliple of 2π yields :

−ωnτ +
π

2
+ arg(Y (ωn)) = 2nπ. (9)

The solution ωn of this equation depends on the delay
τ , the phase of the resonator arg(Y ) and the integer
n. This last represents the hydrodynamic modes avail-
able of the jet. The case n = 0 represents the basic sit-
uation where the instrument usually sounds. Aeolian
generation, obtained at lower jet velocity, corresponds
to higher value of n.

For each ωn the oscillation can start if |G(ωn,s)| is
strictly higher than the unity, that means a perturba-
tion of the zero solution will exponentially increase till
it reaches an amplitude large enough to induce non-
linear mechanisms which will ensure the saturation
of the oscillation. The case |G| = 1 corresponds to a
transition between a state where the oscillation can or
can not grow. However, depending on non-linearities,
an oscillation could be sustained or damped in regions

where |G| < 1 or |G| > 1, respectively. Only the com-
plete numerical resolution of the system will provide
these informations.

Figure 2 shows the solution of (9) for differ-
ent dimensionless jet velocity θ = Uj/Wf1 =√

2Pbl/ρ/Wf1 and for two pipes with different Q fac-
tors. As explain above, the solution results from the
balance between the phase shift due to the jet and
the phase of the resonator : the shape of the solution
is quite similar to the shape of the phase response of
the resonator. The way the frequency depends on jet
velocity is directly linked with the parameters which
drive the phase response, including the Q factor.

This model provides solutions for all frequency and
for a large range of θ (from 0 to 350). This paper
only focuses on the behaviour near the first resonance
with a realistic range of θ (from 0 to 30). Note by the
way that the computation of the loop gain modulus
shows that for some θ, perturbations are able to grow
on several pipe resonances. Thus, the linear analysis,
though incomplete, provides a first prediction of the
existence of hysteresis behaviour.

3. Acoustic behaviour of the modi�ed

pipe

Blanc et. al. [1] showed that the variation of the Q
factor is a balance between radiation and propaga-
tion losses. Reducing the pipe diameter enables to re-
duce the radiation, but it also modifies the resonance
frequency. Experimentally, it is easier to increase the
propagation losses without significantly changing the
resonance frequency. For rv � 1, decreasing rv in
equation (7) enables to rise α ∝ ωα1/crv while keep-
ing vφ ∝ c(1 − α1/rv) almost constant. The experi-
mental setup consist in local modification of the prop-
agation by artificially reducing rv.

Experimental setup

Measurements are made on a organ pipe, provided by
an organ maker, in which we introduced a honeycomb
consisting of several straws. The alteration of the
pipe is experimentally characterized by its impedance
Z = P/U measured by a "Z-sensor" used in [12]. As
the geometry of this sensor is plane, it is more conve-
nient to measured the impedance at the passive end.
The organ pipe being an instrument open at its both
ends, frequencies which will be amplified are near the
minima of the impedance or the maxima of the ad-
mittance Y = 1/Z. Furthermore, a correction should
be add to take into account the radiation from the
passive end which is closed by the measuring device.

The honeycomb is made of Ns = 19 plastic straws
of radius Rs = 4mm stack together in compact con-
formation with adhesive rubber. We use three hon-
eycombs of length d = 6cm, 13cm and 19cm. They
are centred at the quarter wave length λ/4 of the first
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Figure 3. a) Shape of the pressure �eld for the �rst three
modes of the pipe. b) Experimental setup to characterize
the admittance of the pipe. The honeycomb consisting of
straws is at a quarter wave length from the end of the pipe.
The admittance is measured with the "Z-sensor" put at
the passive end. c) Equivalent pipes used for the model of
honeycomb.

resonance frequency (figure 3). This last is estimated
with a first measurement without honeycomb and cor-
rected with the end correction ∆l = 0.6R at the pas-
sive end.

Qualitative model

The division of the pipe in several smaller tubes can be
described as a single pipe with equivalent radius Req
and section Seq as shown on figure 3. The equivalent
radius account for the losses through the ratio rv,eq =
Req/δv. The conservation of the flow is ensured by the
ratio S/Seq. We also assume the acoustic pressure is
homogeneous near the change section on the pressure
wave (S/Seq ∼ 1), that comes to neglect the effect of
change in section. Thereby the impedances p/u at the
change section are linked by:

Z− =
Seq
S
Z+, (10)

where Z− and Z+ are the impedances just before and
after the change section, respectively. There is the
same equation with inverse ratio of sections at the
other side of the honeycomb. The admittance is just
given by replacing in (5) l by lin and ηl by:

ηeq = arg tanh

(
SS−1eq tanh

(
Γeqd+

arg tanh
(
S−1Seq tanh(Γlr + ηl)

)))
, (11)

Table I. Approximation of the theoretical and experimen-
tal resonator parameters obtained by (12) for di�erent
honeycomb's length d. The frequencies have to be adjusted
with the end correction ∆l for further uses. σmax is the
maximum relative error to the case without honeycomb.

Y1/Yc f1 (Hz) Q1

Exp. App. Exp. App. Exp. App.
− 1126 1174 291.7 292.0 43.2 42.9

6cm 1118 1174 292.8 293.3 37.2 34.1
13cm 1117 1171 293.6 294.5 31.2 27.3
19cm 1114 1164 293.4 295.0 24.7 23.3

σmax (%) 1.7 0.9 0.7 1.0 43 46

Figure 4. Admittance measured at the passive end of the
organ pipe for di�erent lattices of length d = 6, 13 and
19cm.

where lin and lr are distances from honeycomb to ac-
tive end and from honeycomb to passive end, respec-
tively, Γeq is the modified wave number which includes
the new ratio rv,eq = Req/δv.

The equivalent radius is just the radius of a
straw Rs. The equivalent section is calculated by
subtracting the section of the lattice Seq = S −
Nsπ

[
(Rs + es)

2 −R2
s

]
with es the thickness of a

straw. We neglected the propagation through the in-
terstices.

Q variation

The presence of the honeycomb affects all the modes
of the pipe. The experimental admittance is fitted
with :

Y =

∞∑
n=1

jωYn

ω2
n − ω2 + jQ−1n ωnω

, (12)

where Yn is the amplitude, ωn the pulsation and Qn
the Q factor. The table I summarizez the variation
of the three parameters for each mode. Only the Q
factor is qualitatively modified.

The second mode of the pipe is modified by an addi-
tional resonance. This last has been identified as the
foot acoustic response : several measurements have
been made with different foot conditions (empty, fill
with damping material).

The parameters of the model are extracted by iden-
tifying (11) with (12).Comparison with the model
shows good qualitative agreements. The trends for
the three parameters are correctly predicted. How-
ever, an accurate description accounting for propaga-
tion through several ducts should enable to refine the
prediction of Q variation.
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Figure 5. Dimensionless oscillating frequency f/f1 versus
dimensionless jet velocity θ = Uj/Wf1 where f1 is the
frequency of the �rst mode (di�erent for each Q, table I)

4. Dependence with the blowing pres-

sure

Experimental setup

The organ pipe is pluged in a reservoir supplied by
a compressed N2O2 cylinder. The flow is regulated
with an air mass flow controller Brooks 5851S and
the pressure in the foot of the pipe is measured with a
manometer Digitron 2020P. The acoustic field is gath-
ered with a microphone B&K supplied with Nexus
conditioner. In order to be sensitive to at least the first
five modes of the pipe, the microphone is put at dis-
tance lm = λ/12 where λ is the wave length of the first
resonance as shown on figure 3. The signal is processed
by a Stanford Research System spectrum analyser.
Once the steady state is established, i.e. the pressure
is stabilised in the foot pipe, the power spectrum den-
sity (psd) is averaged over five samples of 4 seconds
with a frequency resolution ∆f = 0.25Hz. The fre-
quencies of the two first harmonics are estimated by
taking the maximum of the psd in windows centred
around first and second resonances of the pipe. The
regime change occurs when the amplitude at one pipe
mode resonance become greater than the amplitude of
the other. This is accompanied by a slight shift in fre-
quency since the mode-locking sound is harmonic and
the modes of the pipe are not strictly harmonic. To
avoid the effect of temperature variations during the
measurements, this one is gathered with a thermome-
ter Digitron 4140T. The frequency is corrected with
a zero order modification fcorr = fmeas

√
Tref/Tmeas.

Effect of Q variation

As predicted by the linear analysis of the model, the
variation of Q modifies the dependence of the oscil-
lating frequency f toward the jet velocity Uj . At low
jet velocity, it affects the presence of aeolian regimes
and so the start oscillation threshold.

The variation of Q also affects the transition be-
tween the two first regimes. Two main behaviours
have been observed. First, for the case Q = 24.7,
the regime change presents an hysteresis as the non-
modified case Q = 43.2. However, the thresholds of
stability of each regime are modified. Particularly, the
end of the branch of the first regime is reduced from
1360 Pa to 915 Pa.

For Q = 37.2 and Q = 31.2, the transition is no
longer obvious. The amplitudes of the two first pipe
modes smoothly increases and decreases while rising
the supply pressure. The hysteresis in not observed
any more, and the transition between first and second
regimes gives rise to a rolling sound.

5. Discussion and Conclusion

The honeycomb method enables to modify the Q fac-
tor of the pipe without significantly changing other
parameters. The position of the lattice, though not
developed in this paper, is fundamental. A more ac-
curate model, which includes the effect of change in
section and the propagation through pipes of different
radius, should bring elements of understanding about
the position dependency. The description for higher
modes, not presented in this paper, also showed good
qualitative agreement and would be refined with such
a model.

The simplified model enables to find the jet veloc-
ity which makes the pipe sounds at the resonance fre-
quency. Taking the phase shift of the resonator to zero
in (9) leads to the delay of resonance τ1 = π/2ω1. The
associated jet velocity is Uj,1 = 2Wω1/0.3π.

Looking for a simplified expression that leads to a
rule of thumb that could be useful for organ makers,
it is possible to estimate the variation of frequency for
a slight variation of jet velocity around Uj,1. Taking
a modal expression of the admittance like (12), the
phase near a resonance is arg(Y ) = arctan(Q1(ω2

1 −
ω2)/ωω1). The solution of (9) with linearisation of
arg(Y ) near the resonance ω1 is (with n = 0):

ω = ω1
2Q1 + π/2

2Q1 + ω1τ
. (13)

The pulsation can be seen as a function of the jet
velocity and the developpment of (13) in Taylor’s se-
ries yields:

ω(Uj)− ω1

ω1
=
Uj,1
f1

∂ω

∂Uj

∣∣∣∣
Uj,1

Uj − Uj,1
Uj,1

. (14)

The relative variation of frequency is proportional to
the relative variation of the jet velocity with the co-
efficient:

β =
Uj,1
f1

∂ω

∂Uj

∣∣∣∣
Uj,1

= π/(4Q1 + π). (15)
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For high Q value, observed for instance for principal
organ stops, β is small and the solution remains close
to the resonance frequency while rising the jet veloc-
ity. The larger the Q, the better the accuracy of the
prediction of sounding frequency with a passive for-
mula, such as L = c/2f − 5/3∅. However for low Q
value, such as gamba or salicional organ stops, the
frequency is allowed to move far from the resonance
frequency. Besides, as soon as the jet velocity is far
from Uj,0, the linearisation of arctan in (13) and the
Taylor expansion leading to (14) are no longer valids.

Typical values of Q factors for organ pipes are be-
tween 20 and 40. Application of equation (15) allows
to grasp the influence of the Q factor on the fre-
quency sensitivity relative to the jet velocity on a mu-
sical scale : the pitch rise for doubling the jet velocity
((Uj − Uj,1)/Uj,1 = 1) is approximately 64 cents for
Q = 20 and 33 cents for Q = 40.

The experimental setup showed particular be-
haviours. The modification of the pipe allowed multi-
phonics. The measurements are made on a particular
organ pipe and further studies on several pipes or sim-
ilar physical system should confirm the effect of Q on
the smooth transitions. Besides, care must be taken
on the reservoir. Admittance measurements showed
the effect of the foot on the second mode. Acoustic
coupling between the pipe and the foot could mod-
ify the global behaviour. Because of the mutltiphon-
ics and aeolian sounds, the estimation of thresholds
is difficult. The prediction of the model is based on
a linear analysis and should be numericaly studied in
detail. The model also requires refinement: where the
linear analysis is able to provide reliable informations,
the model is actually not so accurate. At low supply
pressure, the jet splits into vortices and it would be
preferable to use a high Strouhal description as pro-
posed by Dequand [9]. Moreover several points have
been omitted such as the slowing down and spreading
of the jet [16] or vortex shedding that occurs at the
labium [11].

Finaly, the variations of the oscillating frequency
while rising the jet velocity considerably depends on
the quality factor. The linear analysis enables to pro-
vide a good estimation of the variation of the fre-
quency, at least near the resonance, for a given jet
velocity variation.
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