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Abstract. In this paper a steady laminar 2D Poiseuille flow between two plates with chemical reactions
on the upper wall is considered. This is a typical configuration in flow chambers (like the BIACORE
one), which are used for the determination of the rate constants of reversible reactions between biological
macromolecules. As the chamber thickness is small compared to its length, simplifications are possible, so,
some asymptotic limits of mass conservation equation coupled with the wall chemistry are presented. We
obtain a system with a large Péclet number. The small effects of the flow on the chemical reaction, which
depend on the combination of the Damköhler and Péclet numbers, are highlighted. The results of these
equations are favorably cross compared with the asymptotic (Lévêque) solution or with the simplified
solutions (integral methods) found in the literature. The final result is that, due to the fact that the
exchange coefficient is shown to be nearly constant, the simplified integral method is derived in a more
rigorous way and its area of use is improved.

PACS. 05.60.-k Transport processes – 47.15.-x Laminar flows – 47.60.+i Flows in ducts, channels, nozzles,
and conduits – 83.50.Ax Steady shear flows, viscometric flow

1 Nomenclature

x longitudinal variable
x̄ = x/L adimensional longitudinal variable
L length of the reactor
y transverse variable
ȳ = (−y + h)/h adimensional transverse variable
h thickness of the reactor
V four times the velocity at y = h/2
u velocity, Poiseuille in practice
c concentration of the volumic

reacting substance
CT reference value for c
d concentration of the surfacic

reacting substance
RT reference value for d
B the surfacic product

of the reaction
D coefficient of diffusion
kon, koff kinetic constants
Pe = V h2/(DL),
Peh = V h/D two different Péclet numbers
K ratio koff/(konCT )
Da = konRT h/D Damköhler number
γ the exchange coefficient

a e-mail: pyl@ccr.jussieu.fr

η self similar variable involved
in Lévêque solution

Γ (x, y) =
∫∞

y
t−1+x

et dt the incomplete Gamma function
Γ (x) =

∫∞
0

t−1+x

et dt the Gamma function

2 Introduction

The flow chambers are commonly used to measure binding
rates of macromolecular interactions with a large field of
biological applications (Canziani et al. (1999) [3], Karlsson
et al. (1994) [12], O’Shannessy et al. (1994) [22], Schuck
(1997) [27]). These chambers (such as the BIACORE de-
vice [2]) have been designed to allow the use of simple
kinetic theories (for example, the experimental conditions
are chosen in order to have nearly a constant spatial con-
centration on the “chip”). The simple theory (referred as
the “integral theory”) is presented at the end of this pa-
per. Nevertheless, there are recent studies which show the
limits of these theories: they present more complex theo-
ries considering the coupling between the reaction kinetics
and the mass transport. They allow the understanding of
the influence of the mass flux increase upon the reactions
taking place on the walls. Some of them use a full system
of equations (Myszka et al. (1998) [21]), some others use
the asymptotic theory (Edwards (1999) [6], Edwards et al.
(1999) [7]).
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More complex description of a more refined inner (in
the wall, and not at the surface as it will be done next) de-
scription is found in Hill and Spendiff (2000) [11], the flow
being simplified in a “Triple Deck” way (Smith (1976) [29]
or Saintlos and Mauss (1996) [25] or Lagrée (1999) [14]).
A more complex chemistry in the flow (not only on the
surface) is presented by David et al. (1999) [4] and David
et al. (2000) [5].

The system rederived in the next section (Sect. 3) is
classical (see Back (1975) [1], Edwards (1999) [6], Edwards
et al. (1999) [7], Myszka et al. (1998) [21]), and the sym-
bols are almost the usual ones. The choice of scales is dis-
cussed, and the non-dimensionalisation will emphasize the
quasi-static behaviour of the convection/diffusion equa-
tion due to the slow reacting time. Next, a “Graetz”
(Leontiev (1985) [17], Gersten and Herwig (1992) [10])
problem will be obtained after noticing that the massic
Péclet number (defined here as Pe = (4Umaxh2/(Dl)) is
large (Sect. 4). Next, comparisons of the two approaches
are given on an example with typical numerical values,
the effect of the mesh is also examined. The asymp-
totic limit leading to the “Lévêque” problem (Schlichting
(1987) [26], Gersten and Herwig (1992) [10]) is compared
with Edwards (1999) [6]. Finally (Sect. 5.3), a much more
simplified set of equations (referred as the “two compo-
nent” model by Myszka et al. (1998) [21]) is presented
and discussed, an improved extension of this model is in-
troduced which gives the same results as Edwards but with
a larger extent of validity. In opposition with Edward ap-
proaches, in our computation, we do not have to impose
a smaller than one combination of the Damköhler and
Péclet numbers DaPe−1/3. Even if the equations are clas-
sical, the cross comparison and numerical resolution are
rather new, the links between the various set of equations
are emphasized here and a better and more precise set of
integral equation is proposed.

3 The complete equations

The fact that the basic flow is a Poiseuille one is now well
established (De Bruin (2000) [8], Lorthois (1999) [18]),
the entry effect is small because the Reynolds number
Re = Umaxh/ν is smaller than 20, 2D simplification holds
because of the large aspect ratio (typical values can be
found in the BIACORE manual [2]). Therefore, the veloc-
ity is constant along the channel and changes only in the
transverse variable y:

u(x, y) = 4Umax
y

h

(
1 − y

h

)
, v = 0. (1)

Where the notation V = 4Umax (Edwards (1999) [6]) al-
lows to get rid of the extra number “4”.
In experimental situations involving flux chambers, there
is a free substance in the fluid flow (“c”, of concentra-
tion c(x, y, t) in the flow, named the analyte). It reacts
with a ligand (“d”, the receptor, of surfacial concentration
d(x, t)) bounded to the surface of the upper wall (called
the “chip”). This reaction leads to the formation of an-
other ligand (“B” of surfacial concentration B(x, t)) which

L

h

x

y reacting wall

concentration Boundary Layer

Fig. 1. A rough sketch of the Poiseuille flow. Notice that in a
BIACORE cell, the chemical reaction takes place on the upper
wall: 0 < x < L, y = h, this is called the “chip”. A concentra-
tion boundary layer develops near the upper wall, before x = 0
there is no reaction. The non-dimensionalisation will reverse
the geometry and put the reacting wall in ȳ = 0.

is also bounded on the surface:

c + d
kon�
koff

B, (2)

where kon and koff are the rate constants for the associa-
tion and dissociation reactions (which are supposed inde-
pendent of the flow).

A view of the configuration of the problem is presented
in Figure 1.

The final problem is a set of P.D.E. and O.D.E. cou-
pled through the boundary conditions. The substance “c”
is transported through a 2D convection-diffusion process
(the concentration in suspension is small so that D is con-
stant and the velocity of the fluid is the velocity of the
particles “c”):

∂c

∂t
+ u

∂c

∂x
= D

[
∂2c

∂x2
+

∂2c

∂y2

]
(3)

(u is defined by (1), the wall is always in y = h, the
flow and the chemistry are discoupled, D is the diffusion
coefficient).

The boundary conditions are:

(i) at the input, the concentration has a constant given
value during the association phase:

c(xin, y, t) = CT , (4)

this value is taken to be 0 for t > T , the chosen time
for stopping the analyte injection. Note that, as the el-
lipticity of equation (3) will influence the concentration
field upstream of the point x = 0 (where the ligand “d”
is disposed), a negative entrance value has to be cho-
sen xin < 0. In practice this effect has longitudinal and
transversal scales of order hPe

−1/2
h , (with Peh = V h/D)

so it is very small, (see Sect. 5.1 and Pedley (1980) [23]
for a complete discussion of the Graetz problem).

(ii) at the output it is usual to assume that the regime
is “established” and that it is invariant by translation in x:
∂xc = 0. This is false, except if the concentration bound-
ary layer fills the interior of the chamber, this arises at
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scale hPeh (Pedley (1980) [23]) far larger than the effec-
tive length of the chamber L; once again, errors commit-
ted in the boundary condition will have a small effect up-
stream (Pedley (1980) [23]). Nevertheless this is the most
simple commonly used boundary condition:

∂c

∂x
(L, y, t) = 0, (5)

(iii) on the lower plate, the flux is zero, which means
there is no reaction on this wall:

∂c

∂y
(x, 0, t) = 0, (6)

(iv) on the upper wall, the flux of c is equal the quan-
tity of B formed:

D
∂c

∂y
(x, h, t) = −∂B

∂t
(x, t). (7)

A first order reaction is supposed for the creation of B:

∂B

∂t
(x, t) = konc(x, h, t)d(x, t) − koffB(x, t). (8)

(v) Initially, there is no substance “B”, thus:

B(x, t = 0) = 0. (9)

Conservation of “d” at the wall gives:

d = RT − B (10)

where RT is the initial concentration of places occupied
by “d” molecules. The molecules C are instantaneously
provided at t = 0 at the entry (4):

c(x, y, t = 0) = 0. (11)

In fact, the setting of the initial time in the experiment
has no real importance, because the flying time L/V is far
longer than the reaction time. All these simplifications are
explained in the next section, where we will observe that
the asymptotic problem is in fact parabolic. Therefore
there is no need for an output condition.

4 The simplifications

The first simplification comes from the choice of non-
dimensionalisation of the time. At least two families are
possible, one based upon the mechanics h/Umax, L/Umax

or h2D−1, and another one upon the chemistry time. The
first leads to values less than a second, whereas the other
one leads to values of a few minutes.

So, we choose as time scale the reaction time of (8):
τ = (konCT )−1 (the concentration B is scaled by RT

and c by CT ). We define the relative reverse constant as:
K = koff/(konCT ), it is mainly of order one. Of course

if K is large, the order of magnitude of the evolution
time is in fact K−1. As (h/Umax)/(konCT )−1 � 1 (and
(L/Umax)/(konCT )−1 � 1 as well), the time derivative
will disappear from the convection diffusion equation.
So the ∂t term is dropped in (3) and we obtain:

u
∂c

∂x
= D

[
∂2c

∂x2
+

∂2c

∂y2

]
. (12)

The velocity clearly scales with V = 4Umax. But, the
choice of the distance scale is not so clear as there are
two possible scales h and L. The transverse scale h comes
from the fact that the boundary conditions change from
the upper wall to the lower one, so we take h as trans-
verse scale, as usual we define the ȳ variable in order to
have a reacting wall at ȳ = 0. We will notice thereafter
that the proper transverse scale is not h but a thinner
one because a boundary layer of concentration appears
at the wall. The most simple definition of a Péclet num-
ber, is then Peh = (V h/D). Taking L as the longitudi-
nal scale is in fact not the first obvious choice. A pure
asymptotic (Van Dyke (1975) [30]) point of view requires
that we put x = x̄h(Peh), y = h − ȳh, u = ūUmax, in
order to fulfil the “least possible degeneracy” principle of
the method of “matched asymptotic expansions”. So, with
those scales, (12) becomes

ȳ(1 − ȳ)
∂c̄

∂x̄
=
[
Pe−2

h

∂2c̄

∂x̄2
+

∂2c̄

∂ȳ2

]
, (13)

this choice of scales allows to obtain the equation
with order one coefficients (least degeneracy, Van Dyke
(1975) [30]), as Peh → ∞ which is:

ȳ(1 − ȳ)
∂c̄

∂x̄
=

∂2c̄

∂ȳ2
. (14)

This equation (with c̄ the concentration replaced by T̄
the temperature) is called the “Graetz problem” (with
boundary condition T̄ (x̄ = 0, 0 < ȳ < 1) = 0 and T̄ (x̄ >
0, ȳ = 0) = T̄ (x̄ > 0, ȳ = 1) = 1, see Pedley (1980) [23],
Leontiev (1985) [17] or Gersten and Herwig (1992) [10]). It
solves the problem of heat transfer in a Poiseuille flow with
discontinuous wall temperature (from 0 to 1 at station
x̄ = 0). Equation (14) must then be solved in this natural
scale (x̄) up to any value. But, because the “final” value
associated to the length L of the cell is x̄ = L/(hPeh) we
must say that the length L scales with (hPeh), otherwise
x̄ is 0 (because Peh is infinite!). Of course, in practice Peh

has a fixed value, therefore L/(hPeh) is finite and small,
but this allows to solve numerically the problem (14) for
0 < x̄ < L/(hPeh). Nevertheless, it is more common in
the flow chamber literature to use L as the longitudinal
scale (so we write x = x̄L, y = h − ȳh), with the Péclet
number defined as Pe = V h2

DL , (then Pe = Peh
h
L ) thus

equation (12) is:

ȳ(1 − ȳ)
∂c̄

∂x̄
=

1
Pe

(
∂2c̄

∂ȳ2
+
(

h

L

)2
∂2c̄

∂x̄2

)
. (15)
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This choice of scales allows to obtain the final equation,
as ( h

L ) → 0 which is:

ȳ(1 − ȳ)
∂c̄

∂x̄
=

1
Pe

∂2c̄

∂ȳ2
, (16)

this equation must then be solved till the “final” value
x̄ = 1. This way to present the equations is not relevant
in “pure” asymptotic expansions because as Pe → ∞,
the equations degenerate again in ȳ(1 − ȳ) ∂c̄

∂x̄ = 0, which
violates the least degeneracy (unless, of course, a thin
Lévêque layer of relative transversal scale Pe−1/3 is rein-
troduced, see Eq. (25)). Nevertheless, as we treat here an
approximate problem and not an asymptotic one, we al-
low Pe or Peh to be large but finite, and the two points
of view are equivalent.

Finally, we introduce the Damköhler number Da
when adimensionalizing (7–8), it is Da = konRT h/D
and it is of order 1. Analysing the processes near the
wall, the Lévêque solution shows that there is thin layer
of scale hPe−1/3 in which the concentration changes
abruptly, so the pertinent Damköhler number is in fact
konRT hPe−1/3/D as noted by Edwards (1999) [6]. The
effect of this particular combination DaPe−1/3 will be ex-
amined in the Edwards theory (Sect. 5.2) because it plays
an important role in the validity of the simple integral
models (Sect. 5.3).

4.1 Final system

With x = x̄L, y = h− ȳh, u = ū4Umax, (3) to (11) become
at first order in Pe−1 (at large Péclet number):

ȳ(1 − ȳ)
∂c̄

∂x̄
=

1
Pe

∂2c̄

∂ȳ2
, (17)

c̄(0, ȳ, t̄) = 1,
∂c̄

∂ȳ
(x̄, 1, t̄) = 0, (18)

∂c̄

∂ȳ
(x̄, 0, t̄) = Da

[
c̄(x̄, 0, t̄)(1 − B̄) − KB̄

]
, (19)

∂B̄

∂t̄
= c̄(x̄, 0, t̄)(1 − B̄) − KB̄, (20)

B̄(x̄, t̄ = 0) = 0. (21)

In this system there are three adimensionalized numbers:

– Da = konRT h
D : the Damköhler number, the ratio of the

reaction rate to the diffusive rate, of order 1;
– K = koff

konCT
: the rate of the reverse reaction to the

direct one, also of order 1;
– Pe = V h2

DL : the Péclet number, which represents the
ratio between diffusion and convection, large enough.

One result of this problem may be the averaged value of
B on the wall, this quantity being in fact measured in the
experiments and computed with:

=

B (t̄) =
1

x̄max − x̄min

∫ x̄max

x̄min

B̄(x̄, t̄)dx̄. (22)

4.2 Numerical resolution of the coupled system

The numerical resolution of (17) is done by finite elements
in y and finite differences in x, the scheme is implicit in
x (see Peyret and Taylor (1983) [24]). We note that the
problem is parabolic therefore there is no output bound-
ary condition. The treatment of the concentration evolu-
tion (20) is implicit in time for B and explicit in time
for c. The overall precision is O(max(∆ȳ2, ∆x̄, ∆t̄)). Used
values for space and time steps are ∆ȳ = ∆x̄ = 0.01 and
∆t̄ = 0.01, leading to an error of less than 2%.

5 Some direct comparisons with other models

5.1 Comparison with a complete solver: FreeFEM

5.1.1 The equations

In order to validate the simplifications of the proposed
model (17–21), we present here a comparison with a com-
plete resolution of the steady diffusive/convective prob-
lem, in the “Graetz” case, with total reaction at the
wall (Da = ∞). It means that the simplified problem
is solved here, written with the same longitudinal and
transversal scale h (so that we introduce tilde variables:
x = hx̃, y = hỹ, c = CT c̃ and we use another Péclet:
Peh = V h/D = PeL/h):

ỹ(1 − ỹ)
∂c̃

∂x̃
=

1
Peh

[
∂2c̃

∂x̃2
+

∂2c̃

∂ỹ2

]
(23)

with boundary conditions: c̃(x̃ = −1, ỹ) = 1, ∂c̃
∂ỹ (−1 <

x̃ < x̃out, ỹ = 1) = 0,
∂c̃
∂ỹ (−1 < x̃ < 0, ỹ = 0) = 0,

c̃(0 < x̃ < x̃out, ỹ = 0) = 0 and ∂c̃
∂ỹ (x̃ = x̃out, ỹ) = 0.

The resolution is done using the FreeFEM package by
Lucquin and Pironneau (1996) [20], which is a finite ele-
ment solver. This numerical solution is compared with the
numerical solution of (17) written with h scales (x = hx̃,
y = hỹ, c = CT c̃, Peh = V h/D) for sake of easier com-
parison:

ỹ(1 − ỹ)
∂c̃

∂x̃
=

1
Peh

∂2c̃

∂ỹ2
(24)

with boundary conditions:
c̃(x̃ = 0, ỹ) = 1, ∂c̃

∂ỹ (0 < x̃ < x̃out, ỹ = 1) = 0, c̃(0 < x̃ <

x̃out, ỹ = 0) = 0. (In fact the Damköhler number is set
to a large value and K = 0 in equation (19) in order to
obtain c̃ = 0.)

It is well known (Schlichting (1987) [26], Gersten and
Herwig (1992) [10]) that when Pe−1

h and ỹ are small, the
Lévêque solution of (24) is obtained. It means that we
rescale ỹ near the wall with ỹ = Y Pe

1/3
h . So, (24) is now:

Y
∂c̃

∂x̃
=

∂2c̃

∂Y 2
. (25)

With the selfsimilar variable η = Y x̃−1/3, the self similar
problem is 3f ′′ − η2f ′ = 0 with f(0) = 1 and f(∞) = 0,
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Fig. 2. Evolution of the computed value (the jagged curves are due to the numerical calculation of the derivative) of the flux
∂c̃
∂ỹ

at the wall for two grids (problem (23) with x̃out = 6 (“fine ×”) and 12 (“coarse +”) and the value predicted by Lévêque

0.538(x̃)−1/3Pe
1/3
h (here exactly superposed with the numerical results of the problem (24) denoted “BL ∗”). Here, x̃ is scaled

by h, Peh = 100000, Pe = 2083 and Da = ∞.

so f(η) = Γ ( 1
3 , η3

9 )

Γ ( 1
3 )

. This gives: c̃ � Γ (1/3,(ỹPe
1/3
h x̃−1/3)3/9)

Γ (1/3) .
The concentration is decreasing from 1 to 0. Notice that
Γ (1/3, (2.92)3/9)/Γ (1/3) = 0.01, that is why is defined
the “1%” value: δ1% = 2.92x̃1/3Pe

−1/3
h (or with L and h

scales: δ1% = 2.92x̄1/3Pe−1/3). This estimate is the “phys-
ical” thickness of the chemical boundary layer.

5.1.2 Results

To solve the above problem we use 240× 256 grid points,
we take x̃out = 12 (“coarse”) and x̃out = 6 (“fine”). Here
we focus on the entrance region: in the real BIACORE x̃out

is about 48. The Péclet is Peh = 100000, (Pe = 2083).
The treatment of the entrance effect needs a lot of points.
It is likely that in the computations of Myszka et al. [21]
(1998) there are not enough points to obtain an accurate
solution near the point x = 0. Fortunately, the cell is very
long, the numerical solution becomes valid for x > 10h,
which is more or less the position of xmin the smaller
abscissa of the window of optical measure, so the numeri-
cal solution will be accurate enough (xmin = 0.208L and
xmax = 0.792L). Figure 2 presents the evolution of the
computed value of the flux ∂c̃

∂ỹ at the wall for two grids
(problem (23)), the value predicted by Lévêque and the
numerical results of the problem (24) denoted “BL” (the
last two solutions are superposed). We observe that with

the resolution of (24), we obtain exactly the Lévêque so-
lution.

Figure 3 presents the evolution δ1% (the computed
value from numerical resolution of problem (24)) com-
pared to the predicted by Lévêque (i.e. 2.92x̃1/3Pe

−1/3
h ).

The transverse grid of Myszka et al. [21] (1998) is plotted
on the same figure, showing that there may be not enough
points in their computations.

As a conclusion of this sub section, we may say that our
simplified diffusion equation is accurate enough and much
more simple and faster to solve than the full equations.

5.2 Comparison between numerical computations,
Lévêque solution and Edwards’ results

In the preceding subsection we have already compared
the results of system (17–21) with Lévêque solution
(Schlichting (1987) [26]). In this subsection we compare
the results with those with chemical reaction from David
et al. (1999) [5], Edwards et al. (1999) [7] and mainly
Edwards (1999) [6]. Going ahead in the asymptotics,
Edwards obtained the asymptotic development of

=

B (t̄)
which is:

=

B= B0 + DaPe−1/3B1 + O((DaPe−1/3)2), (26)
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Fig. 3. Evolution of the computed value of δ1% (value at which c̄ = 0.01) and the value predicted by Lévêque (here superposed
with the numerical results of the problem (24) denoted “BL”). The transversal grid points from reference [21] have been plotted
too, the first grid line is enough near the wall, but there are only 4 grid points in the concentration boundary layer. Here, δ1%

and x̃ are scaled by h. Peh = 100000, Pe = 2083, Da = ∞.

with the two functions:

B0 =
1 − e−(1+K)t̄

(1 + K)
(27)

B1 =
3

5
3 (x

4
3
max − x

4
3
min)e−(1+K)t̄

4Γ
(

2
3

)
(1 + K)(xmin − xmax)

×
[
(e−(1+K)t̄ − 1)

(1 + K)
− Kt̄

]
(28)

where xmin = 0.208, xmax = 0.709 (specific data for
the BIACORE device ([2])); notice here that Edward’s
Damköhler is in fact DaPe−1/3 (see [6]).

To test our simplified model, the averaged concentra-
tion

=

B defined by (22) of the reaction product is com-
puted from (17–21). In Figure 4,

=

B is plotted versus
adimensionalized time t̄ for the following typical param-
eters: K = 1, Pe = 372 and for several Damköhler
numbers (Da = 70; 7; 3.57; 0.7; 0.072; which correspond
to DaPe−1/3 = 9.7; 0.97; 0.50; 0.01; 0.001). The Edwards
(1999) [6] asymptotic development of

=

B (t̄) (26) is plotted
as well.

We observe the influence of the increase of the
Damköhler number upon the result. If DaPe−1/3 is small,
the prediction of Edwards and the solution of (17–21) are
the same. If DaPe−1/3 is of order one, (which arises on

the graph where Pe = 372 and Da = 7) the Edwards for-
mula is no more valid: negative values occur. In Figure 5
is plotted the correction B1 alone, it can be seen that
even for small Pe (at small enough DaPe−1/3) Edwards
(1999) [6] gives good results. In practice DaPe−1/3 = 0.5
is a reasonable limit to obtain an accuracy of about 10%.

The conclusion of this subsection is that our model at
large but finite Pe gives Edward’s asymptotic solution, we
even have a better description for DaPe−1/3 > 0.5.

5.3 Comparison with integral models

5.3.1 The equations

In this section, we revisit the classical integral system with
the preceding results. We aim to obtain a simplified set of
equations from (17–21) in taking the mean value along the
reactor. Doing this, we will obtain a system with only the
time as variable.

The first hypothesis is that the variations of the con-
centrations are negligible in x, we then define the mean
longitudinal values, and suppose that the mean value of
a product is nearly the product of the mean values. We
draw in Figure 6 an example of the spatial distribution
of B̄(x̄, t̄). We notice the weak, but existing, dependence
of B̄ with x̄, this weak dependence allows of course the
proposed approximation.
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(“Ed”) for various Da (Da = 7; 3.57; 0.7; 0.07) leading to (DaPe−1/3 = 0.97; 0.50; 0.01; 0.001). The results are indistinguishable
for Da � 1 (in practice DaPe−1/3 < 0.1). The arrow is oriented toward the growing value of Da. Edwards prediction effectively
fails for DaPe−1/3 � 1, the value DaPe−1/3 � 0.5 induces an error of about 10%.
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curve every 0.05 time step. Parameters are: Pe = 372, K = 1 and Da = 0.7, so DaPe−1/3 � 0.1. We notice that the distribution
of B̄(x̄, t̄) is not constant in x̄, even weak.

The mean value of B (which is L−1
∫

dx(B)) is denoted
=

B, the mean value of c (which is L−1
∫

dx(c(x, 0, t))) is
called C, so the average of (8) is approximated by:

d
=

B

dt
= konC(RT−

=

B) − koff

=

B . (29)

Then the mean value of (7) gives:

L−1

∫
dx

(
D

∂c

∂y y=h

)
= −d

=

B

dt
. (30)

The problem is to evaluate the mean value of the flux
without solving the complete problem. Two possibilities
arise to estimate this flux:

• as done usually in the literature we use the Lévêque
solution ( 3f ′′ − η2f ′ = 0 with f(0) = 1 and f(∞) = 0, so

f(η) = Γ ( 1
3 , η3

9 )

Γ ( 1
3 )

), that we write here with dimensions:

D
∂c

∂y y=h

= − 121/3

Γ (1/3)
(c−CT )

( x

L

)−1/3 D

h

(
Umaxh2

DL

)1/3

,

(31)
but this true only in the case of infinite Da and of
course CT constant. This is next averaged in x over the

length L:〈
D

∂c

∂y
|y=h

〉
= −(0.807)(C − CT )

D

h

(
4Umaxh2

Dl

)1/3

.

(32)
• here is introduced the other limit of the Lévêque

solution for small Da, this solution correspond to the case
of fixed flux at the wall (rather than fixed value of c at
the wall). Having imposed the flux allows to compute (we
numerically solve the self similar problem (f ′′ + η2f ′/3 −
(ηf/3) = 0 with f ′(0) = 1 and f(∞) = 0 so f(η) =
−
(

η Γ (−( 1
3 ), η3

9 )
)

3 Γ ( 2
3 )

and f(0) = −
(

3
2
3

Γ ( 2
3 )

)
). The solution at

the wall is c = 1 − 1.54DaPe−1/3(x/L)1/3, the averaged
value of c − 1 over x is (0.87)−1DaPe−1/3, this allows us
to construct an exchange coefficient and to write the mean
flux along the reactor as:〈

D
∂c

∂y
|y=h

〉
= −(0.870)(C − CT )

D

h

(
4Umaxh2

Dl

)1/3

.

(33)
Therefore the mean value of equation (7) over the reacting
wall gives for C:

γ

(
D

h

)
(C − CT )

(
4Umaxh2

DL

)1/3

=(
konC(RT − B) − koff

=

B
)

(34)
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with either γ = 0.807 (DaPe−1/3 � 1) or γ = 0.870
(DaPe−1/3 � 1) The final system, ((29) and (34), but
with the value 1.282 coming from the choice of the
Péclet number: 0.807(4)1/3 = 1.282) is called by Myszka
et al. [21] (1998) the “equilibrium model” (EM). The dif-
ference is of only 10% and will be visible on our simulations
but not of complete resolutions (Myszka et al. [21]).

5.3.2 The integral models

Thus, after having introduced γ the numerical coefficient
of the exchange factor, we have (after solving for C as
function of

=

B from (34) and taking (29)) with Myszka
et al. (1998):

– an equilibrium model (EM):

C(t̄) =
(K

=

B (t̄) + γ(DaPe−1/3)−1)

(1− =

B (t̄) + γ(DaPe−1/3)−1)
,

=

B
′
(t̄) = (1− =

B (t̄))C(t̄) − K
=

B (t̄),
=

B (t̄ = 0) = 0.

If (DaPe−1/3) tends to 0, we obtain from this equa-
tions

– a rapid model (RM):

C(t̄) = 1,
=

B
′
(t̄) = (1− =

B (t̄))1 − K
=

B (t̄),
=

B (t̄ = 0) = 0.

Nevertheless, Myszka et al. [21] (1998) exhibit another
model that they called full model (FM) (or “two compo-
nents system”), we write it with the reduced Damköhler
(kM/(konRT ) in their notations):

– the full model (FM) (or “two components system”):

=

B
′
(t̄) = (1− =

B (t))C(t) − K
=

B (t̄),

C′(t) =
konRT

(konCT h)
(−(1 − B(t̄))C(t̄) + K

=

B (t̄)

+γ(Da−1Pe1/3)(1 − C(t̄))),
C(t̄ = 0) = 1,
=

B (t̄ = 0) = 0.

The problem comes from the coefficient konRT

(konCT h) which
does not exist in our analysis. We observe that this relative
time scale is short, this allows to settle a “Bodenstein”
equilibrium C(t̄) = Ce(t̄) which allows to reobtain the
value of (34):

Ce(t̄) =
(K

=

B (t̄) + γ(DaPe−1/3)−1)(
1− =

B (t) + γ
(
DaPe−1/3

)−1
) . (35)
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Fig. 7. Evolution of C(t̄) for the three integral models, RM
FM and EM for small time. The final value 1 is obtained
for CEM and CF M for time t � 15 which is not on the
graph. In the FM model, there is a short time scale (konCT h)

konRT

at which CF M (t̄) adjusts to the curve CEM(t̄) = (K
=

B

(t̄)+0.807(Da−1Pe1/3))/(1− =

B (t̄)+0.807(Da−1Pe1/3)). CRM

is 1. (Parameters K = 0.299, 0.807(Da−1Pe1/3) = 0.1556
(DaPe−1/3 = 11.7), konRT

(konCT h)
= 12.5, 1/(konCT ) = 3.75 s.)

The time scale associated to the fast evolution of the
concentration c is related to h2D−1Pe−2/3 (Edwards
(1999) [6]).

In Figure 7 we observe an example of the time evolu-
tion of C(t̄) for the three models (EM, FM and RM) at
relatively small time t̄. The relaxation to the final value
of C is obtained for t � 15 which is not on this figure. In
the RM model we always have C = 1 (denoted CRM on
the plot). We note there is a quick spurious phenomena
for the FM model. The concentration (denoted CFM on
the plot) begins at value 1 and then relaxes to the con-
centration C in the full model case (denoted CFM on the
plot). The relaxation time is of order (konCT h)

konRT
.

5.3.3 An explicit solution

It is here to be noticed that the Rapid Model (RM)
may be enhanced from the model (EM), at zero order
in (DaPe−1/3), the solution of

=

B in (EM) is the expo-
nential (27). At first order in (DaPe−1/3), C from (35)
or (33) is:

C(t̄) = 1 +
(
(K + 1)

=

B (t̄) − 1
)

γ−1(DaPe−1/3) + . . .

(36)
so the next term in a development in powers of
(DaPe−1/3) of

=

B may be computed in putting (36) in
(EM), and after some algebra we obtain:

=

B=
1 − e−(1+K)t̄

(1 + K)

+ γ−1(DaPe−1/3)
e−(1+K)t̄

(1 + K)

[
(e−(1+K)t̄ − 1)

(1 + K)
− Kt̄

]
.

(37)
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Fig. 8. Solution of (17–21): points and the equilibrium model
(EM) with γ = 0.87 (line) and 0.807 (dashing) for DaPe−1/3 =
0, 1, 10, 100 and K = 1. For small value of DaPe−1/3, the
model (EM) with γ = 0.87 is closer to the solution of (17–
21), this is not observable here but as been seen previously.
As DaPe−1/3 increases (greater than say 0.5 in practice), the
model (EM) with γ = 0.807 is closer to the numerical resolu-
tion of (17–21).

This is exactly the same solution as Edwards (26) with
γ = 0.870 (substituting in (28) xmin = 0; xmax = 1, one
obtains (35/3/(4Γ (2/3)) = 1/0.87 = 1.15).

5.4 Comparisons between the integral models

Finally we compare our resolution (17–21), the Rapid
Model (RM) and the Equilibrium Model (EM) with γ =
0.870 and 0.807.

For small value of DaPe−1/3, the model (EM) with
γ = 0.870 is, as expected, the best description. But, as
DaPe−1/3 increases (greater than say 0.5 in practice)
(EM) with γ = 0.807 is closer to the numerical resolu-
tion of (17–21). The agreement is very good for larger val-
ues of DaPe−1/3 between (EM) with γ = 0.807 and the
numerical resolution of (17–21), the error is of about 5%
for DaPe−1/3 = 100. In Figure 8 we see the curves for
DaPe−1/3 = 0, 1, 10, 100, for 10 and 100. The curves (EM)
with γ = 0.807 and (17–21) are superposed, (EM) with
γ = 0.87 gives the larger error 10%.

The conclusion of this sub section is that previous au-
thors used an inadequate exchange coefficient. If one uses
the good one, better results are obtained.

6 Conclusion and perspectives

Flow chambers were designed using simple integral the-
ory. Asymptotic theory and full computations show now
the limits of this theory and the need of a better compre-
hension of the influence of the flow. So, the problem we
solved, consists in an imposed flow (1) in a thin channel
(in a flux chamber) which transports a chemical compo-
nent, this component diffuses through a Fick law giving a

mass balance equation in the flow (3). A first order reac-
tion takes place at one of the walls (2, 8). The chemical
reaction is linked to the transport equation through the
boundary condition (7). A numerical code was realised
in order to solve this simplified, though rich in physico-
chemical phenomena, set of equations (17–21).

In the simplifications we introduced, we take into ac-
count the small aspect ratio of the reactor and the fact
that the chemistry imposes its slow time. The final sys-
tem (17–21) contains several non-dimensional parameters,
K coming from the reverse reaction, Pe the Péclet num-
ber (ratio of convection to diffusion), and Da a Damköhler
number (ratio of the chemistry flux to the diffusive flux at
the wall).

In the first part, the comparisons with a resolution of
the complete steady system shows that the results are ac-
curate enough (in the case of fixed value of c at the wall).
This comparison concerns only the convective-diffusive
part of the equations (not the chemical part), the thickness
of the reacting region is about 2.92hPe−1/3 (if Da � 1).

We have to notice that a good comparison needs a lot
of mesh points and a small step size as well. Therefore
model (17–21) is accurate enough because the physics lost
by neglecting the elliptic part of the diffusion (∂x2c) is not
relevant here and is only computational time consuming,
the problem being parabolic in space.

In the second part, the resolution is compared with the
asymptotic analytical results of (27–28) at very large Pe
(Edwards (1999) [6]), validating the chemical coupling
part of the problem. From the comparisons, we see that
Edwards analytical solution compares well to the solution
of our system (17–21) even for moderate values of Pe if
DaPe−1/3 is smaller than one.

In the last part we revisit the simple average theory.
The final “integral” comparison shows that the simplifi-
cation for the flux involves a parameter γ. These expres-
sions of the flux were based upon a large value of Da, the
value of γ used previously in the literature is the good
one for DaPe−1/3 > 0.5 (γ = 0.807). For smaller values
(DaPe−1/3 < 0.5) a new simplification for the flux was
proposed (γ = 0.870). This relation is more precise for
small DaPe−1/3 and is exactly the asymptotic result of
Edwards. A systematic study may be done in order to
evaluate γ as function of Pe. But the criteria (based on
(DaPe−1/3)<

>0.5) that we propose here is precise enough
for practical use.

To sum up, the flux chambers were designed with the
simple integral theory, the experimental results that they
provide are analyzed with these simple theories. Improve-
ment of this theory (Myszka et al.) is not precise enough,
asymptotic theory by Edwards may look too much compli-
cated. So we have presented a simplified set of equations,
and showed how the simple integral theory may be slightly
changed to give better results (compared to our theory).

The next step in the modelling is the introduction
of the non steady part of the convection-diffusion equa-
tion. The final step would be the construction of an in-
verse method (Lagrée (2000) [15]) with the final system
from (Sect. 4.1), for the purpose of re obtaining all the



P.-Y. Lagrée and A. Ivan-Fernolendt: Simplified reacting models in flow chambers 143

experimental coefficient (in a different manner than
Myszka et al. (1998) [21]).

The dependence of the rate of constants kon and koff

is believed to be dependent on the value of the skin friction
at the wall, this must be included in the model. This sim-
plified set of equations may finally be included in a model
of atherosclerosis with the introduction of 3D effects (with
an averaged flow in time, but with the stenosed geometry
taken into account). The platelet will be the C component.
At first we will look to small 3D effect in order to have a
not too complicated velocity field. The rate of accumula-
tion of the formed molecule would provide the thickening
of the wall: the more B created, the more the vessel wall
increases (growth of the stenosis). More reactions should
be introduced to model the complex chemistry in the flow
but in the vessel wall at well. This kind of approach has
been already attempted by Hill and Spendiff (2000) [11].

We thank Dr. Anglés Cano from INSERM and Sylvie Lorthois
from IMFT/CNRS to point to us the problem and for valu-
able discussions. We thank Romanian government which gave
a grant permitting one of us to go to Paris to perform this
work.

Appendix

Here are presented typical values for the different param-
eters which appear in the computation

CT = 10−11 mol
cm3

Rt = 4.03 × 10−13 mol
cm2

,

kon = 108 cm3

mol · s koff = 10−3 s−1

D = 28 × 10−8 cm2

s
V = 1

cm
s

L = 0.24 cm h = 5 × 10−3 cm

with those values Pe = 372, K = 1, Da = 0.7.
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