
The chemistry in the BIACORE cell. case of small values of DaPe-1/3 (lesser than one) the
agreement with Edward formula is excellent (see figure).
Furthermore, we revisit the analysis of Myszka et al
(1998) and conclude that there are not enough points in
their computation to describe correctly the entrance
effects. We also revisit their so called equilibrium model
and show that it must be corrected to obtain the Edward
formula. This model is:
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with the purpose of determining the rate constants for
reversible reactions between biological macromolecules
has known a considerable development: a device named
BIACORE is used for that. It consists in a very thin
channel in which there is a Poiseuille flow. The
dimensions are (l=2.4mm, w=0.5mm, h=0.005mm). At
one of the walls there is the chemical reaction. In the
literature, there are different models which permit the
numerical computation of the concentrations values
when the rate constants are known.

with the coefficient γ  which comes from the choice of
the exchange coefficient at the wall: γ =0.870 if we have
(DaPe-1/3)<0.5 and γ =0.907 if (DaPe-1/3)>1. The main
advantage of our formulation is that Da  Pe-1/3 has not
to be small.

Conclusion and perspectives
We have presented a model of the reacting flow in "flow
chambers", this as allowed us to find the limit of
validity of the previous approaches, comparisons with
real measurements in BIACORE chamber are on work.
Finally, as we will apply the preceding computation to
an artery (with some very strong approximations). We
will suppose that as the ligand "b" is formed, the shape
of the artery will change by the amount of the formed
ligand. Examples of simulation of the growth of a
stenosis will be presented.

We propose and solve a model of coupled Ordinary
Differential Equation and Partial Differential Equation
which includes the most dominant parts of the physical
and chemical phenomena, we validate an asymptotic
result of Edwards (1999) and extend a simple description
known as the "equilibrium model" (Myszka et al
(1998)).

The chemistry in the BIACORE
The asymptotic non dimensionalized model for the
chemistry consists in the convection-diffusion equation
for the free reactant "c" injected in the Poiseuille flow:
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(Pe>>1 is the Péclet number, see Edwards (1999)). The
2D approximation holds because of the large aspect
ratio. The reaction of "c" with "d" which is bounded at
the wall gives a product "b". The equation for the
reaction product's formation "b" (K is the ratio of the
constant of reverse and direct reaction) is:

Figure: Response of the formed ligand concentration B(t)
versus time  for K=1, DaPe-1/3=0, 1, 10 and 100.
Points: the numerical resolution of the coupled PDE and
ODE, Dashed /full line: the two integral models.
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The PDE and the ODE are linked through a flux type

boundary condition at the wall y
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=0:
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with Da the Damkhöler number. This system may be
solved in the case of very large Pe, small Da Pe-1/3 and
Edwards showed that the solution for the averaged value

of b
_
, over the reactor length is
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where B0 and B1 are explicit function with exponentials
in time. The system that we propose is solved
numerically for typical values of Da, K and Pe. In the


