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Marie Curie Paris 06,

Institut Jean le Rond d’Alembert,

Boı̂te 162, 4 place Jussieu,

75252 Paris, France

e-mail: pierre-yves.lagree@upmc.fr

One-Dimensional Model for
Propagation of a Pressure Wave
in a Model of the Human Arterial
Network: Comparison of
Theoretical and Experimental
Results
Pulse wave evaluation is an effective method for arteriosclerosis screening. In a previous
study, we verified that pulse waveforms change markedly due to arterial stiffness. How-
ever, a pulse wave consists of two components, the incident wave and multireflected
waves. Clarification of the complicated propagation of these waves is necessary to gain
an understanding of the nature of pulse waves in vivo. In this study, we built a one-
dimensional theoretical model of a pressure wave propagating in a flexible tube. To eval-
uate the applicability of the model, we compared theoretical estimations with measured
data obtained from basic tube models and a simple arterial model. We constructed differ-
ent viscoelastic tube set-ups: two straight tubes; one tube connected to two tubes of dif-
ferent elasticity; a single bifurcation tube; and a simple arterial network with four
bifurcations. Soft polyurethane tubes were used and the configuration was based on a re-
alistic human arterial network. The tensile modulus of the material was similar to the
elasticity of arteries. A pulsatile flow with ejection time 0.3 s was applied using a con-
trolled pump. Inner pressure waves and flow velocity were then measured using a pres-
sure sensor and an ultrasonic diagnostic system. We formulated a 1D model derived from
the Navier-Stokes equations and a continuity equation to characterize pressure propaga-
tion in flexible tubes. The theoretical model includes nonlinearity and attenuation terms
due to the tube wall, and flow viscosity derived from a steady Hagen-Poiseuille profile.
Under the same configuration as for experiments, the governing equations were com-
puted using the MacCormack scheme. The theoretical pressure waves for each case
showed a good fit to the experimental waves. The square sum of residuals (difference
between theoretical and experimental wave-forms) for each case was <10.0%. A possible
explanation for the increase in the square sum of residuals is the approximation error for
flow viscosity. However, the comparatively small values prove the validity of the
approach and indicate the usefulness of the model for understanding pressure propaga-
tion in the human arterial network. [DOI: 10.1115/1.4005472]
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1 Introduction

Arteriosclerosis is a vascular condition that leads to cardiovascu-
lar disease and stroke. The early stage of arteriosclerosis involves a
large increase in aortic stiffness. Atheromatosis then occurs in
large and medium-sized arteries with an increase in vessel wall
stiffness. This causes arterial stenosis and a reduction in blood flow
to the organs, which results in the development of various disor-
ders. Therefore, early diagnosis of the degree of arteriosclerosis is
important for reducing the incidence of the disease [1–3].

In recent years, analysis of the pulse wave caused by intravas-
cular pressure has attracted attention as a novel means of diagnos-
ing arterial stiffness. The profile of the pressure wave changes due
to wave dispersion [4], and Murgo et al. reported that the profile
also clearly changes with increasing arterial stiffness. They also
suggested that the intravascular pressure wave is composed of

forward and backward pressure waves. The forward pressure
wave is caused by blood flow resulting from heart constriction.
The backward pressure wave is generated by reflection of the
blood flow at peripheral arteries. Because attenuation of the intra-
vascular pressure wave is highly dependent on arterial stiffness,
variation in the total intravascular pressure wave is caused by the
backward pressure wave [5–7].

In previous studies, we proposed a mathematical technique to
separate the backward pressure wave component from the pulse
wave for evaluation of arterial stiffness. The maximum amplitude
of the backward wave components increases with age, which is
consistent with the increase in arterial stiffness due to age [3].
However, it has not yet been clarified where the estimated
reflected wave is generated and in which arteries the reflected
wave propagates. Clarification of the complicated propagation of
these waves is important for an understanding of the nature of
pulse waves in vivo.

Numerical computations for biomechanical models have
attracted increasing interest because pressure observations at
points in arteries by in vitro measurement are nearly impossible.
Many researchers have attempted to simulate flow dynamics in
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short straight or bifurcated arteries for a better understanding of
circulation system and the effect of arteriosclerosis using 2D axi-
symmetric or 3D formulations [8–12]. However, these simulations
take a long time, so that simulation in a systemic artery is still dif-
ficult. A 1D model is an interesting alternative for systemic simu-
lations to avoid complex and time-consuming computations, and
can quickly calculate dynamics in a systemic artery and in veins
[13–18]. It is well known that the accuracy of 1D modeling is in-
ferior to that of 2D and 3D models owing to the many assump-
tions used to simplify the governing equations. However, only a
few studies have quantitatively evaluated the adequacy of 1D
modeling. Moreover, few studies have compared theoretical and
experimental results, especially in terms of the simulation accu-
racy of 1D modeling.

In this study, we evaluated the applicability of a 1D model for
pressure wave propagation in flexible tubes. To investigate the va-
lidity of the theoretical model, we compared theoretical estima-
tions with measured data obtained from basic models and an
artificial arterial network made of soft polymer tubes. The remain-
der of the paper is organized as follows. In Sec. 2, we describe the
basic experiments. Section 3 presents a mechanical model of
flow-tube interactions from a 1D point of view. In Sec. 4, the
model accuracy and limitations are discussed based on a compari-
son of numerical and experimental results. Section 5 describes
construction of a simple humanlike arterial network with four
bifurcations and pressure wave and flow propagation observations
in the network. Finally, the experimental results are compared to
the theoretical ones.

2 Experiments

2.1 Samples. Four viscoelastic tubes were constructed for
basic measurements, as shown in Fig. 1. Two straight tubes
(A and B) with a length of 221.5 cm, inner diameter of 8.0 mm,
and wall thickness of 2.0 mm were prepared from polyurethane
gel (Exseal, Asker-C 5 and 15). The Young’s modulus of the poly-
urethane for tube A was approximately 185 kPa according to a
tensile test (Shimadzu, Ez-test), while that for tube B was 85 kPa.
The Young’s modulus of an aged aorta ranges from 60 to 140 kPa
[1]. A silicone tube with a length of 30 m and Young’s modulus of
approximately 2.5 MPa was connected to the end of tube A to

allow changes in the boundary conditions. For the connection, a
urethane rubber tube with length of 1.0 cm, inner diameter of
8.0 mm, and wall thickness of 1.0 mm was used; this length is
much smaller than the wave length of a pulse wave. The com-
bined tube was denoted tube C. Daughter tubes made from the
same polyurethane gel were connected to the end of tube A. The
length, diameter, and thickness of the daughter tubes were
116.5 cm, 6.0 mm, and 2.0 mm, respectively. This bifurcation tube
was denoted tube D.

2.2 Experimental Setup. The experimental setup is shown
in Fig. 1 and was constructed using a viscoelastic tube and a pis-
ton pump (Tomita Engineering, custom-made). The tube was
filled with water, and its end was occluded using an acrylic rod to
prevent water leakage. A pulse flow with the profile of half a
cycle of a sinusoidal wave was input from the pump. The period
was 0.3 s and the total flow volume was 4.5 ml. Then pressure
waves propagating in the viscoelastic tubes were experimentally
measured at three points using a pressure sensor (Keyence, AP-
10 S). The distance between the input and measurement points
was 27.5 cm (point 1), 55.0 cm (point 2), and 83.0 cm (point 3).

2.3 Results. Figure 2 shows pressure waves as a function of
time measured at three different points in Fig. 2(a) tube A with
elasticity of 185 kPa and Fig. 2(b) tube B with elasticity of 85 kPa.
The incident wave, which propagates from the proximal to the dis-
tal end, was first observed at the measurement points. The
reflected wave was generated at the distal end and propagated
back to the proximal end. Then propagation and reflection of the
pressure wave repeated at the proximal and distal ends, which
resulted in the observation of multiple reflected waves. There was
a marked difference in the number of reflected waves between
tubes A and B. This can be explained by the difference in Young’s
modulus for the tubes. The velocity seemed to be proportional to
the square root of the Young’s modulus of the tube material [19].

Figure 2(c) shows the pressure waves in tube C, comprising a
long silicone tube connected to tube A. Although the first reflected
waves for tubes A [Fig. 2(a)] and C [Fig. 2(c)] occurred at the
same time and the number of waves was the same, the amplitude
of the reflected wave at point 1 in tube C was 61% of that in tube
A. This indicates that partial reflection of the pressure wave

Fig. 1 Diagram and details of the viscoelastic tubes and the flow input. The pulse flow was
input from the left and pressure waves were measured at points 1, 2, and 3. The distance
between the input point and the measurement points was 27.5 cm (point 1), 55.0 cm (point 2),
and 83.0 cm (point 3).
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occurred at the connection point owing to the difference in tube
admittance. Furthermore, considering the length (30.0 m) and
wave velocity for the silicone tube, the transmitted pressure wave
cannot propagate back and be observed again within the measure-
ment time.

Figure 2(d) shows pressure waves in the bifurcation tube. Con-
sidering the arrival time of the first reflected wave in tube A, wave
reflection was not caused by the bifurcation point. Thus, the
reflected waves observed were generated by reflection at the distal
end of the daughter tubes.

3 Basic Equations

3.1 Flow Dynamics in a Flexible Tube. We describe here
the formulation of 1D model to simulate theoretical waves in flex-
ible tubes. The equation of continuity and the Navier-Stokes equa-
tions in a cylindrical coordinate system are used as the governing
equations. Considering 2D axisymmetric flow in a long flexible
tube with a small radius, the simplified governing equations for a
long wave approximation are given by

1

r

@

@r
ðrvÞ þ @u

@x
¼ 0 (1)
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þ u
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q
@P

@r
(3)

Here, the momentum equation and all derivations in the circum-
ferential direction are omitted because the velocity in the
/-direction is zero. We note that the pressure does not change
across the section, and transverse viscous effects are negligible.

Formulation of analytical solutions from the equation of continu-
ity and the Navier-Stokes equations is generally impossible. More-
over, numerical solutions with a fluid-structure interaction are
complicated and time-consuming. Thus, instead of using a 3D field,

a mean field for the velocity and flux obtained by integration over
the cross-section are introduced as a simple numerical technique.
After multiplying by 2pr and integrating both equations over the
crosssection, we then derive 1D equations from Eqs. (1) and (2)
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¼ 0 (4)
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where A is the tube cross-section. Q is the flux, defined as

Q ¼
ðR0

0

2prudr (6)

The flow velocity profile as a function of radius changes owing
to the Womersley number, defined as a ¼ R0

ffiffiffiffiffiffiffiffiffi
x=�

p
. In general,

governing equations should be computed from the velocity pro-
files with arbitrary a. In this paper, we make assumption for the
velocity profile for simplicity. Exact estimation of skin friction is
a weak point of integral methods. A common approximation is
that the flow profile remains close to a Hagen-Poiseuille profile.
However, the flow is actually neither a Poiseuille nor a Womers-
ley profile. To circumvent this problem, several approximations
have been developed. For example, Zagzoule and Marc-Vergnes
constructed an expansion of Poiseuille friction with unsteady cor-
rections [15], whereas other researchers constructed a complicated
closure using an extra equation [13], or proposed an extra compli-
cated profile [20]. Other authors have used a priori estimates
[16,21]. In the latter two papers, no reference to the unsteady
Womersley solution is considered. In some more mathematical
papers, viscosity is sometimes neglected [22]. In the present
study, we take the simplest model, bearing in mind that it should
be corrected in the future. The effect of the exact profile on the
nonlinear term may also be discussed

Fig. 2 Time series of pressure waves in viscoelastic tubes measured at three
points for tubes (a) A, (b) B, (c) C, and (d ) D
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2p
ð

ru2dr ¼ c
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(7)

A flat profiles gives c¼ 1, whereas a Poiseuille profile gives c¼ 4/3.
As we see in the order of magnitude analysis, this term is small,
and changing c¼ 4/3 to c¼ 1 has little influence on the results.
Using this simple approximation, the two terms of Eq. (5) become
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Finally, the governing equations for a Hagen-Poiseuille profile are
Eqs. (4) and (5) in which (8) is substituted.

3.2 Nondimensional Governing Equations. We derive non-
dimensional governing equations to simulate pressure propagation
in flexible tubes of different inner diameter, Young’s modulus,
and thickness. The governing equations are

Conservation of mass

@A

@t
þ @Q

@x
¼ 0

Momentum equation
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þ 4

3
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� 8�Q

R2
(9)

We now explain the pressure law. When a pressure wave propa-
gates in a distensible tube, it is progressively attenuated, and its am-
plitude decreases exponentially during propagation. The attenuation
is mainly caused by the viscosity of the walls. Furthermore, the
stress-strain relation for flexible tubes such as arteries is nonlinear
[1]. Thus, the pressure law is formulated as a single nonlinear term
and an attenuation term according to the Kelvin-Voigt model

P ¼ K
�
ðR� R0Þ þ epðR� R0Þ2

�
þ g

@R

@t
(10)

where ep is a small nonlinearity parameter. g is proportional to the
viscosity of the tube wall and is unknown, so it needs to be esti-
mated from measurement data. The longitudinal tension terms are
also ignored [13]. This approximation neglects the second-order de-
rivative term for displacement of the artery as a function of tension.
This is consistent with our experiments, but it should be reintro-
duced in the future as dispersion effects have been observed in
humans [4]. We introduce the following dimensional variables and
derive nondimensional equations to yield a simple computation

t ¼ T0�t x ¼ L0�x ¼ c0T0�x Q ¼ Q0
�Q h ¼ h0

�h E ¼ E0
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R2
0

�E�h
�R2

df

¼ K0
�K

where constants T0, L0, Q0, h0 E0, R0, DR, A0, and K0 are orders of
magnitude of the dimensional variables. For the flux, we choose
the maximum value. Nondimensional variables �t, �x, �Q, �h, �E, �Rdf ,
�R, �A, and �K are of order 1, which means that they fall in the range
between 0 and 10.0. �E, �h, �K, and �Rdf are functions of the position
(note that for a straight homogeneous tube, they are constants of
value 1.0). c0 is the Moens-Korteweg velocity, defined as

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
K0R0

2q

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

1� r2

h0

2qR0

s
(11)

where K0 is defined as E0h0/R0
2(1� r2). The equation gives the ve-

locity of the pulse wave as a function of the tube elasticity. Substi-
tuting the variables and the pressure law into the conservation of
mass and momentum equations, the leading terms, which are
Q0T0/2pR0DRL0 and A0K0DRT0/qL0Q0, are regarded as unity to
obtain the pertinent nondimensional variables. Finally, we obtain
the nondimensional governing equations
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with �ep ¼ epDR and �ev ¼ g=ðK0T0Þ. Moreover, the leading term is
converted to the following using the propagation velocity

DR

R0

¼ Q0

2A0c0

¼ e (14)

where e is equal to the change ratio of tube radius.

3.3 Computation. The differential equations were computed
using the MacCormack method [14,23]. The Mac-Cormack
scheme is a two-step predictor-corrector technique with three
points in space and two levels in time with second-order accuracy
for time and space. The governing equation in conservative form
is
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where V ¼ ð �R; �QÞ, is a vector of dynamical variables,
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source term. The difference equations are finally given by

Predictor step
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Corrector step
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To construct numerical tube models, details of the experimental
tubes were used. The experimentally observed wave at the pump
input point was used for the dimensionless input flux and its pro-
file is shown in Fig. 1. To determine the optimum simulation
result, we varied three parameters: elasticity E0/(1�r2) (range
40–300 kPa, step size 5 kPa), attenuation �ev (range 0.010–0.080,
step size 0.002), and nonlinearity �ep (range 0.010–0.080, step size
0.002). To evaluate the quality of the simulated waves, we calcu-
lated square sum of differences between the theoretical and exper-
imental waveforms (cost function) at point 1 according to [13]

J ¼ 1

Tm

ðTm

0

ðfs � fmÞ2dt (18)
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where fs and fm are the theoretical and experimental pressure
waves at point 1 and Tm is the measurement time. Finally, the
wave with the smallest dispersion was adopted. An example of a
typical cost function minimization is shown in Fig. 4.

3.4 Boundary Conditions. Setting of the boundary condi-
tions is key in proper simulations. For the boundary conditions at
the tube entrance and exit, complete reflection should occur. We
set these as follows:

Q ¼ 0;
@R

@x
¼ 0

We next describe simulation of pressure wave propagation in a
bifurcated tube. An important issue is the boundary conditions at
the bifurcation. Figure 3 shows discrete values for the radius and
flux in the mother and daughter tubes. Superscripts A and B
denote daughter tubes A and B, respectively. Subscripts denote
positions in the tubes. We calculate the radius at the bifurcation
point Rn using the following expression

Rn ¼
1

3
Rn�1 þ RA

1 þ RB
1

� �
(19)

Here we assume that pressure loss and the effect of the angle of
the daughter tube to the mother tube are negligible. We assume
that the flux satisfies the conservation of mass expressed as
Qn ¼ QA

0 þ QB
0 at the bifurcation. Q is the flux propagating in the

mother tube, and QA and QB are those in the daughter tubes. From
these assumptions and the conservation of mass, the flux boundary
condition is

Qn ¼
1

3
ð2Qn�1þQA

1 þQB
1 Þ; QA

0 ¼
1

3
ðQn�1þ 2QA

1 �QB
1 Þ;

QB
0 ¼

1

3
ðQn�1�QA

1 þ 2QB
1 Þ (20)

4 Comparison of Experimental and Theoretical

Estimates

To simulate the best-matching theoretical waves, the cost func-
tions described by Eq. (18) were used. Figure 4 shows an example
of the cost function, with the optimum parameters estimated
as E0/(1� r2)¼ 250 kPa, �ev ¼ 0:034, and �ep ¼ 0:046. Figure 5
shows the theoretical pressure waves at each point with the opti-
mum coefficients. The trend for the theoretical wave is in good
agreement with that for the experimentally observed wave.

The influence of nonlinearity and attenuation of the tube wall,
fluid viscosity and convection effects on the theoretical waves
was assessed. Figure 6 compares the wave measured at point 1
and the theoretical wave for four conditions. Comparison of Figs.
6(c) and 6(d) reveals the effect of nonlinearities.

Comparison of Figs. 6(a) and 6(b) indicates that the attenuation
seems to be highly underestimated. Furthermore, the pulse width
of the theoretical wave in Fig. 6(a) is still short. Therefore, the
viscoelasticity of the tube wall should be a dominating factor in
the pulse attenuation. Comparison of Figs. 6(b), 6(c), and 6(d)
shows a clear difference in the nonlinear effects of convection and
the tube wall. The effect of fluid nonlinearity is small in Fig. 6(c)
and increases in Fig. 6(d). Thus, nonlinearity of the tube wall is an
important factor. Finally, a pressure law including both attenua-
tion and nonlinearity of the tube wall is necessary to accurately
simulate waves in a straight flexible tube.

Figure 7 shows pressure waves propagating in tube B. The opti-
mum parameters were E0/(1� r2)¼ 75 kPa, �ev ¼ 0:070, and
�ep ¼ 0:070 according to the cost functions. The theoretical waves
were in good agreement with the experimental results. Assuming
a Poisson ratio of 0.5 (pure rubber), Young’s modulus E0 calcu-
lated from E0/(1� r2) was approximately 188 kPa for tube A and
56 kPa for tube B. Thus, the estimated and experimental values
are in good agreement. Therefore, we conclude that our simple 1D
model is useful for simulating flow dynamics in straight tubes.

We then simulated waves in tubes of different elasticity (tube
C) and in a single bifurcated tube (tube D). Figures 8 and 9 com-
pare the measured and simulated results. We used the same opti-
mum parameters as for tube A (E0/(1� r2)¼ 250 kPa, �ev ¼ 0:034,

Fig. 4 Example of cost functions calculated from elasticity
E0/(1 2 r2) 5 240, 250, and 260 kPa, attenuation �ey ¼ 0:01�0:08,
and nonlinearity �ep ¼ 0:01�0:08. The optimum parameters for
pressure waves in tube A were estimated as E0/(1 2 r2)
5 250 kPa, �ey ¼ 0:034, and �ep ¼ 0:046.

Fig. 3 Discrete values of the radius (R) and flux (Q) in mother
and daughter tubes. Superscripts A and B denote daughter
tubes A and B. Subscripts denote the position in the tube.

Fig. 5 Experimental and theoretical pressure waves as a func-
tion of time (tube A). The optimum parameters used were esti-
mated as E0/(1 – r2) 5 250 kPa, �ey ¼ 0:034, and �ep 5 0.046.
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and �ep ¼ 0:046) because tubes A, C, and D were made from the
same polymer. Consequently, the simulated pressure waves in
tube C were similar to the measured waves. The theoretical reflec-
tion coefficient was calculated as approximately 0.57. This phe-
nomenon can be explained by the tube admittance. In general, the
reflection coefficient for pressure is defined as Pr/Pi¼ (Y0� Y1)/
(Y0þ Y1) with admittance Y¼A/qc [24], where subscripts i and r
denote incident and reflected waves and Y0 and Y1 are the admit-
tance of each tube. The only difference was in elasticity between
the soft tube (188 kPa) and the silicone tube (2.5 MPa). Thus, the
theoretical value was 0.57, which was quite near the experimental
value of 0.61. This confirms that the partial reflection at the inter-
face can be estimated properly by the above equations.

The accuracy of the simulated waves for tube D was moderate.
The amplitude and down-stroke of the reflected wave have small
errors, and the square sum of residuals (difference between the
two waveforms) was< 5.8%. In particular, the downstroke of the
measured reflected wave showed a gentle slope compared with
the theoretical wave. This phenomenon could not be simulated
perfectly using the elasticity, attenuation, and nonlinearity param-
eters. Meanwhile, the offset was easily influenced by the flow vis-
cosity expressed as 8�Q/R2 in Eq. (9). An increase in flow

viscosity using a coefficient of 2.0 or 3.0 led to a marked increase
in the offset level, and the amplitude of the reflected waves could
not be simulated properly (Fig. 10). This indicates that the main
error seems to arise from the flow viscosity. Thus, the common
approximation, which is that the steady flow profile remains close
to a Hagen-Poiseuille profile, leads to a difference in the offset

Fig. 6 Comparison of the wave measured at point 1 and theo-
retical waves calculated for four conditions: (a) E0/(1 2 r2)
5 250 kPa, �ey 5 0.0, �ep 5 0.0, and no fluid convection effect;
(b) E0/(1 2 r2) 5 250 kPa, �ey 5 0.034, �ep 5 0.0, and no fluid
convection effect; (c) E0/(1 2 r2) 5 250 kPa, �ey 5 0.034, �ep 5 0.0,
and a fluid convection effect; and (d) E0/(1 2 r2) 5 250 kPa,
�ey 5 0.034, �ep 5 0.046, an no fluid convection effect.

Fig. 7 Experimental and theoretical pressure waves in tube B.
The optimum parameters used were estimated as E0/(1 2 r2)
5 75 kPa, �ey 5 0.070, and �ep 5 0.070.

Fig. 8 Experimental and theoretical pressure waves in tube
C. The optimum parameters used were estimated as E0/(1 2 r2)
5 250 kPa, �ey 5 0.034, and �ep 5 0.046.

Fig. 9 Experimental and theoretical pressure waves in tube D.
The optimum parameters used were estimated as E0/(1 2 r2)
5 250 kPa, �ey 5 0.034, and �ep 5 0.046.
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level. In the mother tube, the Womersley number calculated from
the tube configuration R0¼ 4.0 mm, �¼ 1.0� 10�6 m2/s, and
T0¼ 0.3 s is a¼ 12.94. Figure 11 compares velocity profiles for a
Womersley flow with a¼ 12.94 and a Hagen-Poiseuille flow of
the same flux for an oscillating flow input. The flow velocity pro-
files clearly differ and it is likely that this term yields errors. To
improve the simulation accuracy, other closures of the viscous re-
sistance need to be introduced. However, we found many similar-
ities in the waves. For instance, the arrival time and amplitude of
both forward and reflected waves, and the reflection condition at
the bifurcation point were well simulated. Thus, from the point of
view of the simple case, we conclude that our 1D model is appli-
cable for simple analysis of flow dynamics in viscoelastic tubes.

5 Human Artery Model

After validating the model in basic experiments, we constructed
experimental and numerical human artery models with four bifur-
cations and measure and calculated the pressure and average flow
velocity. Finally, we evaluated the applicability of the 1D model
for a minimal arterial network.

5.1 Model Definition. Figure 12 shows a schematic of our
simple human arterial model with four bifurcations. The model
was constructed with an aorta and femoral, subclavian, radial, and
left carotid arteries in a configuration based on a previous study
by Westerhof et al. [25]. Polymer tubes with an elasticity of
185 kPa (Shimadzu, Ez-test) were used for each artery. The elas-
ticity of the aorta obtained from senior subjects is 60–140 kPa [1],
so the constructed tubes had higher elasticity than an actual
human artery. In a human artery, reflection of the intravascular
pressure wave does not occur at each bifurcation. Therefore, the
tube diameter and thickness do not induce reflected waves.

Peripheral sites of the model are regarded as reflection points,
such as vascular beds or peripheral blood vessels in the human
body. It has been reported that reflection coefficients at these
points are approximately 0.7–0.8 [1]. To realize these reflection
coefficients, silicone tubes were connected as virtual peripheral

sites at the end of the tubes. The diameter, thickness, and elasticity
of the silicone tubes were 8.0 mm, 2.0 mm, and 2.5 MPa, respec-
tively. The elasticity of the silicone tubes was much higher than
that of the polyurethane tubes. The actual reflection coefficient at
these connection points was determined to be approximately 0.50
in a preliminary experiment.

5.2 Experimental and Simulation Details. In this compari-
son, we focused on the pressure wave and average flow velocity
in the common carotid artery. The pressure wave was measured
using the experimental setup described in Sec. 2.2. The average
flow velocity was measured using an ultrasonic Doppler system
(Toshiba Medical Systems, Aplio SSA-700 A). The center fre-
quency of the ultrasonic pulse used (Toshiba Medical Systems,
Probe PLT-1204AT) was 12 MHz. The incident angle of the ultra-
sonic beam was set to approximately 45� from the vertical direc-
tion. By performing incident angular correction, we obtained the
actual flow velocity waveform. A model of the theoretical artery
model was constructed using the same details as for the soft tubes
and the experimental setup. Then we calculated the optimum pres-
sure and flow velocity in the common carotid artery using the cost
functions.

5.3 Comparison of Experimental and Theoretical
Estimates. Figures 13 and 14 compare the experimental and
theoretical pressure waves and flow velocities. The coefficients
determined from the cost functions were E0/(1�r2)¼ 170 kPa,
�ev ¼ 0:036, and �ep ¼ 0:010. The theoretical waves are in good
agreement with the experimental waves. Considering the compli-
cated profiles of the experimental and theoretical waves, they
probably consist of many waves reflected from peripheral parts.
Moreover, the experimental pressure waveform was similar to the
pulse wave in vivo [1].

The trend for the theoretical pressure wave shows a close fit to
that for the measured wave.

Although the square sum of residuals for the pressure wave is
slightly greater, the values were all <10.0% of the maximum am-
plitude. One possible explanation for the underestimated pressure
attenuation is an approximation error for the fluid viscosity. The
amplitude of the estimated velocity is slightly smaller than the
amplitude of the measured wave. The difference could be due to
measurement errors. For example, there is a possibility that the
measured flow velocity was underestimated because of scattering
of the ultrasonic beam. However, the trends for the two waves are
quite similar. Therefore, the comparatively small differences
between the theoretical and experimental waves prove the validity
of this approach and indicate that it is useful in furthering our
understanding of the dynamics of flow propagation in a real
human artery.

Fig. 10 Effect of fluid viscosity on the pressure wave at point
1. An increase in flow viscosity involving a coefficient of (a) 1.0,
(b) 2.0, or (c) 3.0 leads to marked augmentation of the offset
level.

Fig. 11 Comparison of velocity profiles for a Womersley flow
with a 5 12.94 and a Hagen-Poiseuille flow of the same flux

Journal of Biomechanical Engineering DECEMBER 2011, Vol. 133 / 121005-7

Downloaded 23 Dec 2011 to 202.11.207.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



6 Conclusion and Perspectives

A 1D model to simulate pressure perturbations in flexible tubes
was described, and its applicability was validated by comparison
with the experimental results. Pressure waves propagating in dif-
ferent viscoelastic tubes were experimentally measured. Under
the same experimental conditions, the pressure waves were then
calculated by the numerical model. Consequently, the following
facts were clarified from the comparisons of experimental and the-
oretical results:

(1) The theoretical results fit well with the experimental results,
and tube elasticity estimates obtained from the minimum
cost function were similar to the values obtained from tensile
tests.

(2) The effects of attenuation and nonlinearity of the tube wall
were greater than those of fluid viscosity and convection.

(3) There is a possibility that the proposed 1D model includes
a small error for viscosity, which was derived from the
Hagen-Poiseuille profile, so other models should be tested.

Measured and simulated pressure waves and flow velocities in
the human artery model were compared. Even though the propa-
gation pattern was quite complicated, the results fit well with the
experimental results. This indicates that the experimental and nu-
merical models are suitable for human applications. Thus, we can

conclude that our model is acceptable and will be useful in gain-
ing an understanding of the flow dynamics in flexible tubes and in
human arteries.

We have recently started a further investigation into models with
more bifurcations and the effects of other approximation terms for
viscosity. In addition, tapered tubes and tubes with dilatations or
constrictions should be explored. Moreover, terminal reflection
such as in the Windkessel model should be introduced into experi-
mental set-ups. After these investigations, the reliable 1D model is
strongly expected to simulate flow dynamics in systemic arterial
tree of healthy subjects. Furthermore, if we add some locally more
refined models, we could be able to observe the influence of steno-
sis [26] or aneurysms. Such models of the arterial tree are necessary
to set good boundary conditions for a full Navier-Stokes solution
for elastic walls in a multiscale approach [27,28].

Nomenclature
u ¼ longitudinal wave velocity
h ¼ thickness of the viscoelastic tube

h0 ¼ unperturbed thickness of the viscoelastic tube
P ¼ pressure

P0 ¼ initial pressure
x ¼ longitudinal variable

Fig. 12 Structure of the simple arterial network and part details. Silicone tubes
were connected to the flexible tubes to model reflection points. The measurement
position was at the left carotid artery.

Fig. 13 Time series of measured and simulated pressure
waves in the simple human artery model. The optimum parame-
ters used were estimated as E0/(1 2 r2) 5 170 kPa, �ey 5 0.036,
and �ep 5 0.010.

Fig. 14 Time series of measured and simulated flow velocity
waves in the simple human artery model. The optimum parame-
ters used were estimated as E0/(1 2 r2) 5 170 kPa, �ey 5 0.036,
and �ep 5 0.010.
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r ¼ radial transversal variable
t ¼ time

T0 ¼ time scale
R ¼ tube radius

R0 ¼ initial tube radius
DR ¼ scale of the perturbed tube radius

e ¼ DR/R
x ¼ angular frequency
q ¼ density of the fluid
K ¼ bulk modulus of the tube wall

K0 ¼ unperturbed bulk modulus of the tube wall
E ¼ elasticity of the tube wall

E0 ¼ unperturbed elasticity of the tube wall
c0 ¼ velocity of the fluid
Q ¼ flux

Q0 ¼ scale of the flux
A ¼ cross-section of the tube

A0 ¼ unperturbed cross-section of the tube
L0 ¼ longitudinal scale
r ¼ Poisson’s ratio
� ¼ kinematic viscosity
g ¼ viscosity of the material
ep ¼ coefficient of the nonlinear stress strain characteristics
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