HS fluid

P.-Y. Lagrée
CNRS \& UPMC Univ Paris 06, UMR 7190, Institut Jean Le Rond ∂^{\prime} 'Alembert, Boîte 162, F-75005 Paris, France pierre-yves.lagree@upmc.fr ; www.lmm.jussieu.fr/~lagree

August 7, 2014

0.1 Viscosity

The viscosity is a function of the second principal invariant of the shear strain rate tensor:

$$
|D|=\sqrt{\sum_{i, j} D_{i j} D_{i j}}
$$

where $D_{i j}=\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right) / 2$, it has unit of s^{-1} We use a general HerschelBulkley formulation

$$
\tau=\tau_{y}+\mu_{N} \dot{\gamma}^{N}
$$

which is coded with an effective viscosity of the form:

$$
\mu(|D|)=\frac{\tau_{y}}{2|D|}+\mu_{N}|D|^{N-1}
$$

Where τ_{y} is the yield stress: $\tau_{y}=56 \mathrm{~Pa}, m u_{N}=37$ Pas $^{0.325}$ and the index $N=0.325$ (note that μ_{N} has strange units).

0.2 Remarks

The form $\mu(|D|)=\frac{\tau_{y}}{2|D|}+\mu_{N}|D|^{N-1}$ gives $\mu(|D|)=\mu_{1}$ when $N=1$ and $\tau_{y}=0$, the standard viscosity for a Newtonian fluid. The " 2 " comes from the definition of the relation between rate of deformation and stress: $\underline{\underline{\tau}}=2 \mu \underline{\underline{D}}$ in the tensorial definition.

0.3 Geometry

The problem is a heap of viscoplastic material of height 5 cm of length 30 cm released on a slope of length 70 cm . At this position begins a small step of depth 1 cm . The fluid has a density $\rho_{0}=1357 \mathrm{kgm}^{-3}$

0.4 Non Dimensional problem

The Navier Stokes equations with Herschel-Bulkley are:

$$
\rho_{0} \frac{d \vec{u}}{d t}=-\vec{\nabla} p-\rho_{0} \vec{g}+\vec{\nabla} \cdot \underline{\underline{\tau}}
$$

with

$$
\underline{\underline{\tau}}=\left(\frac{\tau_{y}}{2|D|}+\mu_{N}|D|^{N-1}\right) \underline{\underline{D}}
$$

Using $x=L \bar{x}, y=L \bar{y}$, and $(u, v)=U_{0}(\bar{u}, \bar{v})$ we have $p=\rho_{0} U_{0}^{2} \bar{p}$ and $\left.\underline{\underline{D}}=\left(U_{0} / L\right)\right) \underline{\underline{\bar{D}}}$, of course, $t=\left(L / U_{0}\right) \bar{t}$. Let us write the viscous part:

$$
\underline{\underline{\tau}}=\rho_{0} U_{0}^{2}\left[\left(\frac{\tau_{y}}{\rho_{0} U_{0}^{2}|\bar{D}|}+2 \frac{\mu_{N}}{\rho_{0} U_{0}^{2}}\left(\frac{U_{0}}{L}\right)^{N}|\bar{D}|^{N-1}\right) \underline{\underline{\bar{D}}}\right]
$$

or

$$
\underline{\underline{\tau}}=\rho_{0} U_{0}^{2}\left[\left(\frac{\tau_{y}}{\rho_{0} U_{0}^{2}|\bar{D}|}+2 \frac{\mu_{N}}{\rho_{0} U_{0} L}\left(\frac{U_{0}}{L}\right)^{N-1}|\bar{D}|^{N-1}\right) \underline{\underline{\bar{D}}}\right]
$$

or finally

$$
\underline{\underline{\tau}}=\rho_{0} U_{0}^{2}\left[\left(\frac{\bar{\tau}_{y}}{|\bar{D}|}+\frac{2}{R e_{N}}|\bar{D}|^{N-1}\right) \underline{\underline{D}}\right]
$$

with the yield stress without dimension $\bar{\tau}_{y}=\frac{\tau_{y}}{\rho_{0} U_{0}^{2}}$ and a kind of Reynolds number $R e_{N}=\frac{\rho_{0} U_{0} L}{\mu_{N}}\left(\frac{U_{0}}{L}\right)^{1-N}$. Hence, with these two parameters the final Navier Stokes is:

$$
\frac{d \bar{u}}{d \bar{t}}=-\vec{\nabla} p-\frac{g L}{U_{0}^{2}} \vec{e}_{y}+2 \vec{\nabla}\left[\left(\frac{\bar{\tau}_{y}}{2|\bar{D}|}+\frac{1}{R e_{N}}|\bar{D}|^{N-1}\right) \underline{\underline{\bar{D}}}\right]
$$

of course, if $\tau_{y}=0$ and $N=1$

$$
2 \vec{\nabla}\left[\left(\frac{\bar{\tau}_{y}}{2|\bar{D}|}+\frac{1}{R e_{N}}|\bar{D}|^{N-1}\right) \underline{\underline{\bar{D}}}\right]=0+2 \vec{\nabla}\left[\frac{1}{R e_{1}} \underline{\underline{\bar{D}}}\right]=\frac{1}{R e_{1}} \vec{\nabla}^{2} \bar{u}
$$

0.5 Non Dimensional problem, choice of $U_{0}, L \ldots$

Up to now, it is just a matter of choice.
Let us say we take first $L=1 m$ as longitudinal scale, $x=L \bar{x}$. So the step is for $\bar{x}=0.7$ We need a time scale T. This is a collapse so that it is natural to put to one in front of the gravity: $\frac{g L}{U_{0}^{2}}=1$. This means that the scales of length and time $L / T^{2}=g$, then $T=\sqrt{L / g}$, i.e. 0.32 s . The velocity scale is $U_{0}=L / T$ which is $\sqrt{g L}$, the gravitational term is 1 .

Maybe, you have an imposed velocity V_{0} in your experiment. So at this point:

- either you use $T=\sqrt{L / g}$, and L, so that the velocity scale L / T is $\sqrt{g L}$ and then the imposed velocity is $V_{0} / \sqrt{g L}$.
- either you use this velocity as scale, so that V_{0} is the fundamental scale and then the time unit is $T=L / V_{0}$. You then have to change the gravity, which is without dimension is $g L / V_{0}^{2}$.

Anyway, we have now a scale for time T, a scale for length L and a then a velocity L / T

Let us now make τ_{y} non dimensional, it is simply $\tau_{y} /\left(\left(\rho_{0}(L / T)^{2}\right)\right.$, in my case $\tau_{y}=56 P a, \rho_{0}=1357 \mathrm{~kg} / \mathrm{m}^{3}, L=1 \mathrm{~m}, T=\sqrt{L / g}$

$$
\tau_{y} /\left(\rho_{0} g L\right)=0.004206
$$

Maybe in your case, it is better to have a unit caracteristic velocity and $\tau_{y} /\left(\rho_{0} V_{0}^{2}\right)$ is the good non dimensional yield.

The parameter $R e_{N}=\frac{\rho_{0} U_{0} L}{\mu_{N}}\left(\frac{U_{0}}{L}\right)^{1-N}$ has to be computed now. with my values it is $R e_{N}=248$.

0.6 Script

The Gerris script is

```
Define L0 1.001
Define alph 20./180*3.1415
Define rhof 0.001
Define nuf 0.0001
Define Mumax 250
Define tauy 0.004206
Define ReN 248
Define N 0.325
(...)
```

```
SourceViscosity {} {
    double Mu1 = nuf*rhof;
    if (T > 0 && D2 > 0.) {
            Mu1 = (tauy/(2*D2) + 1./ReN*pow (D2,N-1));
            Mu1 = MIN(Mu1,Mumax);
    }
    // Classic trick: use harmonic mean for the dynamic viscosity
    return 1./(T/Mu1 + (1. - T)/nuf/rhof);
    } {
        beta = 1
        tolerance = eps
    }
PhysicalParams { alpha = 1./(T + (rhof)*(1. - T)) }
(...)
Source {} V -cos(alph)
Source {} U sin(alph)
```

