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Résumé

Free surface flows of water are clearly ubiquitous on Earth. As viscosity is small,
the inviscid equations of water flow are presented. First, the case of small ampli-
tude perturbations in small depth is presented, so linearized, this leads to the
”d’Alembert equation” or ”wave equation”. Second, the case of small amplitude
perturbations in any depth is presented, this allows to explain the dispersive beha-
vior of water waves. This is called ”Airy wave theory”. Third the ”shallow water
theory” is presented, this corresponds to significant perturbations of the height
of water, which is small compared to the length of the waves ; the equations are
non linear (”Saint-Venant” equations). Then, if one considers in this latter fra-
mework small amplitude waves, and the first correction due to depth, one may
have a balance between ”non linearities” and ”dispersion”, or a balance between
”steepening” and ”spreading”. This leads to the solitary wave solution of ”KdV
Equation” : the ”soliton”. The KdV (Korteweg–de Vries) equation is presented as
an application of multiple scale analysis.

1 Introduction

1.1 Observations of the soliton

First observed by John Scott Russell in 1834, the ”soliton” is a wave which
has always the same shape even if it is not in the small perturbation regime.
Russell was an engineer and scientist, he experimented Doppler effect with
trains. He engineered and designed the ”Great Eastern” the largest boat at
the time in 1860. But, before he did many experiments on models. During one
of those experiments, in 1834, on the Glasgow-Edinburgh channel, a wave was
generated during the abrupt stop of the boat (drawn along a narrow channel
and powered by horses). The wave moved with constant shape. He took his
horse to follow it on several miles (see the text from Remoissenet [16], on
page 319 of the Report on Waves, section I ”The wave of translation”). He did

after that a lot of experiments to reproduce it in a 30’ wave tank in his back garden.

”This is a most beautiful and extraordinary phenomenon : the first day I saw
it was the happiest day of my life. Nobody had ever had the good fortune to see
it before or, at all events, to know what it meant. It is now known as the solitary
wave of translation. No one before had fancied a solitary wave as a possible thing.”

It was followed by other experiments by Henry Bazin and Henry Darcy and then
by theoretical investigations by Joseph Boussinesq ( � Théorie de l’intumescence
liquide, appelée onde solitaire ou de translation, se propageant dans un canal
rectangulaire �, dans Comptes Rendus de l’Académie des Sciences, vol. 72, 1871,
p. 755–759) and (� Théorie des ondes et des remous qui se propagent le long
d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce
canal des vitesses sensiblement pareilles de la surface au fond �, dans Journal de
Mathématique Pures et Appliquées, Deuxième Série, vol. 17, 1872, p. 55–108) and
Rayleigh (1876) and, finally, Korteweg and De Vries in 1895. The equation that
we will establish with asymptotic methods is :

∂

∂τ
η̄0 +

3

2
η̄0
∂η̄0

∂ξ
+

1

6

∂3η̄0

∂ξ3
= 0

De Vries was the student of Korteweg, the title of the thesis Bijdrage tot de
kennis der lange golven, in dutch ”Contributions to the knowledge of long waves”.
Another famous student of Korteweg is A. Moens. They proposed the velocity
in arterial flow ”Moens-Korteveg” equation (arterial flows and water flows are
very similar ; the elasticity of arteries is the gravitation in water flows). The
KdV equation was not studied much after this until Fermi- Pasta- Ulam and
Zabusky & Kruskal (1965). They wanted to study the heat transfer in a solid
consisting in a crystal modeled by masses en springs in a periodic domain (one
dimensional lattice). They discovered traveling waves which were not damped.
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They rediscoverd the soliton.

Figure 1 – The Soliton reproduced in 1995 on the very same place
than Scott Russell ’first’ observed a solitary wave on the Union Canal
near Edinburgh in 1834. (Photo from Nature v. 376, 3 Aug 1995, pg 373)
http://www.ma.hw.ac.uk/solitons/press.html

See Dauxois, Newell [13], Remoissenet [16] and Maugin [15] for other historical
details and a view of the fields of application. The fields are very large, from
hydrodynamics, lattice waves, waves in electric lines, light waves in optic cables
etc. but as Feynman says : “Now, the next waves of interest, that are easily seen by
everyone and which are usually used as an example of waves in elementary courses,
are water waves. As we shall soon see, they are the worst possible example, because
they are in no respects like sound and light ; they have all the complications that
waves can have.” Lectures on Physics, chapitre 51-4 “Ondes”.

1.2 Scope of the lecture : heuristical point of view, small
dispersion on Shallow-Water

1.2.1 Considerations on equations

Waves in fluid are classical in mechanics of fluid courses (see M1 lecture by the
same author [18] and [19]). What we want to do here is to restart from scratch this

Figure 2 – The original sketches of Scott Russel. ”The great wave of transla-
tion” http://www.ma.hw.ac.uk/∼chris/Scott-Russell/SR44.pdf. The wave may be
generated by a moving wall, top left or a falling weight top right, or opening a
gate. The final result is a unique wave which translates without change in shape
on very long distance.

study with a unified point of view in order to recover the ∂’Alembert Equation,
the Saint -Venant and the Airy Wave theory all in the same theoretical framework.
For instance, the ∂’Alembert Equation, is heuristically proved as follows, we sup-
pose a plug flow u(x, t), its acceleration is ρ∂u/∂t, the forces exerted are the
pressure ones. Due to the elevation of the wave η (over the free level y = 0), the
pressure is simply ρgη for hydrostatic reason (we will see that in far more details
later or see [18]). Then

ρ
∂u

∂t
= −ρg ∂η

∂x
.

The thickness of the fluid layer is h0, and η is smaller than h0, the other needed
equation is the conservation of mass, as there is no v in the equations, changes of
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the flux of u : ∂h0u
∂x are compensated by the displacement of the interface (see why

in [18]) :
∂η

∂t
+
∂h0u

∂x
= 0.

At this point, to eliminate u, one needs the above mentioned hypothesis : the velo-
city is almost constant across the layer (it looks like a plug flow, or in other words,
the flow is irrotational). This gives the wave equation (∂’Alembert Equation) :

∂2η

∂t2
− gh0

∂2η

∂x2
= 0

with a celerity c0 =
√
gh0 and solution in f(x− c0t) + g(x+ c0t). To go further in

complexity, we can put some non linearities in these equations but still suppose a
plug flow (∂yu = 0). The acceleration is then ρ∂u∂t +u∂u∂x , and flux will be (h0 +η)u,
this will give the Saint-Venant (Shallow Water) equations :

ρ
∂u

∂t
+ u

∂u

∂x
= −ρg ∂η

∂x
, and

∂η

∂t
+
∂hu

∂x
= 0.

Instead of this description, we can imagine a linear small perturbation, with a
flow which is no more a plug flow, but depends on x and y : u(x, y, t), this will
give the famous dispersion relation (again we will settle this again, see §3.3, or see
as well [19]) :

ω2 = gk tanh(kh0).

For long waves, this equation gives again the ∂’Alembert celerity c0 = ω/k =
√
gh0.

1.2.2 Adding independantly non linearities and dispersion

Having in mind those equations describing the waves, then the solitary wave
will be presented as a mix of all this dispersion, kh0 small and non linearity, η/h0

small that we will look at now. There are simple argument to settle at this point
KdV such as :
• from the wave equation the solution is u = gη/c0, with c20 = gh0

from the wave equation the wave which travels from left to right, this solution
satisfies

∂η

∂t
+ c0

∂η

∂x
= 0

• from the linear Wave Theory we have the dispersion relation ω =
√
gk tanh(kh0),

this is expanded in ω =
√
gk2h0 − 1

3gk
4h3

0 + ... for long waves, which is at order

two : ω =
√
gh0k(1− 1

6k
2h2

0 + ...), then for a wave η = η0e
iωt−ikx, as −i ∂∂tη = ωη,

we identify ω with −i ∂∂t , and k with i ∂∂x therefore

−i ∂
∂t

= ic0(
∂

∂x
− i2 1

6
h2

0

∂3

∂x3
) + ...

so this following equation has dispersion relation ω =
√
gh0k(1− 1

6k
2h2

0) :

∂η

∂t
+ c0

∂η

∂x
+ c0

1

6
h2

0

∂3η

∂x3
= 0.

• Shallow water equations may be re written in a different way. We define c2 = gh,
so 2cdc = gdh, momentum is written with this new variable c :

∂u

∂t
+ u

∂

∂x
u+ 2c

∂c

∂x
= 0

and mass conservation multiplied by g :

g
∂h

∂t
+ug

∂h

∂x
+gh

∂u

∂x
= 0 which is 2c

∂c

∂t
+2uc

∂c

∂x
+c2

∂u

∂x
= 0 or :

∂(2c)

∂t
+u

∂(2c)

∂x
+c

∂u

∂x
= 0

if we add and substract these equations with u et c, we obtain (more details in
[18]) :

[
∂

∂t
+ (u+ c)

∂

∂x
](u+ 2c) = 0 and [

∂

∂t
+ (u− c) ∂

∂x
](u− 2c) = 0.

This shows that along the lignes in the plane x, t defined by dx/dt = u ± c we
have integrals of u±2c constants. Those lines are called ”characteristics”, and the
integrals u± 2c are the ”Riemann invariants”.

For a wave going to the right (u−2
√
gh) is constant. If the surface is unperturbed

far away (u = 0, h = h0), then u is obtained thanks to conservation of the Riemann
invariant :

u = 2
√
gh− 2

√
gh0

the mass conservation :
∂h

∂t
+
∂(uh)

∂x
= 0

with η + h0 = h (η perturbation of free surface) and the previous u

∂η

∂t
+ (2

√
g(h0 + η)− 2

√
gh0)

∂η

∂x
+ (h0 + η)

√
(g)/((h0 + η))

∂η

∂x
= 0

∂η

∂t
+ (3

√
g(h0 + η)− 2

√
gh0)

∂η

∂x
= 0

Linearisation around h0 at small η :

(3
√
g(h0 + η)− 2

√
gh0) =

√
gh0(3(1 +

η

2h0
+ ...− 2) =

√
gh0(1 +

3η

2h0
+ ...)

The final (inviscid Bürgers) equation :

∂η

∂t
+
√
gh0(1 +

3η

2h0
)
∂η

∂x
= 0.
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This equation leads to shocks as the higher the wave the faster it is.
• Then the final equation of perturbation of the right moving wave ∂η

∂t + c0
∂η
∂x = 0

is estimated as the sum of the two effects, the nonlinear steepening c0
3η
2h0

∂η
∂x and

the dispersive spreading c0
1
6h

2
0
∂3η
∂x3 , this is the KdV equation :

∂η

∂t
+ c0

∂η

∂x
+ c0

3η

2h0

∂η

∂x
+ c0

1

6
h2

0

∂3η

∂x3
= 0.

We will use the longitudinal scale, say λ such that the dispersive term is small, it
is (h0/λ)2 � 1 and the non linear term is small as well η/h0 � 1, but :

η/h0 = (h0/λ)2 � 1

The Ursell number is the ratio η/h0

(h0/λ)2 = ηλ2

h3
0

. We will present the complete theory

with small parameters (h0/λ)2 � 1 and η/h0 � 1, (we will define δ = h0/λ and
ε = η0/h0 the small parameters) and using dominant balances and multiple scale.
This, unfortunately, makes the ∂’Alembert and Shallow Water description less
clear (the following pages are then obscure... maybe the previous ones as well...).
That is the price to catch the Soliton.

So, we write the full system without dimension, and we show it contains Wave
Equation, Shallow Water and Linear Wave theory of arbitrary depth. Those three
”simple” solutions of the full problem will guide us to find the proper scales in
terms on δ = h0/λ and ε = η0/h0 only. So we will fight to find the final system
(10) with δ and ε only. The developments to find the final system (10) are maybe
obscure, but once we found the proper dominant balances, (10) is enlightening
and obscurity goes away. Starting from this system, we show again that it contains
Wave Equation (∂’Alembert), Shallow Water (Saint-Venant) and Linear Wave
Theory of arbitrary depth (Airy).

The purpose of this lecture is to join three names ∂’Alembert, Saint-Venant,
Airy and three models when ε = δ2 (non linearity balnces dispersion) in a new
model : the Korteweg De Vries equation.

Let us do the reset/RAZ/ Crl Alt Del

2 Equations

2.1 Equations with dimensions

Figure 3 – Notations, y = 0 is the unperturbed level of water, h0 depth of
unperturbed water, λ characteristic length of the wave, δ ratio of these quantities ;
ε relative amplitude of the wave.

Let us do the reset. We start from scratch : Navier Stokes and try to identify all
the small parameters to obtain KdV. Write Navier Stokes, without dimension, put
Re =∞ come back with dimensions, here is Euler incompressible and irrotational
(remember conservation of vorticity in ideal fluids) :

∂u

∂x
+
∂v

∂y
= 0, and (

∂u

∂y
− ∂v

∂x
) = 0

ρ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) = −∂p

∂x
, ρ(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
) = −∂p

∂y
− ρg,

notice the irrotational hypothesis which is very strong, and which is not so much
discussed in the literature. These equation are for −h0 < y < η. Boundary condi-
tions are the pressure p(x, y = η) = p0 at the surface (we neglect here surface
tension) and the relation linking the perturbation of the moving interface and the
velocity of the water just at the surface :

v(x, η, t) =
∂η(x, t)

∂t
+ u(x, η, t)

∂η(x, t)

∂x

and slip conditions at y = −h0.
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2.2 Equations with the potential

2.2.1 Finding the Equations

From irrotational flow, one usually define a potential :

u =
∂φ

∂x
; v =

∂φ

∂y

and from incompressibility :

∂2φ

∂x2
+
∂2φ

∂y2
= 0,

this Laplacian must be solved with boundary conditions at the free surface and at
the bottom. At the free surface v(x, y = η, t) = ∂η

∂t + u∂η∂x which is

∂φ

∂y
|y=η =

∂η

∂t
+
∂φ

∂x

∂η

∂x

and writing the momentum with irrotationality

ρ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
) = ρ(

∂u

∂t
+

1

2

∂u2

∂x
+

1

2

∂v2

∂x
+ v(

∂u

∂y
− ∂v

∂x
)))

gives a kind of Bernoulli equation :

ρ(
∂u

∂t
+

1

2

∂

∂x
(u2 + v2)) = −∂p

∂x
,

with the pressure at the surface p(x, y = η) = p0. Note here that the real jump
relation in inviscid flow between two media 1 and 2 may be written with the surface
tension :

p1(x, η(x, t), t)− p2(x, η(x, t), t) = σ
−→
∇ · −→n 12

the normal to the surface

−→n 12 = (−∂η/∂x, 1)/
√

(1 + (∂η/∂x)2

Here we neglect σ/(ρU2
0h0) (the inverse of the Weber number We = (ρU2

0h0)/σ).
At equilibrium, when there is no flow

p = p0 + ρg(−y)

Then p0 + ρg(−y) is the ”hydrostatic” pressure, we look at P the departure from
it. Pressure is then

p = p0 + ρg(−y) + P.

At the interface

p(x, y = +η) = p0, so p(x, y = η) = p0 = p0 + ρg(−η) + P (x, y = η)

We hence deduce

P (x, y = η) = ρgη.

The active part of the pressure is related to variations of interface η :

∂p

∂x
=
∂P

∂x
= ρg

∂η

∂x

At the free surface, the previous momentum with irrotationality and the pressure :

ρ
∂

∂x
(
∂φ

∂t
+

1

2
(u2 + v2) + gη) = 0.

2.2.2 Equations

The final system that we have to solve is the Laplace equation for the potential
φ in the domain of water :

∂2φ

∂x2
+
∂2φ

∂y2
= 0,

with an ”unsteady Bernoulli” with potential φ at the free surface y = η :

∂φ

∂t
+

1

2
(
∂φ

∂x

2

+
∂φ

∂y

2

) + gη = 0,

at the free surface we have as well v = ∂η
∂t + u∂η∂x which is the relation between

potential and surface elevation η :

∂φ

∂y
=
∂η

∂t
+
∂φ

∂x

∂η

∂x
.

On bottom y = −h0 v = 0 which is the slip condition

∂φ

∂y
= 0.

Far usptream, and maybe down stream every thing is 0. This is the full system we
have to solve. note that the surface is an unknown of the problem, and that it is
defined with a non linear equation.

First we write it without dimension.
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2.3 Equations without dimension

It is here a good idea to distinguish between scale in x and scale in y, so we
write x = λx̄ and y = h0ȳ, the surface elevation is η = η0η̄. The potential is not
known, as the time : φ = ϕφ̄, t = τ t̄. We define the ratio of scales δ = h0/λ and
ε = η0/h0. Then incompressibility :

δ2 ∂
2φ̄

∂x̄2
+
∂2φ̄

∂ȳ2
= 0 (1)

momentum at the surface

εη̄ +
ϕ

gτh0

∂φ̄

∂t̄
+

ϕ2

2gh3
0

(δ2 ∂φ̄

∂x̄

2

+
∂φ̄

∂ȳ

2

) = 0 (2)

velocity at the surface

ϕτ

εh2
0

∂φ̄

∂ȳ
=
∂η̄

∂t̄
+
ϕτδ2

h2
0

∂φ̄

∂x̄

∂η̄

∂x̄
(3)

at the bottom ȳ = −1
∂φ̄

∂ȳ
= 0

we have to find the relations between :

ϕ, τ, λ, ε and δ.

We will first explore three simplifications of this system (∂’Alembert, Airy swell,
Saint-Venant). Those three simplifications will help us to understand two different
regimes and find the pertinent system (the one with a box around 10).

As we do the same thing several times, this complicates the lecture, so the
reader may skip to read §4 and then come back here to be sure that the scales
are OK.

3 Solutions of the Equations ε→ 0 and/or δ → 0

3.1 Fully linearised waves ε→ 0 and δ → 0

The first simple case is the case of fully linear waves in a shallow water, this leads
to the ∂’Alembert equation as we just will see. First we start from the Laplacian
Eq. 1

∂2φ̄

∂ȳ2
= −δ2 ∂

2φ̄

∂x̄2
,

so ∂2φ̄
∂ȳ2 = 0 at leading order, with a Poincaré expansion φ̄ = φ̄0 + δ2φ̄1 + δ4φ̄2 + ...

at first oder
∂2φ̄0

∂ȳ2
= 0, with in ȳ = −1,

∂φ̄

∂ȳ
= 0

so that φ0(x̄, t̄) = f(x̄, t̄), we define f ′ = ∂x̄φ0, we note that φ(x̄, t̄) is only a
function of (x̄, t̄) at dominant order. If we now put the O(δ2) term,

∂2φ̄1

∂ȳ2
= −∂

2φ̄0

∂x̄2
.

The solution at order 1, with ∂φ̄1

∂ȳ |−1 = 0 :

∂2φ̄1

∂ȳ2
= −f ′′ gives

∂φ̄1

∂ȳ
= −(ȳ + 1)f ′′

from the value at the bottom −1 we have the expression of the transverse velocity,
we note that this velocity is very small O(δ2) :

∂φ̄

∂ȳ
=
∂φ̄0

∂ȳ
+ δ2 ∂φ̄1

∂ȳ
... = 0− δ2 ∂

2φ̄0

∂x̄2
(ȳ + 1)...

At this point, we have obtained the expression of the transverse velocity, we
note that this velocity is very small O(δ2) :

∂φ̄

∂ȳ
= δ2 ∂φ̄1

∂ȳ
= −δ2 ∂

2φ̄0

∂x̄2
(ȳ + 1).

We have to look at the surface, it is in ȳ = εη, as ε is small, this is ȳ = 0. This
is ”flattening” of boundary conditions.

∂φ̄

∂ȳ
= −δ2 ∂

2φ̄0

∂x̄2
(0 + 1).

The domain is −1 ≤ ȳ ≤ 0. At the surface ȳ = 0, the gradient is the variation of
interface, hence equation 3 gives

∂φ̄

∂ȳ
=
εh2

0

ϕτ

∂η̄

∂t̄
+ δ2ε

∂φ̄

∂x̄

∂η̄

∂x̄

we can neglect the non linear term and substitute

∂φ̄

∂ȳ
= −δ2 ∂

2φ̄0

∂x̄2
(0 + 1) =

εh2
0

ϕτ

∂η̄

∂t̄
+O(δ2ε)

so that by dominant balance δ2 =
εh2

0

ϕτ and as by convention φ̄0 = f

∂2f̄

∂x̄2
=
∂η̄

∂t̄
.
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The momentum at the surface (Eq. 2) is (as we note that in δ2 ∂φ̄
∂x̄

2
+ ∂φ̄

∂ȳ

2
, the first

is O(δ2) while the second is smaller O(δ4)) :

εη̄ +
ϕ

gτh0

∂φ̄

∂t̄
+O(δ2 ϕ2

2gh3
0

) = 0,

by dominant balance ϕ = εgτh0, gives (with remember φ̄ = φ̄0 + δ2φ̄1 + ...) :

η̄ +
∂φ̄

∂t̄
+ smaller terms = 0, or at dominant order η̄ +

∂f

∂t̄
= 0.

So eliminating ϕ between this ϕ = εgτh0 and the previous δ2 = (εh2
0)/(ϕτ) and

using the relevant scales λ = h0/δ � h0, gives

λ/τ =
√
gh0.

Then, the non linear or smaller terms of (Eq. 2) are O(δ2 ϕ2

2gh3
0
) which is

O( ε
2gh0τ

2

2λ2 ) = O(ε2), which is indeed small as claimed.
The expression

√
gh0 is a velocity (say c0 =

√
gh0). Hence ϕ = ελ

√
gh0. Then,

eliminating f gives :
∂2f

∂x̄2
=
∂2f

∂t̄2
and

∂2η̄

∂x̄2
=
∂2η̄

∂t̄2

the ∂’Alembert wave equation of unit velocity (which is c0 =
√
gh0 with dimen-

sions). This is valid for waves of small amplitude ε� 1 in shallow water δ � 1. In
the next paragraph, we will study waves of small amplitude ε � 1 in deep water
δ = 1. In the paragraph after, we will study waves in not small amplitude ε = 1
in shallow water δ � 1. Finally we will study waves of small amplitude ε � 1 in
shallow water δ � 1 but no so shallow.

For those various waves, we will follow the same way : do some dominant balance
to take some terms, integrate the Laplacian from bottom (slip) to top (perturbation
of free surface), which gives in fact the small transverse velocity and use of the
momentum/ Bernoulli equation.

3.2 Scaling with ε, δ

This ∂’Alembert equation helps us to find the scalings. Having defined δ = h0/λ
and ε = η0/h0, we write x = λx̄ and y = δλȳ, the surface elevation is η = εδλη̄.
The incompressibility :

δ2 ∂
2φ̄

∂x̄2
+
∂2φ̄

∂ȳ2
= 0 (4)

tells us that
∂2φ̄

∂ȳ2
= O(δ2) or

1

δ2

∂φ̄

∂ȳ
= O(1). (5)

This scaling was obtained in the linearised case (∂’Alembert). This scaling is a bit
surprising, but comes from asymptotics. This is substituted in the velocity at the
surface, as

ϕτ

εh2
0

∂φ̄

∂ȳ
= δ2 ϕτ

εh2
0

[
1

δ2

∂φ̄

∂ȳ
] =

∂η̄

∂t̄
+
ϕτδ2

h2
0

∂φ̄

∂x̄

∂η̄

∂x̄
(6)

the solution of the Laplace equation ([ 1
δ2
∂φ̄
∂ȳ ] = O(1)) suggested a dominant balance

δ2 ϕτ
εh2

0
= 1. Then, the non linear term follows it is ϕτδ2

h2
0

= ε. The equation is finally

with δ and ε only :
1

δ2

∂φ̄

∂ȳ
=
∂η̄

∂t̄
+ ε

∂φ̄

∂x̄

∂η̄

∂x̄
. (7)

Momentum at the surface,

εη̄ +
ϕ

gτh0

∂φ̄

∂t̄
+

ϕ2

2gh3
0

(δ2 ∂φ̄

∂x̄

2

+
∂φ̄

∂ȳ

2

) = 0. (8)

The scaling s obtained in the linearised case (∂’Alembert) is ε = ϕ
gτh0

(pertubation

of η are of same magnitude than ∂φ̄
∂t̄ ) : As seen just before ϕτ

εh2
0
δ2 = 1, so that the

non linear term :
ϕ2

gh3
0

=
ϕ

gτh0
(
ϕτ

h2
0

) = ε(
ϕτ

h2
0

) = ε(ε
1

δ2
).

Then, momentum at the surface reads :

εη̄ + ε
∂φ̄

∂t̄
+

ε2

2δ2
(δ2 ∂φ̄

∂x̄

2

+
∂φ̄

∂ȳ

2

) = 0 (9)

As ϕτ
εh2

0
δ2 = 1 and ε = ϕ

gτh0
, we have :

λ/τ =
√
gh0, and ϕ = ελ2/τ = ελ

√
gh0

this is as well

τ =

√
h0

δ2g
, and ϕ = ε

√
gh3

0

δ2
,

The final equations without dimension with δ = h0/λ and ε = η0/h0, and with
no approximations

δ2 ∂
2φ̄

∂x̄2
+
∂2φ̄

∂ȳ2
= 0,

1

δ2

∂φ̄

∂ȳ
=

∂η̄

∂t̄
+ ε

∂φ̄

∂x̄

∂η̄

∂x̄
,

η̄ +
∂φ̄

∂t̄
+
ε

2
(
∂φ̄

∂x̄

2

+
1

δ2

∂φ̄

∂ȳ

2

) = 0,

∂φ̄

∂ȳ
|ȳ=−1 = 0.

(10)
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3.3 Linear dispersive solution, Airy 1845, ε→ 0, δ = O(1)

We look here at the swell (houle in French) in open sea. This is a very classical
solution (Lamb Chap IX, Landau & Lifshitz §12, etc) introduced by George Biddell
Airy of the Linear Wave theory with arbitrary depth (between 1841 and 1845).
The length and the depth are of same order. So we consider δ = 1, we take the
same scales in x and y, it is more simple to use h0 here, so that the bottom will
be in ȳ = −1. The equation (1) is then a full Laplacian. Taking both scales equals
is of course the first simple possibility that we have to explore before looking at
different scales. We consider small amplitude waves so that ε � 1 then from the
same balance of the velocity at the surface (Eq (3)) and from the momentum (2)
we have τ =

√
h0/g then ϕ = ε

√
gh3

0 = η0

√
gh0

∂2φ̄

∂x̄2
+
∂2φ̄

∂ȳ2
= 0

η̄ +
∂φ̄

∂t̄
+ ε2(

∂φ̄

∂x̄

2

+
∂φ̄

∂ȳ

2

) = 0 and as well at surface
∂φ̄

∂ȳ
=
∂η̄

∂t̄
+ ε

∂φ̄

∂x̄

∂η̄

∂x̄

at the bottom

ȳ = −1,
∂φ̄

∂ȳ
= 0.

If course this is system (10) for δ = 1.

We look at the solution of the linearised problem

∂2φ̄

∂x̄2
+
∂2φ̄

∂ȳ2
= 0

∂2φ̄

∂t̄2
|0 +

∂φ̄

∂ȳ
|0 = 0

∂φ̄

∂ȳ
|−1 = 0

This problem as solution in ei(k̄x̄−ω̄t̄), with this ansatz, the solution of the Lapla-
cian,

−k̄2φ̄+
∂2φ̄

∂ȳ2
= 0 with B.C.

∂φ̄

∂ȳ
|−1 = 0,

∂φ̄

∂ȳ
|0 = ω̄2φ̄(0).

This gives a solution in φ̄(0) cosh(k̄ȳ + k̄)/ cosh(k̄) which preserves the ∂φ̄
∂ȳ |−1 = 0

boundary condition. So ∂φ̄
∂ȳ |0 = φ̄(0)k̄ tanh k̄ then, it gives the famous relation of

dispersion :
ω̄2 = k̄ tanh(k̄)

with dimensions
ω2 = gk tanh(kh0),

Figure 4 – Waves on a sloping beach with Gerris. Code it at the end.

the phase velocity c(k) = ω/k is function of k, this means that a signal will be
changed as every space frequency has a different velocity :

c(k) =
√
g tanh(kh0)/k.

Looking a small depth

ω2 = gk(kh0 −
(kh0)3

3
+ ...)

This (kh0)3

3 will be important for solitons, we will discuss it after. Then, the phase
velocity c = ω/k :

c =
√
gh0(1− (kh0)2

6
+ ...)

gives at smalll kh0, ie very very small depth,

c =
√
gh0.

This is again the shallow water velocity we have already seen in the previous
paragraph.

If depth is too small one has to take into account the surface tension : σ/(ρU2
0h0)

is here σ/(ρgh2
0). So if the depth is of same order of magnitude than the capillary

length λc =
√
σ/(ρg) then one has to use the surface tension jump. This gives the

correct dispersion relation

ω2 = g(1 + k2λ2
c)k tanh(kh0).

Notice here that for surface tension wave, small wave length travel faster. But, the
effect is reversed for Airy waves in shallow water.

3.4 Non linear waves : Shallow water, ε = O(1), δ → 0

There is another relevant simplification of the full problem which corresponds
to flows in a small depth of water, so it is called ”Shallow water”. Or, flow with
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changes at a scale much larger than the depth. We call this also ”Saint-Venant”
system. So, if δ = h0/λ� 1, the length wave is long compared to the depth, and
now we can allow ε = 1. The latter means that the wave may be large in height,
so non linear phenomena appear. Let us look at this : a balance of terms with non
linearities. At first order

∂2φ̄

∂ȳ2
= −δ2 ∂

2φ̄

∂x̄2

but non linearities in Eq. 3 give the balance τϕδ2/h2
0 = 1 which is τϕ/λ2 = 1

ϕτ

h2
0

∂φ̄

∂ȳ
=
∂η̄

∂t̄
+
∂φ̄

∂x̄

∂η̄

∂x̄

In the momentum Eq.2, we have εη̄ which is η̄, then ϕ
gτh0

∂φ̄
∂t̄ that we compare to

the next two which are, with τϕδ2/h2
0 = 1, the non linear term ϕ

2gτh0
(∂φ̄∂x̄

2
+δ2 ∂φ̄

∂ȳ

2
).

Hence, as δ is small :

η̄ +
ϕ

gτh0
(
∂φ̄

∂t̄
+

1

2

∂φ̄

∂x̄

2

) = 0

As we have τϕ/λ2 = 1 from the non linearities of 3 and ϕ = gτh0 from the non
linear terms of 2, this gives λ/τ =

√
gh0 and ϕ = λ2/τ .

With these scales, the scale ϕτ
h2
0

in front of ∂φ̄
∂ȳ the velocity (of Eq. 3) is λ2/h2

0,

which is large : δ−2 � 1. This is the subtle part, as φ̄ does not change so much
trough the layer (from the Laplacian, the variation in ȳ are of order δ2), the small
variation is magnified by δ−2, so that the result is of order one.

We have shown that λ/τ =
√
gh0 and ϕ = λ2/τ , so that ϕ = λ

√
gh0 and

τ = λ/
√
gh0, so with ε = 1 and δ � 1, the final system reads :

∂2φ̄

∂ȳ2
= −δ2 ∂

2φ̄

∂x̄2

η̄ + (
∂φ̄

∂t̄
+

1

2

∂φ̄

∂x̄

2

) = 0

1

δ2

∂φ̄

∂ȳ
=
∂η̄

∂t̄
+
∂φ̄

∂x̄

∂η̄

∂x̄
.

Coming back with ū = φ̄x̄ we have for momentum at surface (after derivation by
x̄), a balance between the total derivative of the velocity (which is a ”plug” flow,
ū(x̄, t̄)) influenced by the variations of pressure due to the changes of surfaces η̄ :

∂ū

∂t̄
+ ū

∂ū

∂x̄
= −∂η̄

∂x̄
.

Then working on the continuity equation, we first we integrate the Laplacian

∂φ̄

∂ȳ
= −δ2 ∂

2φ̄

∂x̄2
(ȳ + 1)

and at ȳ = η, this gives ∂φ̄
∂ȳ at the interface which is δ2 ∂

2φ̄
∂x̄2 (η̄ + 1). Using the

definition of ū (note that ū = φ̄x̄ is function of x, t at dominant order), we inject
this in relation of the surface velocity, δ disappears :

∂ū

∂x̄
(η̄ + 1) =

∂η̄

∂t̄
+ ū

∂η̄

∂x̄
.

We can write this system in a more readable way, as we obtain the famous Shallow
Water system (Saint-Venant, in French, GfsRiver in Gerris and http://basilisk.

fr/src/saint-venant.h in Basilisk ) :
∂ū

∂t̄
+ ū

∂ū

∂x̄
= −∂η̄

∂x̄
,

∂η̄

∂t̄
+

∂

∂x̄
((1 + η)ū) = 0.

This system gives advection, shocks, one example is on figure 5 were we see a
moving hydraulic jump.

An alternate formulation suitable for Shallow Water only (Saint-Venant) is in
http://www.lmm.jussieu.fr/~lagree/COURS/MFEnv/MFEnv.pdf.

4 Equations with ε and δ

4.1 Sum up of the scales

The three previous subsections we looked at the d’Alembert δ � 1, ε� 1, then
the case of dispersive linear waves, δ = 1, ε � 1 and Saint-Venant δ � 1, ε = 1.
These are three fundamental points of view. We turn now to a case in between
with some dispersion and some nonlinearities in the set of equations (1, 2) first
line and 3) second line.

Using the previous dominant balances necessary to obtain a displacement of the

flow, each time we obtained the same scalings (δ−2 ∂φ̄
∂ȳ ∼

∂η̄
∂t̄ of the surface velocity

Eq. 3 and Eq. 1 and η̄ ∼ ∂φ̄
∂t̄ of the momentum Eq. 2), we remind the scaling we

have obtained
ϕ = ελ2/τ = ελ(λ/τ), τ = λ/

√
gh0

which is as well

ϕ = ελ
√
gh0 and τ =

λ√
gh0

, velocity is
ϕ

λ
= ε
√
gh0.
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h1 h2

h1 h2

Figure 5 – here example of a moving hydraulic jump computed by Gerris solu-
tion of GfsRiver . Code it at the end. see http://basilisk.fr/sandbox/M1EMN/

Exemples/belanger.c with Basilisk

Remember that this comes from the scales we obtained in the fully linearized
and Shallow Water cases. With those scales, we have already written the equations
with ε and δ (10, the final system with ε and δ reads for Eq. (1), momentum at
the surface Eq. (2), velocity at the surface Eq. (3), and at the bottom ȳ = −1 :

δ2 ∂
2φ̄

∂x̄2
+
∂2φ̄

∂ȳ2
= 0

η̄ +
∂φ̄

∂t̄
+
ε

2
(
∂φ̄

∂x̄

2

+
1

δ2

∂φ̄

∂ȳ

2

) = 0

1

δ2

∂φ̄

∂ȳ
=

∂η̄

∂t̄
+ ε

∂φ̄

∂x̄

∂η̄

∂x̄
∂φ̄

∂ȳ
|ȳ=−1 = 0

If, in this set of equations we put ε� 1 and δ � 1 we have the wave equation,
and if, in this set of equations we put ε = 1 and δ � 1 we have the shallow water
again, and if, in this set of equations we put ε� 1 and δ = 1 we have Airy linear

dispersive solution again, we just look at what happens with a small wave in a not
so shallow river.

4.2 Non linearity balances dispersion : small ε equals δ2

We are now fully convinced that system (10) is the good system with the per-

tinent scales. As δ2 ∂
2φ̄
∂x̄2 + ∂2φ̄

∂ȳ2 = 0, by integration we have ∂φ̄
∂ȳ . The velocity at the

surface (Eq. 3) says
1

δ2

∂φ̄

∂ȳ
=
∂η̄

∂t̄
+ ε

∂φ̄

∂x̄

∂η̄

∂x̄
,

at the bottom ȳ = −1
∂φ̄

∂ȳ
= 0.

Solving the Laplacian (1)

δ2 ∂
2φ̄

∂x̄2
+
∂2φ̄

∂ȳ2
= 0,

with a Poincaré expansion φ̄ = φ̄0 + δ2φ̄1 + δ4φ̄2 + ... at first oder

∂2φ̄0

∂ȳ2
= 0, with in ȳ = −1,

∂φ̄

∂ȳ
= 0

so that φ0(x̄, t̄) = f(x̄, t̄), we define f ′ = ∂x̄φ0. Hence the various orders solve the
recurrence

∂2φ̄1

∂ȳ2
= −∂

2φ̄0

∂x̄2
and

∂2φ̄2

∂ȳ2
= −∂

2φ̄1

∂x̄2
, ....

The solution at order 1, with ∂φ̄1

∂ȳ |−1 = 0 :

∂2φ̄1

∂ȳ2
= −f ′′ gives

∂φ̄1

∂ȳ
= −(ȳ + 1)f ′′

and by integration

φ̄1 = −f ′′(x̄, t̄)(ȳ +
1

2
ȳ2) +K(x̄, t̄)

the K is 0 as if we suppose that the condition for (x̄, t̄) are in f(x̄, t̄). At next

order, with ∂φ̄2

∂ȳ = 0 :

∂2φ̄2

∂ȳ2
= f ′′′′(x)(ȳ +

1

2
ȳ2) gives

∂φ̄2

∂ȳ
= (

1

2
ȳ2 +

1

6
ȳ3 − 1

3
)f ′′

then, if we suppose again a 0 constant of integration :

φ̄2 = f ′′′′(x̄, t̄)(
1

6
ȳ3 +

1

24
ȳ4 − 1

3
ȳ)
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Then φ̄ is a polynom in ȳ with coefficients functions of derivatives of f ,

φ̄ = f(x̄, t̄)− δ2f ′′(x, t̄)(ȳ +
1

2
ȳ2) + δ4f ′′′′(x̄, t̄)(

1

6
ȳ3 +

1

24
ȳ4 − 1

3
ȳ) + ...

Then ∂φ̄
∂ȳ is a polynom in ȳ with coefficients functions of derivatives of f ,

∂φ̄

∂ȳ
= −δ2f ′′(x, t̄)(1 + ȳ) + δ4f ′′′′(x̄, t̄)(

1

3
ȳ2 +

1

6
ȳ3 − 1

3
) + ...

so that if we substitute in expression of the velocity and perturbation of surface :
1
δ2
∂φ̄
∂ȳ = ∂η̄

∂t̄ + ε∂φ̄∂x̄
∂η̄
∂x̄ we have in ȳ = εη̄

−f ′′(x̄, t̄)(1 + εη̄) + δ2f ′′′′(x̄, t̄)
−1

3
=
∂η̄

∂t̄
+ ε

∂φ̄

∂x̄

∂η̄

∂x̄
.

Let us define the longitudinal velocity by ū = f ′. Other choices are possible, not
only the value at surface ȳ = 0 but the mean value :

ūb =

∫ 0

−1

∂x̄φ̄dȳ = f ′ +
δ2

3
f ′” + ...

depending of the choice, the various Boussinesq systems, see after, are possible).
With ū = f ′ this equation is

∂η̄

∂t̄
+
∂ū

∂x̄
= −εū ∂η̄

∂x̄
− εη̄ ∂ū

∂x̄
− 1

3
δ2 ∂

3ū

∂x̄3
.

By dominant balance, we guess here that if we want non linear terms of order ε
and variation across the layer of order δ2, then

ε = δ2,

this is the fundamental balance for solitary wave.

The momentum follows from the scale of φ̄, we notice that

∂φ̄

∂ȳ
= 0 + δ2 ∂φ̄1

∂ȳ
+ ..

so we can again neglect it in momentum at the surface (2)

η̄ +
∂φ̄

∂t̄
+ (ε/2)(

∂φ̄

∂x̄

2

+ δ−2(O(δ4))) = 0.

Which is at leading order

η̄ +
∂φ̄

∂t̄
+ (ε/2)

∂φ̄

∂x̄

2

= 0.

Remember that ū = f ′ and at leading order, it is the usual inertial-pressure balance

∂ū

∂t̄
+ εū

∂ū

∂x̄
= − ∂η̄

∂x̄
.

At this point, as we want a dominant balance of the perturbative terms, wet take
ε = δ2, this is η0/h0 = (h0/λ)2, the ratio :

η0λ
2

h3
0

is called the the fundamental parameter in the theory of water waves, this is the

Ursell number η/h0

(h0/λ)2 = ηλ2

h3
0

.

So the final system of interest is :
∂η̄

∂t̄
+
∂ū

∂x̄
= −εū ∂η̄

∂x̄
− εη̄ ∂ū

∂x̄
− 1

3
ε
∂3ū

∂x̄3
,

∂ū

∂t̄
+ εū

∂ū

∂x̄
= −∂η̄

∂x̄
.

We may write it : 
∂η̄

∂t̄
+

∂

∂x̄
((1 + εη̄)ū) = −1

3
ε
∂3ū

∂x̄3

∂ū

∂t̄
+ εū

∂ū

∂x̄
= −∂η̄

∂x̄
.

Before looking at KdV, we see that this system has the non linear shallow water
terms, plus an extra term which comes from the depth which is not so shallow.
Considering linear waves, gives

∂η̄

∂t̄
+
∂ū

∂x̄
= −1

3
ε
∂3ū

∂x̄3
and

∂ū

∂t̄
= −∂η̄

∂x̄

the plane wave solution ei(k̄x̄−ω̄t̄) gives

ω̄2 = k̄2 − εk̄4

3

remember that Airy wave gave the dispersion relation

ω2 = k̄ tanh k̄

which gives for long wave expansion ω2 = k̄(k̄ − k̄3

3 + ....), so we find without
surprise the same relation (after change of scale which implies the δ2).
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4.3 KdV (ε = O(δ2)� 1)

Let us no present the final canonical form of KdV with the final balance of
unsteadiness, non linearity and dispersion, written in a moving frame. The Ursell

number ( η/h0

(h0/λ)2 = ηλ2

h3
0

) is then one. The obtained system
∂η̄

∂t̄
+

∂

∂x̄
((1 + εη̄)ū) = −1

3
ε
∂3ū

∂x̄3

∂ū

∂t̄
+ εū

∂ū

∂x̄
= −∂η̄

∂x̄

has ε terms, so we look at an expansion :

ū = ū0 + εū1 + ...

v̄ = v̄0 + εv̄1 + ...

The solution at order 0 
∂η̄0

∂t̄
+

∂

∂x̄
(ū0) = 0

∂ū0

∂t̄
= −∂η̄0

∂x̄

will clearly imply ∂’Alembert equation...

∂2

∂x̄2
ū0 −

∂2

∂t̄2
ū0 = 0,

∂2

∂x̄2
η̄0 −

∂2

∂t̄2
η̄0 = 0,

say that ξ = x̄− t̄ and ζ = x̄+ t̄ to classically solve the wave equation so

∂

∂x̄
=

∂

∂ξ
+

∂

∂ζ
,

∂

∂t̄
= − ∂

∂ξ
+

∂

∂ζ

then at order 0
∂

∂ξ
(−η̄0 + ū0) +

∂

∂ζ
(ū0 + η̄0) = 0

∂

∂ξ
(−ū0 + η̄0) +

∂

∂ζ
(ū0 + η̄0) = 0

or by sum and substraction

∂

∂ξ
(−η̄0 + ū0) = 0,

∂

∂ζ
(ū0 + η̄0) = 0

so that

−η̄0 + ū0 = F (ζ) and ū0 + η̄0 = G(ξ).

We will focus on a wave going to the right (no information in ζ = x̄ + t̄), and
follow it with our horse. We deduce that η̄0 = ū0 and that this is a function of
ξ, a moving wave to the right. We prefer now to be in the moving frame, so that
ξ = x̄− t̄.

If we specify only the right moving wave and do not care about the other,
then in this moving frame ∂

∂x̄ = ∂
∂ξ , and ∂

∂t̄ = − ∂
∂ξ . But, due to the ε terms, we

guess that it will create cumulative terms. So we do a ”multiple scale analysis”
(http://www.lmm.jussieu.fr/~lagree/COURS/M2MHP/MEM_GB.pdf), with a slow
time τ = εt̄ we then have for the time an extra slow term,

∂

∂x̄
=

∂

∂ξ
,

∂

∂t̄
= − ∂

∂ξ
+ ε

∂

∂τ

so the momentum equation,

∂ū

∂t̄
+ εū

∂ū

∂x̄
= −∂η̄

∂x̄
is (−∂ū

∂ξ
+ ε

∂ū

∂τ
) + εū

∂ū

∂ξ
= −∂η̄

∂ξ

after expansion ū = ū0 + εū1 + ... and v̄ = v̄0 + εv̄1 + ... gives after substitution :

∂

∂ξ
(−ū0 + η̄0) + ε(

∂

∂τ
ū0 −

∂

∂ξ
ū1 +

∂

∂ξ
η̄1 + ū0

∂ū0

∂ξ
) = 0,

whereas the mass conservation gives

∂

∂ξ
(ū0 − η̄0) + ε(

∂

∂τ
η̄0 −

∂

∂ξ
η̄1 +

∂

∂ξ
ū1 + ū0

∂η̄0

∂ξ
+ η̄0

∂ū0

∂ξ
+

1

3

∂3ū0

∂ξ3
) = 0.

From the first, we have

∂

∂ξ
ū1 −

∂

∂ξ
η̄1 =

∂

∂τ
ū0 + ū0

∂ū0

∂ξ
,

we substitute in the second

(
∂

∂τ
η̄0 +

∂

∂τ
ū0 + ū0

∂ū0

∂ξ
+ ū0

∂η̄0

∂ξ
+ η̄0

∂ū0

∂ξ
+

1

3

∂3ū0

∂ξ3
) = 0,

but the wave solution ∂
∂ξ (ū0 − η̄0) = 0 gives ū0 = η̄0 + F (τ) so

(
∂

∂τ
F + 2

∂

∂τ
η̄0 + η̄0

∂η̄0

∂ξ
+ 2(η̄0 + F (τ))

∂η̄0

∂ξ
+

1

3

∂3η̄0

∂ξ3
) = 0.

This unknown function F (τ) is interpreted as a ”secular term”, it must be always
0, hence we finally obtain the KdV equation :

∂

∂τ
η̄0 +

3

2
η̄0
∂η̄0

∂ξ
+

1

6

∂3η̄0

∂ξ3
= 0.
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”Le chemin qui y conduit semble long car nous avons détaillé chaque étape. On
peut trouver des solutions élégantes pour établir rapidement l’équation KdV mais
le prix à payer est que l’on ne contrôle pas les approximations” as says [14], who
takes another tortuous path.

4.4 Boussinesq Equation

From the point of view we developed :
∂η̄

∂t̄
+

∂

∂x̄
((1 + εη̄)ū) = −1

3
ε
∂3ū

∂x̄3
+O(ε2)

∂ū

∂t̄
+ εū

∂ū

∂x̄
= −∂η̄

∂x̄
+O(ε2)

We write it with dimensions (and forget the O(ε2) ) :
∂h

∂t
+
∂(hu)

∂x
= −h

3

3

∂3u

∂x3

∂u

∂t
+ u

∂u

∂x
= −g ∂h

∂x

Depending on the choice of the horizontal fluid velocity given at some definite
height in the fluid column, we can change the system. For example, if we define a

new velocity ūb = ū + 1
3ε

∂2ū
∂x̄2 (the mean value of velocity), the system is now at

the same order ε, because of course ε2 terms are different.
∂η̄

∂t̄
+

∂

∂x̄
((1 + εη̄)ūb) = 0 +O(ε2)

∂ūb
∂t̄
− 1

3
ε
∂3ūc
∂t̄∂x̄2

+ εūc
∂ūb
∂x̄

= −∂η̄
∂x̄

+O(ε2)

We write it with dimensions, using is new velocity :
∂h

∂t
+
∂(hu)

∂x
= 0

∂u

∂t
+ u

∂u

∂x
= −g ∂h

∂x
+
h2

3

∂3u

∂x2∂t

this system is better as it is ”more” conservative : mass conservation is full fitted.

Depending on the choice of the horizontal fluid velocity given at some definite
height in the fluid column, see [1], in fact different types of Boussinesq equations
have been introduced. Note that Boussinesq himself did not present exactly those
equations in 1871, CR Acad. Sci. Paris, ”Théorie de l’intumescence liquide ap-
pelée onde solitaire ou de translation se propageant dans un canal rectangulaire”.

Nevertheless, one writes :
∂h

∂t
+
∂(hu)

∂x
=
h3

2
(θ2 − 1

3
)
∂3h

∂x2∂t
∂u

∂t
+ u

∂u

∂x
= −g ∂h

∂x
+ (1− θ2)

h2

2

∂3u

∂x2∂t

depending on θ and notice that ∂h
∂t = ∂η

∂t = −c0 ∂u∂x . These are other common
Shallow Water equation with a dispersive term (see literature)

∂h

∂t
+
∂(hu)

∂x
=
h3

6

∂3u

∂x3

∂u

∂t
+ u

∂u

∂x
= −g ∂h

∂x
+
h2

2

∂3u

∂x2∂t

They give all KdV so that they are a bit more universal.

For θ2 = 1 we have our previous expression, for θ2 = 1/3, the conservation of
mass is the standard one, which is a good thing

∂h

∂t
+
∂(hu)

∂x
= 0

∂u

∂t
+ u

∂u

∂x
= −g ∂h

∂x
+
h2

3

∂3u

∂x2∂t

Linearisation of this last set of equations gives with h = h0 + εh1 + ... and u =
0 + εu1 + ... :

iωh1 = ih0ku1, iωu1 = +igkh1 − iωk2h
2
0

3
u1

so that ω2(1 + k2 h
2
0

3 ) = gh0k
2, the dispersion relation is :

ω =

√
gh0k√

1 + k2 h
2
0

3

,

close to 0 we expect dispersion (i.e. ω/k function of k) :

ω =
√
gh0(k − k3h

2
0

6
+ ...)

it allows a closer behavior of the exact dispersive wave solution (Airy Swell)

ω =
√
gk tanh(kh0) '

√
gk(kh0 − k3

h3
0

3
+ ...) ' k

√
gh0(1− k2h

2
0

6
+ ...)

so that up to order 3 we have the right dispersion relation.
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4.5 Serre-Green-Naghdi equations, (ε = O(1), (δ2)� 1)

At this point, we are close to a more improved model of Boussineq system : the
Serre-Green-Naghdi equations. They were derived by Serre (1953, independently
rediscovered by Su and Gardner (1969) and again by Green, Laws and Naghdi
(1974) (see D. Duthyk HDR 2010 for derivation with a Lagrangian and many
other expansions). Lannes and Bonneton Phys Fluids 21 2009 give a sophisticated
derivation. We prefer to give here a more simple description which follows closely
Bonneton’s lecture in Cargese (06/2017) [2].

The important point in the Saint-Venant description is that the pressure is
purely hydrostatic,

∂p

∂y
= −ρg, pressure is p(x, y, t) = ρg(h(x, t)− y),

thus the pressure gradient is ρg∂h/∂x. The previous Boussinesq equation show the

influence of the gradient of the non hydrostatic part, we found : −h
2

3
∂3u
∂x2∂t .

This part of the pressure may be reobtained, even more precisely, starting from
Euler description. Let us define the transverse acceleration γ, so that the transverse
equation is

∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −∂p̄

∂ȳ
− 1, is, say γ = −∂p̄

∂ȳ
− 1.

We integrate the pressure gradient, which is no more hydrostatic due to ”transverse
acceleration” γ :

∂p̄

∂ȳ
= −1− γ.

The pressure is indeed

p̄(x̄, ȳ, t̄)− p̄(x̄, ȳ = εη̄, t̄) = [−y]ȳεη̄ −
∫ ȳ

εη̄

γdζ

at the surface p̄(x̄, ȳ = εη̄, t̄) = 0, so the pressure is the hydrostatic one, plus the
acceleration (correction)

p̄(ȳ) = −y + εη̄ −
∫ ȳ

εη̄

γdζ

we integrate a second time across the whole layer, as∫ εη̄

−1

(−y + εη̄)dȳ =
−(εη̄)2 + 1

2
+ (εη̄)(1 + εη̄) =

(1 + εη̄)2

2

then ∫ εη̄

−1

p̄(ȳ)dȳ =
(1 + εη̄)2

2
−
∫ εη̄

−1

(

∫ ȳ

εη̄

γdζ)dȳ

the tricky part is the double integral corresponding to the non hydrostatic part of
pressure

I2 =

∫ εη̄

−1

(

∫ εη̄

ȳ

γ(ζ)dζ)dȳ

let us define Γ(ȳ) =
∫ εη̄
ȳ
γ(ζ)dζ, so that dΓ

dȳ = −γ(ȳ)

I2 =

∫ εη̄

−1

Γ(ȳ)dȳ, is by parts I2 =

∫ εη̄

−1

(
d

dȳ
(ȳΓ))dȳ −

∫ εη̄

−1

ȳ
dΓ

dȳ
dȳ,

integrating the first, and using the definition of Γ

I2 = Γ(−1) +

∫ εη̄

−1

ȳγ(ȳ)dȳ =

∫ εη̄

−1

γ(ζ)dζ +

∫ εη̄

−1

ȳγ(ȳ)dȳ

finally the non hydrostatic correction is exactly

I2 =

∫ εη̄

−1

(1 + ȳ)γ(ȳ)dȳ.

Remember ∂φ̄
∂ȳ is a polynom in ȳ with coefficients functions of derivatives of f ,

∂φ̄

∂ȳ
= −δ2f ′′(x, t̄)(1 + ȳ) + δ4f ′′′′(x̄, t̄)(

1

3
ȳ2 +

1

6
ȳ3 − 1

3
) + ...

so that as v̄ = δ ∂φ̄∂ȳ and ū = f ′ then

v̄ = −δ ∂ū
∂x̄

(x, t̄)(1 + ȳ) +O(δ2)

as γ = ∂v̄
∂t̄ +ū ∂v̄∂x̄+v̄ ∂v̄∂ȳ , we take the time derivative, and the two space derivatives of

v̄, then by substitution of this derivatives of the transverse velocity and at leading
order

γ = −(δ(1 + ȳ))[
∂2ū

∂t̄∂x̄
+ ū

∂2ū

∂x̄2
− (

∂ū

∂x̄
)2 +O(δ)].

This is substituted in I2, then as
∫ 0

−1
(1 + ȳ2)dȳ = 1/3, the contribution of the non

hydrostatic pressure is

I2 = −δ
2h̄2

3
[
∂2ū

∂t̄∂x̄
+ ū

∂2ū

∂x̄2
− (

∂ū

∂x̄
)2 +O(δ)],
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finally the Serre-Green-Naghdi non linear weakly dispersive equations are :
∂h̄

∂t̄
+

∂

∂x̄
(h̄ū) = 0

∂ū

∂t̄
+ ū

∂ū

∂x̄
, = −∂η̄

∂x̄
+
δ2

3h̄

∂

∂x̄

(
h̄2(

∂2ū

∂t̄∂x̄
+ ū

∂2ū

∂x̄2
− (

∂ū

∂x̄
)2)

)
+O(δ)4.

The non linear term of O(δ)2 is more precise than in Boussinesq description. In

the case of weak non linearity, this is the same : δ2

3
∂
∂x̄

∂2ū
∂t̄∂x̄

4.6 One famous solution of KdV equation : the Solitary
Wave

Coming back with variables, assuming that the fundamental parameter in the
theory of water waves is of order one (Ursell number) :

η0λ
2

h3
0

= O(1),

the KdV equation reads with scales :

∂

∂t
η + c0

∂

∂x
η +

3c0
2h0

η
∂η

∂x
+
c0h

2
0

6

∂3η

∂x3
= 0

with c0 =
√
gh0. this equation represent the dominant balance between non

linearities that will create a hydraulic jump and dispersion that destroys the wave
in several waves. When there is balance, a special wave, the ”soliton”, exists. It
does not change in shape.

The solution with no elevation of the surface up and down stream needs some
algebra. We look at traveling waves f(x− Ct) = f(s), so that

∂

∂t
f(x, t) = −C ∂

∂s
f(s) = −Cf ′(s) and

∂

∂x
f(x, t) =

∂

∂s
f(s) = f ′(s)

then :

∂

∂t
f(x, t) +

3

2
f(x, t)

∂f(x, t)

∂x
+

1

6

∂3f(x, t)

∂x3
= 0, is − Cf ′ + 3

4
(f2)′ +

f ′′′

6
= 0,

hence, it can be integrated once, the integration constant is such for s → ±∞
perturbations of f are zero, so there is no constant. Then multiply by f ′ and
integrate again :

(f ′)2

3
− 2Cf2 + f3 = 0,

by separation of variables ∫
df

f
√

6C − 3f
= ds

by change of variable, and few extra manipulations, we can find the solution.
Indeed, if (yes ! if...) we notice that

(Arctanh(z)′ = 1/(1−z2), we have (Arctanh((1−z)n)′ = −n(1−z−1+n)/(1−(1−z)2n).

This gives us (n = 1/2) the solution of∫
dz

z
√

1− z
= −2(Arctanh((1− z)1/2).

The inverse function of

x = −2(Arctanh((1− z)1/2) is z = 1− tanh2(x/2) = 1/cosh(x/2)2

note that sech(x) = 1/cosh(x)

f =
1

cosh2(
√

3s/2)

so that the final perturbation of the free surface is exactly :

η =
η0

cosh2
(

1
2h0

√
3η0
h0

(x− c0(1 + η0
2h0

)t)
) .

This is the ”Soliton” or Solitary Wave solution. It has a lot of properties... Other so-
lutions exist such as cnoidal waves (see literature, Whitham Lighthill, Debnath...)
John Scott Russell found the 1/cosh2 form experimental fit only. He obtained expe-
rimentally for velocity : cJSR =

√
g(h0 + η0) this is consistent with velocity of cha-

racteristics, so that it is a clever guess. The final exact velocity is
√
gh0(1+η0/(2h0),

the two velocity are close :
√
g(h0 + η0) =

√
gh0(1 + η0/(2h0) + ...)... so that John

Scott Russell experimental result is not so wrong.
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Figure 6 – Soliton in a flume at Palais de la Découverte(†), photo
PYL http://www.lmm.jussieu.fr/ lagree/SIEF/SIEF97/solitongd.mov , right the
1/cosh2 solution.

Figure 7 – 3 solitons of various selfsimilar shape ε0/ cosh2
(

1
2

√
3ε0x

)
, they are

in the moving frame. The larger the height, the thinner the width, the faster the
wave. Time increases from bottom to top.
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4.7 What about viscosity ?

Of course the viscosity plays a role and destroys the solitary wave. Let us look
at the influence of the up to now neglected viscous term.

At dominant order, we have computed the ideal fluid solution, for the boundary

layer, we must add the dominant viscous term 1
Re

∂2ū0

∂ȳ2 in the momentum equation

∂ū0

∂t̄
= −∂η̄0

∂x̄
+

1

Re

∂2ū0

∂ȳ2

with ȳ = −1 + 1
<1/2 ỹ, and ũ0 = ū0 we change the scales to be in the boundary

layer as usual. We refer to the moving frame ∂
∂x̄ = ∂

∂ξ , and ∂
∂t̄ = − ∂

∂ξ . we obtain

∂

∂ξ
ũ0 +

∂2ũ0

∂ỹ2
=

∂

∂ξ
η0

with boundary conditions, first the no slip ũ0 = 0 in ỹ = 0, second the matching

ũ0(ỹ →∞) = ū0(ȳ → −1) = η̄0(−1).

the resolution has been proposed by Kakutani & Matsuuchi in 1971 ([9]. The
problem is to solve for f = ũ0 − η̄0(ξ,−1)

∂

∂ξ
f +

∂2

∂ỹ2
f = 0

with boundary conditions, first f = −η̄0 in ỹ = 0, second f(ỹ →∞) = 0 in fourier

space ikf̂ + f̂ ′′ = 0, so the solution is in e−σỹ with σ = (1−i)√
2

(k sgn(k))1/2, then

ũ0 = η̄0 −
∫
η̂0e
−σeikξdk

from this expression, we compute the transverse velocity using the trick of the
velocity in the boundary layer (second order effect, the blowing of the displacement
thickness in the ideal fluid) see http://www.lmm.jussieu.fr/~lagree/COURS/

CISM/blasius_CISM.pdf

v̄1 = −∂ū0

∂ξ
ȳ +

1

Re1/2

∫ ∞
−1

(
∂

∂ξ
(ū0 − ũ0))dỹ

the corrective term, due to the blowing is rewritten after integration

v̄BL =
1

(2Re)1/2

∫ ∞
−∞

(−1 + isgn(k)|k|1/2η̂0e
ikξdk

by convolution, K& M wrote

v̄BL =
1

(πRe)1/2

∫ ∞
ξ

∂η0

∂ξ′
dξ′

(ξ′ − ξ)1/2

this velocity is inserted in the 1
δ2
∂φ̄
∂ȳ = ∂η̄

∂t̄ + ε∂φ̄∂x̄
∂η̄
∂x̄

−f ′′(x̄, t̄)(1 + εη̄) + δ2f ′′′′(x̄, t̄)
−1

3
− v̄BL =

∂η̄

∂t̄
+ ε

∂φ̄

∂x̄

∂η̄

∂x̄
.

The final Kakutani & Matsuuchi [9] is

∂

∂τ
η̄0 +

3

2
η̄0
∂η̄0

∂ξ
+

1

6

∂3η̄0

∂ξ3
=

1

(πRe)1/2

∫ ∞
ξ

∂η0

∂ξ′
dξ′

(ξ′ − ξ)1/2

In the integral one recognises a ”fractional” derivative. As the Fourier transform
of f is f̂ , the the Fourier transform of d

nf
dxn is (−ik)nf̂ . Here, in this problem we have

(−ik)1/2, so a 1/2 derivative ! by inverse transform and convolution this (−ik)1/2

gives the part
∫∞
ξ

dξ′

(ξ′−ξ)1/2
The final

∂

∂τ
η̄0 +

3

2
η̄0
∂η̄0

∂ξ
+

1

6

∂3η̄0

∂ξ3
+

1

(πRe)1/2

∂1/2η̄0

∂ξ1/2
= 0

note that the coefficients are maybe wrong (check, it depends on the definition
of the 1/2 derivative). See le Meur https://hal.archives-ouvertes.fr/

hal-00826564/document for discussion and bibliography, and controversy of the
use of Fourier transform, Laplace transform must be better to take into account
the history of the development of the boundary layer.

We note that the KM equation is not only local : with ∂ξ and ∂τ derivatives.
This equation is as well non-local :

∫
d
ξ′. The mix of properties makes it difficult

to solve and interesting to study.
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4.8 The ondular bore or Mascaret

Hydraulic jumps arise some time in rivers due to the elevation of the sea level
due to the tide. The simple bore (hydraulic jump) is solution of Shallow water
equations, but if the river is with enough water, then the bore breaks and create
an ”ondular bore” (a ”Mascaret”, a ”Poroqua”, see Chanson [3] definite book :
”Tidal Bores, Aegir, Eagre, Mascaret, Pororoca : Theory and Observations”). It
is present in some rivers in the world and it is due to the high tide. The mascaret
on the ”Severn River” (Lighthill book [12]), is famous. But the mascaret on the
Dordogne in Saint Pardon is spectacular (of course the ondular bores of China
and Amazonia are the largest in the world), see figure 8. Far upstream, it breaks
in solitary waves.

Figure 8 – Mascaret or Ondular Bore at Saint Pardon on the Dor-
dogne, Photo PYL See other photos : http://www.lmm.jussieu.fr/∼
lagree/SIEF/SIEF97/sieft97m.html

According to Whitham [17] the ondular bore equation is then the kdV,

∂

∂t
η + c0

∂

∂x
η +

3c0
2h0

η
∂η

∂x
+
c0h

2
0

6

∂3η

∂x3
− ν ∂

2η

∂x2
= 0

with c0 =
√
gh0 and ν an ad hoc viscous coefficient necessary for the model but

without real physical significance. This is a dissipation which prevent the formation
of a train of solitary waves. The boundary conditions are different from KdV as
the levels are not the same downstream and upstream. The dissipation is necessary
to avoid the destruction in a train of solitons.
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Figure 9 – A ”Mascaret” with Gerris.
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Figure 10 – A ”Mascaret” in the moving frame, numerical solution of the reduce
equation y′′(x)−my′(x)−y(x)+y(x)2 = 0, ”Model bore structure” see figure 13.6
page 484 of Whitham [17]
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Figure 11 – ondular bore in a channel ENSTA experimen-
tal lab. Batterie de l’Yvette, photo PYL. See other films :
http://www.lmm.jussieu.fr/∼lagree/SIEF/SIEF97/MAQUETTE/mascaret.html

Figure 12 – A hydraulic jump is metamorphosed in a undular bore due to a small
increase in depth. photo PYL, Baie de la Fresnaye (22) Port à la Duc. [click to
launch the movie, Adobe Reader required]

Figure 13 – Some meters down stream, the hydraulic jump changes ... into an
undular bore photo PYL, Baie de la Fresnaye (22) Port à la Duc.
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Figure 14 – left a very non linear wave Miami 2016, right a mascaret Saint
Pardon 1997...

5 Conclusion

In this chapter, we observed waves in water. First, we study waves of small
amplitude ε � 1 in shallow water δ � 1. This gives the ∂’Alembert wave
equation. Second, we study waves of small amplitude ε � 1 in deep water δ = 1.
This is Airy wave theory. Third, we study waves in not small amplitude ε = 1
in shallow water δ � 1. This is shallow water. Finally we study waves of small
amplitude ε� 1 in shallow water δ � 1 but no so shallow, with ε = δ2 � 1. This
is Boussinesq KdV theory.

The Soliton and the Ondular Bore are nice examples of waves.
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[5] Debnath L. (1994) ”Nonlinear Water Waves” Academic Press.

[6] Lokenath Debnath Nonlinear Partial Differential Equations for Scientists and
Engineers googlebook

[7] J.E. Hinch Perturbation Methods, Cambridge University Press, (1991)

[8] J. Kevorkian & J.D. Cole, Perturbation Methods in Applied Mathematics,
Springer (1981)

[9] T. Kakutani & K. Matsuuchi, ”Effect of viscosity of long gravity
waves”(1975), J. Phys. Soc. Japan 39 No 1 pp. 237-246.

[10] H. Lamb, hydrodynamics

[11] Landau Lifshitz

[12] Lighthill J. (1978) ”Waves in fluids” Cambridge Univ. press

[13] Newell A. C. (1985) : ”Solitons in mathematics and physics”, SIAM RCSAM
no48

[14] Peyrard Dauxois Physique des solitons

[15] Gérard A. Maugin Solitons in elastic solids (1938–2010) Mechanics Research
Communications 38 (2011) 341–349

[16] Michel Remoissenet (1999) Waves Called Solitons : Concepts and Experiments
googlebook

[17] Gerald Beresford Whitham, ”Linear and Nonlinear Waves” Wiley-Interscience
1974 googlebook

[18] http://www.lmm.jussieu.fr/~lagree/COURS/MFEnv/MFEnv.pdf M1 lec-
ture on Shallow Water

[19] http://www.lmm.jussieu.fr/~lagree/COURS/MFEnv/MFEhoule.pdf M1
lecture on Airy swell

http://en.wikipedia.org/wiki/Korteweg-de_Vries_equation

http://en.wikipedia.org/wiki/Airy_wave_theory

up to date 10 novembre 2023

This course is a part of a larger set of files devoted on perturbations methods,
asymptotic methods (Matched Asymptotic Expansions, Multiple Scales) and
boundary layers (triple deck) by P.-Y . L agrée .
The web page of these files is http://www.lmm.jussieu.fr/∼lagree/COURS/M2MHP.

/Users/pyl/ ... /kdv.pdf

- MHP KdV PYL 2.20- P.-Y. Lagrée, KdV

https://www.epoc.u-bordeaux.fr/indiv/bonneton/publications/Talks/Bonneton_Cargese_29mai-2juin2017.pdf
https://www.epoc.u-bordeaux.fr/indiv/bonneton/publications/Talks/Bonneton_Cargese_29mai-2juin2017.pdf
https://www.epoc.u-bordeaux.fr/indiv/bonneton/publications/Talks/Bonneton_Cargese_29mai-2juin2017.pdf
http://books.google.fr/books?id=kAG8MMq1NUQC&printsec=frontcover&dq=hubert+chanson&hl=en&sa=X&ei=3sufUMSQB-ag0QWZg4HACQ&redir_esc=y#v=onepage&q&f=false
http://books.google.fr/books/reader?id=RXeMpAqAnrQC&hl=fr&printsec=frontcover&output=reader&source=ebookstore&pg=GBS.PR1
 http://books.google.fr/books/about/Waves_Called_Solitons.html?id=A72QQ4BDKNIC&redir_esc=y
http://books.google.fr/books/about/Linear_and_Nonlinear_Waves.html?hl=fr&id=84Pulkf-Oa8C
http://www.lmm.jussieu.fr/~lagree/COURS/MFEnv/MFEnv.pdf
 http://www.lmm.jussieu.fr/~lagree/COURS/MFEnv/MFEhoule.pdf
http://www.lmm.jussieu.fr/~lagree/COURS/M2MHP
http://www.ida.upmc.fr/~lagree


Figure 15 – From the book ”Sir James Lighthill and Modern Fluid Mechanics”
by Lokenath Debnath
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Some Gerris code for water waves

mkdir SIM

rm SIM/sim*

gerris2D -m hydrolicjump3Bv.gfs | gfsview2D

# Title: Airy waves

#

# Description:

#

# Author: PYL

Define Uhoul 0.25*sin(omega*t + 2*pi*x/lambda)*cosh(2*pi*y/lambda)/cosh(2*pi/lambda)*(y<1.1)

Define Vhoul -0.25*cos(omega*t + 2*pi*x/lambda)*sinh(2*pi*y/lambda)/cosh(2*pi/lambda)*(y<1.1)

Define LEVEL2 ((LEVEL-2) *(y<h0+.3)+(LEVEL-4)*(y>=h0+.3))

Define LEVEL1 (((LEVEL-2)*(y<=h0-.3))+(LEVEL*(y>(h0-.3)&&(y<h0+.4)))+(LEVEL-3)*(y>=h0+.4))

Define Nraf 9

# suffit 8 pour houle simple

3 2 GfsSimulation GfsBox GfsGEdge {

# shift origin of the domain

x = 0.5 y = 0.5 } {

Global {

#define LEVEL Nraf

#define h0 1

#define RATIO (1.2/1000.)

#define VAR(T,min,max) (min + CLAMP(T,0,1)*(max - min))

#define pi 3.141516

#define eps 1.e-6

#define lambda 4.0

#define omega sqrt(2*pi/lambda*tanh(2*pi/lambda))

}

PhysicalParams { L = 10 }

Refine LEVEL2

VariableTracerVOF T

VariableFiltered T1 T 1

Time {end = 100 }

InitFraction T ((h0 - y))

Init { } {U = Uhoul*0 V = Vhoul*0 }

# air/water density ratio si T1=0 RATIO si T1=1 1

PhysicalParams { alpha = 1./VAR(T1,RATIO,1.) }

AdaptGradient { istep = 1 } { cmax = 0.0 maxlevel = LEVEL1 } U*T

ProjectionParams { tolerance = 1.e-3 }

ApproxProjectionParams { tolerance = 1.e-3 }

RefineSolid Nraf

Solid ( y + 0.1*(x-30./2))

Source V -1.

Source U 0.0

RemoveDroplets { istep = 1 } T -2

OutputTime { step = 2 } stderr

OutputSimulation { istep = 25} stdout

# noter le format 000

OutputSimulation { step = 0.25 } SIM/sim-%06.2f.gfs

}

GfsBox {

left = Boundary {

BcNeumann U 0

BcNeumann T 0 }

top = Boundary

bottom = Boundary {

BcDirichlet V 0

}}
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GfsBox {

top = Boundary

bottom = Boundary {

BcDirichlet V 0

}}

GfsBox {

top = Boundary

bottom = Boundary {

BcDirichlet V 0

}

right = Boundary {

BcDirichlet U Uhoul

BcDirichlet V Vhoul

BcNeumann T 0

}

}

1 2 right

2 3 right

Improve this code, verify that the dispersion relation works, try to do a solitary
wave and a mascaret.
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Here code for Saint-Venant hydraulic jump (the bore)

# Title: Steady Hydraulic Jump

#

# Description:

#

# Author: PYL

# Command: gerris2D dam.gfs

# Required files: dam.plot

# Generated files: jump.gif

##

# F1^2 0.375

# F2^2 0.

# h1 1

# h2 0.5

# W 1.22474

#

#Define L0 10

#

# Use the GfsRiver Saint-Venant solver

1 0 GfsRiver GfsBox GfsGEdge {} {

PhysicalParams { L = 10 }

RefineSolid 9

# Set a solid boundary close to the top boundary to limit the

# domain width to one cell (i.e. a 1D domain)

Solid (y/10. + 1./pow(2,9) - 1e-5 - 0.5)

# Set the topography Zb and the initial water surface elevation P

Init {} {

Zb = 0

U = 0.387632*(x<-3)+(-.22474*0.5)*(x>-3)

P = {

double p = x < -3 ? 1 : 0.5;

// p = 1+(1.30277563773199-1)*(1+tanh(x))/2;

return MAX (0., p - Zb);

}

}

PhysicalParams { g = 1. }

# Use a first-order scheme rather than the default second-order

# minmod limiter. This is just to add some numerical damping.

AdvectionParams {

# gradient = gfs_center_minmod_gradient

gradient = none

}

Time { end = 7}

OutputProgress { istep = 10 } stderr

# Save a text-formatted simulation

OutputSimulation { step = 0.1 } sim-%g.txt { format = text }

# Use gnuplot to create gif images

EventScript { step = 0.1 } {

time=‘echo $GfsTime | awk ’{printf("%4.1f\n", $1);}’‘

cp sim-$GfsTime.txt sim.txt

cat <<EOF | gnuplot

load ’dam.plot’

set title "t = $time"

set term postscript eps color 14

set output "sim.eps"

h(x)= 1-(0.5)*(x>-3+1.*$time)

plot [-5.:5.][0:2]’sim-$GfsTime.txt’ u 1:7:8 w filledcu lc 3, ’sim-0.txt’ u 1:7 w l lw 4 lc 1 lt 1,h(x)

EOF

time=‘echo $GfsTime | awk ’{printf("%04.1f\n", $1);}’‘

convert -density 300 sim.eps -trim +repage -bordercolor white -border 10 -resize 640x282! sim-$time.gif

rm -f sim.eps

}

# 1:x 2:y 3:z 4:P 5:U 6:V 7:Zb 8:H 9:Px 10:Py 11:Ux 12:Uy 13:Vx 14:Vy 15:Zbx 16:Zby

# Combine all the gif images into a gif animation using gifsicle

EventScript { start = end } {

gifsicle --colors 256 --optimize --delay 25 --loopcount=0 sim-*.gif > mjump.gif

rm -f sim-*.gif sim-*.txt

}

}

GfsBox {

left = Boundary { BcNeumann U 0 }

right = Boundary { BcNeumann U 0 }

}
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Figure 16 – bore at Port à la Duc, baie de la Fresnaye. Photo PYL and with
Gerris

. .

Raymond Subes ”Sans Titre” 1961 (entrée de Jussieu Quai Saint Bernard)
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Annex

Multilayer codes...
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