M2, Fluid mechanics 2019/2020

Multiscale Hydrodynamic Phenomena

Wed., December 4th, 2019, $8: 30 \mathrm{am}-12: 30 \mathrm{pm}$, Room 55-66-112
Part I. : 90 minutes, NO documents

1. Quick Questions In few words :
1.1 Usual scales for pressure and friction for an incompressible flow at small Reynolds around a sphere?
1.2 Usual scales for pressure and friction for an incompressible flow at large Reynolds around a sphere?
1.3 Usual scales for pressure and friction for an incompressible flow at small Reynolds around a cylinder?
1.4 Usual scales for pressure and friction for an incompressible flow at large Reynolds around a cylinder?
$1.5 \partial^{\prime}$ Alembert equation : write the equation and the generic solution of it
1.6 Heat equation in a 1D domain, temperature imposed in 0 and at infinity : write the equation and show that there is a self similar solution
1.7 Remind without demonstration the solution of Laplace equation in the upper half domain ($\forall x$ and $y \geq 0$) with a Neumann BC in $y=0$, and a Dirichlet Boundary Condition equal to 0 at infinity?
1.8 What is the Burgers equation? Which balance is it?

2. Exercice

Let us look at the following ordinary differential equation : $\left(E_{\varepsilon}\right) \quad \frac{d^{2} y}{d t^{2}}+y=-2 \varepsilon \frac{d y}{d t}, \quad$ valid for any $t>0$ with boundary conditions $y(0)=1$ and $y^{\prime}(0)=0$. Of course ε is a given small parameter.
We want to solve this problem with Multiple Scales.
2.1 Expand up to order $\varepsilon: y=y_{0}(t)+\varepsilon y_{1}(t)$, show that there is a problem for long times.
2.2 Introduce two time scales, $t_{0}=t$ and $t_{1}=\varepsilon t$
2.3 Compute $\partial / \partial t$ and $\partial^{2} / \partial t^{2}$
2.4 Solve the problem.
2.5 Suggest the plot of the solution.

3. Exercice

Consider the following equation (of course ε is a given small parameter)

$$
\left(E_{\varepsilon}\right) \quad \varepsilon \frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}+\varepsilon u=\frac{1}{2}(1+x) \text { with } u(0)=0 \quad u(1)=1 .
$$

We want to solve this problem with the Matched Asymptotic Expansion method.
3.1 Why is this problem singular?
3.2 What is the outer problem and what is the possible general form of the outer solution?
3.3 What is the inner problem of $\left(E_{\varepsilon}\right)$ and what is the inner solution?
3.4 Suggest the plot of the inner, outer and composite solution.

4. Exercice

Solve with WKB approximation the problem

$$
\varepsilon y^{\prime \prime}(x)=y(x) \text { with } y(0)=0, y(1)=1
$$

M2, Fluid mechanics 2019/2020
Friday, December 4th, 2018
Part II. : 1h 15 min all documents.

Multiscale Hydrodynamic Phenomena

Flow in elastic tubes (arteries)

This is a part of "On some model equations for pulsatile flow in viscoelastic vessels" by Mitsotakis et al. Wave Motion 90 (2019) 139-151. We consider the flow in a viscoelastic pipe. The behaviour of the flow is very similar to the free surface water flow.
1.0 Write incompressible Navier Stokes equations.
1.1 The viscous longitudinal term in axi symetrical incompressible NS is :

$$
V_{x}=\nu\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{\partial u}{r \partial r}+\frac{\partial^{2} u}{\partial x^{2}}\right)
$$

justify that for large Reynolds number (to be defined) this term is negligible.
1.2 Using scaling (2.5) of the paper, show that one term is smaller than the others.
1.3 Take the mean value of V_{x} (i.e. evaluate $\int_{0}^{r_{w}}\left(V_{x}\right) r d r$), show that we obtain the wall shear stress.
1.4 As the scale of laminar wall shear stress is proportional to the scale of the velocity, the authors introduce an empirical "damping coefficient" κ (formula 1.1). From previous questions what should be the scale of κ with ν and R ?
1.5 As they do after a inviscid analysis, they claim that the total friction is proportional to $-\kappa u^{w}$. This point of view is to my opinion strange (I was not referee!), and even false. Explain why ?
1.6 Write a sentence to justify this very crude approximation, that we take for granted from now.
1.7 The small perturbation of the radius r_{0} of the artery is η. As we suppose an ideal fluid, the normal velocity of the wall is the normal velocity of the fluid. Justify (1.5).
1.8 The acceleration of the wall is due to the normal pressure on it plus elastic and visco elastic forces. Identify each term in (1.6). What term is here neglected as viscosity of the fluid is neglected?
2.1 Using small disturbance theory with a small ε, scaling (2.5-2.6), and supposing a plug velocity profile $u(x, t)$ (no r) show that we can obtain a wave equation for $\bar{\eta}$. What is the scale of the wave speed (its name is Moens -Korteweg celerity)?
3.1 Demonstrate (2.1) from Euler.
3.2 Show that (2.7) is the good scaling of (2.1).
3.3 For each following equation : (2.8), (2.9) (2.10), give its name and check the scaling
3.4 Justify (2.18)
3.5 Justify (2.22) and (2.23). What are the differences with the case of water in channel?
4.1 After some algebra, a kind of KdV equation (or BBM Benjamin Bona Mahony) is obtained, check (4.10) and (4.11).
4.2 Comment (4.12-4.14).

(9.L) $\quad\left(\left(7^{\prime} x\right)^{3} u \lambda+\left(7^{\prime} x\right) u\right) \frac{(x)_{Z^{0}}^{0}}{y^{0}}-\left(7^{\prime} x\right)_{m} d=\left(7^{\prime} x\right)^{n} u y_{m} d$

 $0=1 \quad$.of $\quad 0=\left(a^{\prime} 1^{\prime} x\right) a$

 $0=a \frac{d}{L}+{ }^{1} a+{ }^{x} n$
${ }^{n}={ }^{d} d \frac{d}{L}+{ }^{1} a a+{ }^{x} a n+{ }^{1} a$

$u=u(x, r, t), v=v(x, r, t)$ the horizontal and radial velocity respectively, and $u^{w}(x, t)=u\left(x, r^{w}, t\right)$ the horizontal velocity
of the fluid on the vessel wall (at radius $r=r^{w}(x, t)$), then assuming that $u(x, r, t)$ is proportional to $\left(\left(r^{w}\right)^{2}-r^{2}\right) u^{w}(x, t)$
these equations can be written in cylindrical coordinates in the form:

pue and boundary conditions for the velocity are written as
$\phi_{r}=0$, for $r=0$, $r \phi_{x x}+\left(r r_{r}\right)_{r}=0, \quad 0<r<r^{w}$, The mass conservation (continuity) equation is then reduced to the elliptic equation $\phi_{t}+\frac{1}{2} \phi_{x}^{2}+\frac{1}{2} \phi_{r}^{2}+\frac{1}{\rho} p+\kappa \phi=0, \quad$ for $r=r^{w}$.
 2. Derivation of the new mathematical models computed explicitly using a simple asymptotic formula. Section 5 demonstrates the dissipation effects on the propagation
of solitary and periodic waves. We closet this paper with some conclusions and perspectives.
2. Derivation of the new mathematical models to undirectional equations that depend only on the deviation of the vessel wall, while the velocity of the fluid can be
conputed explictly using a simple asymptotic formula section 5 demonstrates the dissipation effects on the propagation
of solitary and periodic waves. We close this paper with some conclusions and perspectives.
 two dissipative terms on the propagation of a solitary wave.
The paper is organised as follows: in Section 2 we present the derivation of a new system of Boussinesy type for the
description of the velococity and the deviaition of the vessel wall for fluid flow in a viscoelastic vessel. This system is further
 Since the dissipation caused by the fluid viscosity and the dissipation caused by the viscoelasticity of the vessel wall
are different in their nature there is a question on whether the different dissipative terms have also different effects on

 In this paper we extend the work [32] and derive some new asymptotic one-dimensional equations of Boussinesq
type (weakly non-linear and weakly dispersive) that approximate the system (1.1)-(1.3) with boundary conditions 51.4$)-$
(1.1.). The derivivation is based on formal expensions of the velocity potential as in [35]. The new systems generalise the basic ingredient that was ignored in both works $[27,32]$ is the viscosity effects of the vessels by assuming simple elastic
vessels. in 132 appeared to justify the non-dispersive models of 133,34 with asymptotic reasoning. It was a also shown that the
inclusion of dispersive terms can describe more accurately the effects of the vessel wall variations within the flow. One
basicic ingredient that was ignored in both works $[27.32]$ is the viscosity effects of the vessels by assuming simple elastic
 Navier-Stokes equations or from the Euler equations resuluting into very simple systems of conservation laws, the need
for more accurate decsirition of the waves and their reflections suggests the inclusion of this fundamental property. A
first attempt towards the derivation of bi-directional weakly-nonlinear and weakly-dispersive system of equations was Although the dispersion of the flow can be ignored from the majority of mathematical models derived from the
Navier-Stokes equations or from the Euler equations resulting into very simple systems of conservation laws, the need

 $\eta_{t}+r_{x}^{w} \phi_{0 x}+\frac{r^{w}}{2} \phi_{0_{x x}}-\delta^{2} \frac{r_{0}^{2} r_{0 x}}{4} \phi_{0_{x x x}}-\delta^{2} \frac{r_{0}^{3}}{16} \phi_{0_{x x x}}=0\left(\delta^{4}, \varepsilon \delta^{2}\right)$.

for $m=1,2, \ldots$ The last relation ensures that the terms ϕ_{m} of the velocity potential expansion for $m \geq 4$ are negligible.
More general, we observe that

pue
\qquad $\phi_{2}=-\frac{\delta^{2}}{4} \partial_{x}^{2} \phi_{0}$,

Demanding ϕ to satisfy Eq. (2.8) leads to the following recurrence relation $\phi(x, r, t)=\sum_{m=0}^{\infty} r^{m} \phi_{m}(x, t)$.

Following standard asymptotic techniques, cf. [37], we consider a formal expansion of the velocity potential [38];

6. Conclusions

In this paper we derived new weakly nonlinear and weakly dispersive asymptotic equations that describe the irrotational and dissipative flow of a fluid in pipes with viscoelastic walls. We also derived unidirectional equations of BBM and KdV type when the undisturbed radius is constant along the pipe. In order to study the dissipative effects due to fluid viscosity and the viscoelastic walls, we considered solitary and periodic waves propagating in a vessel of constant undisturbed radius and with parameters that resemble a large blood vessel. We observed that the dissipation caused by the viscoelastic wall is equally important compared to the dissipation caused by the viscosity of the fluid or more important, and therefore should not be neglected. It is also observed that the dissipative effects can be described very accurately by linear approximations. The new asymptotic models have the potential to contribute in the derivation of new lumped parameter models that can be used in operational situations where measurements of the pressure and flow of the fluid are required.

correction Ex 1

want to see the $\log (R e)$
correction Ex 2
Exactly the curse with cos,
In [18]:= Simplify[DSolve[y''[t] $+\mathrm{y}[\mathrm{t}]==2 \operatorname{Sin}[\mathrm{t}]$, $\mathrm{y}[\mathrm{t}], \mathrm{t}]$]
Out[18] $=\{\{y[t]->(-t+C[1]) \operatorname{Cos}[t]+1 / 2(1+2 C[2]) \operatorname{Sin}[t]\}\}$
$y_{0}=\cos (t)$ and $y_{1}=-t \cos (t)$.
so that the solution is $y=e^{-t_{1}} \cos \left(t_{0}\right)$
se = DSolve[\{y', [t] + y[t] == -2 e y'[t], y[0] == 1, y'[0] == 0\}, $\mathrm{y}[\mathrm{t}],\{\mathrm{t}, 0,1\}]$;
$\operatorname{Plot}[\{0, \mathrm{y}[\mathrm{t}] /$. se /. e -> . 25, $\operatorname{Exp}[-\mathrm{t} .25], \mathrm{y}[\mathrm{t}] /$. se /. e -> . 125 , $\operatorname{Exp}[-\mathrm{t} .125], \mathrm{y}[\mathrm{t}] /$. se /. e -> .05, $\operatorname{Exp}[-\mathrm{t} .05]\},\{\mathrm{t}, 0,4 \mathrm{Pi}\}$,
Frame -> True, FrameLabel -> \{"t", "y(t)"\}]

correction Ex 3

If wi put $\varepsilon=0$, we have an order one problem with 2 BC , so singular.
We find $u_{\text {out }}=x / 2+x^{2} / 4+1 / 4$. We note that $u_{\text {out }}(0)=1 / 4$, so we have to introduce an inner layer to full fit the 0 BC .

Change of scale $x=\delta \tilde{x}$, by dominant balance $\varepsilon^{2}=\delta$, the problem is

$$
\frac{d^{2} \bar{u}}{d \bar{x}^{2}}+\frac{d \bar{u}}{d \bar{x}}=0
$$

as $\varepsilon \rightarrow 0$ then $u_{i n}^{\prime \prime}+u_{i n}^{\prime}=0$ zolution is $u_{i n}=A(1-\exp (-\tilde{x}))$. Matching gives $A=1 / 4$. Hence composite expansion...

```
se = DSolve[{e u''[y] + u'[y] + e u[y] == (1 + y)/2, u[1] == 1,
    u[0] == 0}, u[y], {y, 0, 1}];
s = DSolve[{u'[y] == (1 + y)/2, u[1] == 1}, u[y], {y, 0, 1}];
```

Plot $[\{0, u[y] /$. se /. e -> . $25, u[y] /$. se /. e ->. . 125 , $u[y] / . s e / . e->.05 u[y] / . s e / . e->.025, u[y] / . s\},\{y, 0$, 1\}, Frame -> True, FrameLabel -> \{"x", "u(x)"\}]

correction Ex 4

- with $\delta=\sqrt{\varepsilon}$, the eikonal $\left(S_{0}^{\prime}\right)^{2}=1$ then $S_{0}= \pm x$
and $S_{1}=$ cst hence the solution is the sum of $e^{ \pm x / \sqrt{\varepsilon}}$:

$$
y(x)=\frac{e^{x / \sqrt{\varepsilon}}-e^{-x / \sqrt{\varepsilon}}}{e^{1 / \sqrt{\varepsilon}}-e^{-1 / \sqrt{\varepsilon}}}
$$

c'est exactement la solution exacte!

$$
y(x)=\frac{\sinh (x / \sqrt{\varepsilon})}{\sinh (1 / \sqrt{\varepsilon})}
$$

