
M2, Fluid mechanics 2012/2013
Friday, December 7th, 2012

Multiscale Hydrodynamic Phenomena

Part I. : 30 minutes, NO documents

1. Quick Questions

In few words :

1.1 What is ”dominant balance” ?
1.2 What is the dimension of the dynamic viscosity ?
1.3 What is the usual scale for pressure in incompressible NS equation ?
1.4 What is the usual scale for pressure in incompressible NS equation at small Reynolds ?
1.5 Which problem exhibits logarithms ?
1.6 What is ”homogenisation”
1.7 What is the Friedrich equation ?
1.8 What is the Bürgers equation ?
1.9 What is the KDV equation ?
1.10 What is the natural selfsimilar variable for heat equation ?
1.11 In which one of the 3 decks of Triple Deck is flow separation ?

2. Exercice
Let us look at the following ordinary differential equation :

(Eε) ε
d2y

dx2
+ 1− y = 0,

valid for 0 ≤ x, with boundary conditions y(0) = 0 and y(∞) = 1. Of course ε is a given small parameter.
We want to solve this problem with the Matched Asymptotic Expansion method (if you prefer use Multiple
Scales or WKB).
2.1) Why is this problem singular ?
2.2) What is the outer problem obtained from (Eε) and what is the possible general form of the outer
solution ?
2.3) What is the inner problem of (Eε) and what is the inner solution ?
2.4) Solve the problem at first order (up to power ε0).
2.5) Suggest the plot of the inner and outer solution.
2.6) What is the exact solution for any ε.
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M2, Fluid mechanics 2011/2012
Friday, December 7th, 2012

Multiscale Hydrodynamic Phenomena

Part II. : 2h30min all documents.

Flow in elastic tubes blood flow in Arteries

The five sections are independent (at first order). They all correspond to the papers given at the end.
Read the Kundu Cohen chapter (KC08) as introduction, the Ling and Atabek (LA72) paper, and the Wo-
mersley (W55) seminal paper.
Starting from Navier Stokes equations we want to obtain the LA72 equations (Question 1) and show that
if integrated across the section (Question 2) and linearized we have the KC08 equations (Question 4), and
that a viscous solution is W55 (Question 3). A long time an distance analysis is in Question 5.

Equations
1.1 What are the hypothesis to write equations (1) (2) and (3) in LA72 ?
1.2 There are two lengths of scale in the problem : the unperturbed radius say R0, and a long scale, say λ
corresponding to the blood pulse wave, we have R0 � λ. Find in ”2. Statement of the problem” of LA72 a
clue of this and find in KC08 the relevant hypothesis. Note that in KC08, A0 = πR2

0 and a0 = R0.
1.3 We have another scale which is not always small : the variation of radius R−R0 we define R = R0R̄. But
we define as well R̄ = 1 + εR̄1 This is a ε which is not always small. Find in ”2. Statement of the problem”
a clue of this. Find in KC08 the discussion of the small perturbation of radius.
1.4 Write (3) in LA72 with scale R0 and λ for r and z. Introduce the blood flow velocity scale W0.
What is the relevant scale for U0 ? (note that KC08 uses u for w).
1.5 We use T the time of the pulse flow as the natural time scale (why not ?). Let us call P0 the scale of
pressure (around a given pe pressure KC08).
Write (1) (2) and (3) from (LA72) with scales T , λ R0 and W0.
1.6 Present the equation (2) from (LA72) like this :

∂w̄

∂t̄
+Aw̄

∂w̄

∂z̄
+Bū

∂w̄

∂r̄
= −E∂p̄

∂z̄
+ C(

∂2w̄

∂r̄2
+
∂w̄

r̄∂r̄
+D

∂2w̄

∂z̄2
)

identify A B C E and D
1.7 In §2.3, LA72 argue that we can neglect ”the term ∂2w/∂z2,which is negligible in comparison with the
radial derivatives”, why ?
1.8 A special regime corresponds to the Womersley problem, were the flow is linearized, but viscosity present
and were the pressure gradient is a given harmonic function eint, this is equation (1) from W55. Show that
n = 2π/T .
1.9 W55 defines what is called now the Womersley’s number : α. Write it with T , R0 and ν.
1.10 What suggests this linearized study from W55 and linearized analysis from KC08 about the magnitude
of A and B from Quest. 1.5 ? Define an ε2 with A and B (value of ε2 according to KC08 ?).
1.11 E should be equal to one. Why ?
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1.12 One of the next sentences is ”Because of the small radial velocity and acceleration, the radial variation
of pressure within the artery can also be neglected”, prove it from LA72 (1).
1.13 Write the final system from (1) (2) and (3) with R0/λ� 1, t with E = 1, with ε2 and with 1/α2. This
system should look like a boundary layer system.
1.14 Is it consistent with LA72 (5) ?
1.15 Discuss the boundary conditions (6) (7) and (8) from LA72.
1.16 From (6), write a relation between W0 and R0 and λ and ε.
1.17 Write A and B with ε
1.18 Write P0 with ε
1.19 Up now, we do not have λ the longitudinal scale. We turn now the interaction with the wall. In KC08
(17.55), the wall is supposed to be elastic, in LA72 (4) the tissues are supposed to have some weight. Define
a small parameter relative to the mass m in LA72 (4).
1.20 Write KC08 (17.55) or (17.58) as p− Pe = k(R−R0)
1.21 From this, show that we have a relation between λ/T and k and ρ and R0.
1.22 Write the final system with all the boundary conditions and all the scales.

Equations before Integral method
Preparing the integral method, we take the system from LA72, and show that it can be integrated across
the section. This will give an integral system.
2.1 Expand d(φr)

dr and simplify dφ
dr + φ

r

2.2 From equation (3) (7) and (8) of LA72, show that Q =
∫ R

0 2πrwdr the flux of mass is linked to ∂R/∂t.
2.3 Show that LA72 (2) is

∂

∂t̄
(r̄w̄) + ε(

∂

∂z̄
(r̄w̄2) +

∂

∂r̄
(r̄ūw̄)) = −r̄ ∂

∂z̄
p̄+

2π

α2
(
∂

∂r̄
(r̄
∂

∂r̄
w̄))

2.4 We define Q2 =
∫ R

0 2πrw2dr the flux of momentum. Write 2.3 with Q̄2 and Q̄ and the value of τ̄w = ∂
∂r̄ w̄

at the wall. Of course the final integral system is not closed, as we do not know the relation between Q and
Q2, and between τw and Q, this is done with Womersley profiles.

Womersley famous solution for pulsatile flow in tubes.
3.1 Show from question 1.X to 2.X that equation (1) of W55 is relevant under some hypothesis, note that
the factor 2π/α2 that you have maybe, comes from the choice of time scale. Use now Womersley notations.
3.2 Verify that (3) is a solution of (1).
3.3 Suppose that α is small. What does it mean in terms of frequency and viscosity ?
3.4 Suppose α = 0, show that W55 (2) gives Poiseuille flow in this case, is it a regular or singular problem ?
3.5 Suppose that α is large. What does it mean in terms of frequency and viscosity ?
3.6 Suppose 1/α = 0, show that W55 (2) is a singular problem ?
3.7 Introduce a boundary layer near the wall y = 1− εỹ, why this form ?
3.8 Show that the inner problem is exponential.
3.9 Plot the solution.
3.10 Expand (3) and show that α→ 0 gives Poiseuille.
3.11 Compute Q2 and τw as a function of Q in Poiseuille case.
3.11 Expand (3) and show that α−1 → 0 gives the previous exponential solution (difficult).
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The linear wave solution
Along questions 1.X we established the long wave approximation, in 2.X we established the integral equations.
At this point, we needed some information destroyed by the integration, this information is the shape of the
velocity. A good idea is to say that the velocity profile looks like a Womersley profile that we established in
3.X. In fact we supposed a Poiseuille profile, with this closure one closes the system, so we have (17.53) of
KC08 in full form :

∂πR2

∂t
+

∂

∂z
Q = 0, and

∂

∂t
Q+

∂

∂z

(
4

3

Q2

πR2

)
= πR2 ∂

∂z
p− 8ν

Q

R2
and p− pe = k(R−R0).

4.1 Show that the previous system is the one we obtained. Deduce that KC08 (17.54) is wrong.
4.2 What hypothesis allow us to write (17.56) and (17.57) ?
4.3 Compute the Moens-Korteweg velocity with k.
4.4 Write a ∂’Alembert equation for the pressure.
4.5 General solution of 4.4 ?
4.6 The artery is supposed to be infinite, what does it mean in term of time for a pulse given at the entrance ?
4.7 A pulse is given in z = 0, p = p0 sin(2πt/T ) for 0 < t < 1/2, what is the solution in z t ?
4.8 Of course arteries are not infinite, estimate λ from KC08, conclusions ?

Long distance behaviour
In fact the pressure may be expressed as p̄ = R̄+ εv

∂R̄
∂t if we suppose a Kelvin Voigt model for the relation

between the pressure and the change of radius.
5.1 Write the constant of the dimensional Kelvin-Voigt law with the previous scales and εv.
5.2 With suitable scales, small perturbations of the flow (neglect non linear terms in the advection) in a
viscoelatic artery are : 

∂R̄

∂t̄
= −∂Q̄

∂x̄
∂Q̄

∂t̄
= −∂R̄

∂x̄
+ εv

∂2Q̄

∂x̄2

is it correct ?
5.3 Show that a multiple scale analysis may be done to obtain the behaviour of a pulse wave going to the
right in the tube.
5.4 Deduce that in the rigth moving frame, with suitable variables τ̄ and ξ̄ :

∂

∂τ̄
R̄1 =

1

2

∂2

∂ξ̄2
R̄1

5.5 Show that we can define a selfsimilar solution of 5.4 of constant integral on the domain in ξ (i.e.∫∞
0 R̄1dξ̄ = 1).

5.6 Plot the propagation of a pulse along an infinite artery.
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∂
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∂
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∂
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(17.57)

and,

p
−

p
e =

E
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0
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∂
A

=
E

h

2
a

0 A
0

(17.58)

D
ifferentiating

equation
(17.56)
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∂
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∂
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∂
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∂
A
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ρ
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∂
x

2
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∂
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∂
x
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∂
t 2
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∂
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∂
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=
c

2(A
0 )

∂
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∂
x

2
,

(17.61)
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c
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√
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ρ
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√
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A

,
(17.62)

is
the

speed
of

propagation
of

the
pressure

pulse.
T

his
is

know
n

as
the

M
oens-K

ortew
eg

w
ave

speed.Ifthe
thin

w
allassum

ption
isnotm

ade,follow
ing

Fung
(1997),by

evaluating
the

strain
on

the
m

idw
allofthe

tube,

c=
√

E
h

2
ρ

( a
0 +

h
/2

)
,

(17.63)

N
ext,sim

ilarto
equation

(17.61),w
e

can
develop,

∂
2u

∂
x

2
=

1c
2

∂
2u

∂
t 2

,
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0

∂
2A

∂
t 2

=
∂p

∂
A

A
0

ρ

∂
2p

∂
x

2
.

(17.60)

C
om

bining
equations

(17.59)and
(17.60),w

e
produce,

∂
2p

∂
x

2
=

1c
2

∂
2p

∂
t 2

,
or,

∂
2p

∂
t 2

=
c

2(A
0 )

∂
2p

∂
x

2
,

(17.61)

w
here,

c
2=

E
h

2
ρ
a

0 =
Aρ

d
p

d
A

.E
quation

(17.61)is
the

w
ave

equation,and
the

quantity,

c=
√

E
h

2
ρ
a

0
=

√
Aρ

d
p

d
A

,
(17.62)

is
the

speed
of

propagation
of

the
pressure

pulse.
T

his
is

know
n

as
the

M
oens-K

ortew
eg

w
ave

speed.Ifthe
thin

w
allassum

ption
isnotm

ade,follow
ing

Fung
(1997),by

evaluating
the

strain
on

the
m

idw
allofthe

tube,

c=
√

E
h

2
ρ

( a
0 +

h
/2

)
,

(17.63)

N
ext,sim

ilarto
equation

(17.61),w
e

can
develop,

∂
2u

∂
x

2
=

1c
2

∂
2u

∂
t 2

,
(17.64)
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A
 nonlinear analysis of pulsatile flow in arteries 

B
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U
niversity of A

m
erica, W

ashington, D
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(R
eceived 1

 M
arch 1972) 

A
n approxim

ate num
erical m

ethod for calculating flow
 profiles in arteries is 

developed. T
he theory takes into account the nonlinear term

s of th
e N

avier- 
S

tokes equations as w
ell as the nonlinear behaviour and large deform

ations of 
the arterial w

all. T
hrough the locally m

easured values of the pressure, pressure 
gradient and pressure-radius function the velocity distribution and w

all shear 
a

t a given location along the artery can be determ
ined. T

he com
puted results 

agree w
ell w

ith the corresponding experim
ental data. 

1. Introduction 
T

he study of blood flow
 in arteries has occupied the attention of the researchers 

for over 150 years. L
ike m

ost of the problem
s of life sciences, it is a com

plex one 
and has defied all attem

pts at a com
pletely satisfactory solution. M

athem
atical 

treatm
ent of the problem

 has been subjected to constant changes and m
odifica- 

tions to
 account for new

 evidence uncovered through im
proved experim

ental 
m

easurem
ents. O

ne can trace the history and developm
ent of the problem

 from
 

num
erous review

 articles. T
he m

ost consistent treatm
ent of the problem

 w
as 

given by W
om

ersley (1957). L
ater, his analysis w

as extended by others to 
include the effect of initial stresses, perivascular tethering and orthotropic and 
viscoelastic behaviour of the arterial w

all. A
 detailed com

parison of this group 
of articles is given by C

ox (1969). 
W

om
ersley 's theory and its extensions are based on the linearized N

avier- 
S

tokes equations and sm
all elastic deform

ations. A
lthough they are show

n to 
be satisfactory in describing certain aspects of the flow

 in sm
all arteries, they 

fa.il to
 give an

 adequate representation of the flow
 field, especially in large 

arteries, see F
ry, G

riggs &
 G

reenfield (1964) and L
ing, A

tabek &
 C

arm
ody (1969). 

B
ecause of the large dynam

ic storage effect of these arteries, the nonlinear con- 
vective acceleration term

s of the N
avier-Stokes equations are no longer negligible. 

M
oreover, th

e w
alk of arteries undergo large deform

ations. A
s a result of this, 

both the geom
etric and elastic nonlinear effects com

e into play, see L
ing (1970). 

T
o take these factors into account an approxim

ate num
erical m

ethod is de- 
veloped. T

he m
ethod, assum

ing axially sym
m

etric flow
, predicts the velocity 

distribution and w
all shear at a given location in term

s of locally m
easured 

values of the pressure, pressure gradient and pressure-radius relation. T
he results 

of com
putations show

 good agreem
ent w

ith the corresponding experim
ental 
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data. T
he sim

plicity of the m
ethod m

ay m
ake it useful in circulatory research, 

w
here detailed flow

 characteristics are required under a w
ide range of arteria.1 

pressures and heart rates. 

2. Statem
ent of the problem

 
P

ulse propagation phenom
ena in arteries are caused by the interaction of 

blood w
ith the elastic arterial w

all. T
herefore, the m

athem
atical statem

ent of 
the problem

 should include equations w
hich govern the m

otion of blood and the 
m

otion of the arterial w
all, and also the relations (boundary conditions) w

hich 
connect these tw

o m
otions w

ith each other. T
his set of equations and conditions 

m
ake a form

idable boundary-value problem
. H

ow
ever, the problem

 can be 
greatly sim

plified through the follow
ing three experim

ental observations. 
(i) T

he radial m
otion of the arterial w

all is prim
arily dictated by the pressure 

w
ave. 
(ii) T

he perivascular tethering has a strong dam
pening effect on the longitudinal 

m
otion of 

the arterial w
all, hence this m

otion m
ay be neglected) see P

atel, 
G

reenfield &
 F

ry
 (1964). 

(iii) T
o a large extent velocity profiles are developed locally as the pressure 

w
ave propagates along the artery, hence they do not carry a significant am

ount 
of m

om
entum

 history from
 far upstream

. T
his som

ew
hat unusual behaviour of 

the flow
 can be explained in term

s of the com
bined effects of fast propagation 

of the pressure w
ave and large dietensibility and taper of the arterial w

all. F
or 

exam
ple) during systole, the heart of a m

edium
-sized dog ejects approxim

ately 
25 m

l of blood into the ascending aorta. A
ssum

ing th
at the cross-sectional area 

of the root of the aorta during systole to
 be 4.5 em

2, the corresponding displace- 
m

ent of the blood along the aorta w
ill be only 5-5 cm

. D
uring this tim

e a fast- 
rising pressure-gradient w

ave front, approxim
ately 12 cm

 in w
idth, accelerates 

blood locally as it sw
eeps along the aorta w

ith a speed of 
N
 400 cm

ls. A
s a result, 

in m
ost parts of the aorta, the m

om
entum

 boundary layer is developed locally 
w

ith a m
inor contribution from

 the preceding cardiac cycles. T
his m

om
entum

 
layer is significantly reduced by the local convective accelerations w

hich are 
generated through both the natural taper of the vessel and taper due to the w

ave 
front. In

 addition, the radial velocity of the flow
 near the expanding w

all w
ill 

generate a sim
ilar effect. T

hese tw
o latter effects w

ill be discussed in detail in 
$4.3. After closure of the aortic valve, blood in the root of aorta is essentially 
at rest. A

t distal locations, the overall passive contraction of the arterial w
all 

w
ill create a basic flow

 w
hich w

ill be increasing w
ith distance ow

ing to the in- 
tegration of w

all flux. T
he m

agnitude of this diastolic flow
 is sm

all and, as before, 
the m

om
entum

 boundary layer is developed locally and is reduced by the local 
convective acceleration due to

 arterial taper. T
hus, w

ithin a cardiac cycle, the 
m

ean m
om

entum
 defect produced by the m

ean w
all shear is effectively absorbed 

by the m
ean positive convective accelerations. F

or this reason, little inform
ation 

about the flow
 is convected far dow

nstream
) and the entrance effect is essentially 

confined to
 a displacem

ent distance corresponding to one heart beat. T
he asym

- 
m

etrical velocity profiles created by an
 arterial branch are found to be confined 

LA
72

jeudi 6 décem
bre 2012



Pulsatile flow
 in arteries 

495 

to
 a distance of 10 diam

eters, w
hich is again approxim

ately equal to
 the dis- 

placem
ent length of blood for one heart beat, see L

ing, A
tabek &

 C
arm

ody 
(1969). Sim

ilarly, asym
m

etrical velocity profiles and secondary flow
s developed 

by the aortic arch and arterial branches are found to
 be localized and are not 

convected into the descenchg aorta. 
T

he first tw
o of the above observations w

ill perm
it one to decouple the m

otion 
of the arterial w

all from
 the m

otion of the blood, w
hile the third observation w

ill 
allow

 one to
 sim

plify the equations governing the m
otion of blood. 

2.1. Equations governing the m
otion of blood 

For this problem
 blood can be taken as an incom

pressible N
ew

tonian fluid. W
e 

shall use the cylindrical co-ordinates r, B and z, w
ith z along the axis of the vessel. 

Since our aim
 is to

 use locally m
easured quantities to

 predict the local flow
 

characteristics, the choice of th
e origin of z is im

m
aterial. 

T
he m

otion of blood is governed by the N
avier-Stokes 

equations and the 
equation of continuity. W

e shall assum
e th

at the flow
 is axially sym

m
etric and 

body forces are absent. U
nder these assum

ptions the governing equations have 
th

e follow
ing form

: 

(1
) 

(2) 

au 
au 

au 
1

 ap +
Y
 (apu 

-+
--+

--- 
1 au 

a2u 
u 

at 
ar 

az 
p

ar 
ar2 

r ar 
az2 

r2 

aw 
aw 

aw 

-+
u-+

w
- 

=
 -
-
-
 

-+
u-+

w
-=

 
at 

ar 
az au 

u
 

aw
 

-+-+- 
=

 0. 
ar 

r 
az 

(3) 

H
ere t denotes tim

e, u and w
 denote the com

ponents of the fluid velocity in the r 
and z directions, respectively, p is the pressure, p is the density and Y is the 
kinem

atic viscosity of blood. 

2.2. M
otion of the arterial w

all 
A

s is indicated above, the longitudinal m
otion of the arterial w

all is significantly 
arrested by the perivascular tethering. H

ere w
e shall neglect this com

ponent of 
the arterial m

otion and seek a sim
ple relation connecting local values of the 

radial pressure force, m
ass and elastic response of the arterial w

all. L
et R

 =
 R

(z, t) 
denote th

e inner radius of the artery. W
e assum

e th
at the variation of R

 w
ith 

pressure is know
n (determ

ined experim
entally). L

et us denote this functional 
relation by p =

 P
(R

). A
lthough the effect of arterial taper (both th

e natural 
taper and the generated taper due to

 the w
ave front) on the m

otion of blood is 
im

portant because of convective acceleration, its effect on the radial m
otion of 

artery is negligible. T
herefore the equation of m

otion for the arterial w
all can 

be w
ritten as 

H
ere m

 denotes the effective m
ass of the artery per unit length in its natural state. 

E
quation (4) is valid only locally (for a fixed z) and to

 em
phasize this point w

e 
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use the partial derivative w
ith respect to

 tim
e. W

ith p know
n as a function of 

tim
e and the local elastic response of an artery, starting w

ith hom
ogeneous 

initial conditions, one can integrate this equation num
erically to determ

ine R
 as 

a function of tim
e. 2.3. Sim

plijication of the equation of m
otion 

E
quation (2) m

ay be sim
plified by dropping the term

 a2w
/az2, which is negligible 

in com
parison w

ith the radial derivatives. B
ecause of the sm

all radial velocity 
and acceleration, the radial variation of pressure w

ithin the artery can also be 
neglected. T

herefore the longitudinal pressure gradient ap/az m
ay be considered 

as a function of z and t only. L
et us take -p-l(ap/az) 

=
 P

(z,t). H
ereafter, w

e 
shall assum

e th
at P

(z, t) is an experim
entally determ

ined, know
n function. T

hen 
(2) m

ay be w
ritten as 

-+
u-+

w
- 

=
 P

(z,t)+
v (!;+

i%
). 

-
 

aw 
aw 

aw 
at 

ar 
ax 

A
s a result of the replacem

ent of 8pli.h w
ith a know

n function, (5) now
 contains 

only tw
o unknow

n dependent variables, u
 and w

. E
quation (3) also contains 

only these dependent variables. T
herefore, these tw

o equations together are 
sufficient to

 determ
ine both u and w

. O
f course w

e have to
 supplem

ent them
 w

ith 
proper boundary and initial conditions. In

 the radial direction the boundary 
conditions are 

(6) 

(7) 

(8) 

U
P

, 2, t)J7
=

R
(Z

,t) 
=

 aR
/%

 
w

(r, 2, t)lr=
RQ

,t) = 0, 
[aw

(r, 2, t)/ar],=
, =

 0. 

B
oundary conditions in the z direction reflect the effect of upstream

 and dow
n- 

stream
 flow

s on the local flow
. Since the aim

 is to
 determ

ine the local flow
 from

 
the locally m

easured flow
 properties, it is necessary to

 find a w
ay to

 elim
inate the 

need for boundary conditions on z. T
his w

ill be accom
plished, later, by elim

inating 
all explicit z dependence from

 the equations. 
S

ince the first tw
o boundary conditions given above are prescribed at a m

oving 
surface, the problem

 is difficult to
 handle. H

ow
ever, by introducing the co- 

ordinate transform
ation 

7 =
 r/R

(z,t) 

w
e can rew

rite the boundary conditions as 
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1.4 continuity W0/λ = U0/R0 so U0 = R0W0/λ

1.6 It is straightforward that A = B = TW0/λ and E = P0T/(ρλW0) C = νT/R2
0 and D = R2

0/λ
2.

1.10 A = B = ε2.

1.16 LA72 (6) boundary condition for the transverse velocity U0 = εR0/T continuity W0/λ = U0/R0 so
W0 = ελ/T

1.17 A = B = W0T/λ so A = B = ε hence ε2 = ε.

1.18 P0 = ρλW0/T so that P0 = ερλ2/T 2

9


