M2, Fluid mechanics 2012/2013

Multiscale Hydrodynamic Phenomena

Friday, December 7th, 2012
Part I. : 30 minutes, NO documents

1. Quick Questions

In few words :
1.1 What is "dominant balance" ?
1.2 What is the dimension of the dynamic viscosity?
1.3 What is the usual scale for pressure in incompressible NS equation?
1.4 What is the usual scale for pressure in incompressible NS equation at small Reynolds?
1.5 Which problem exhibits logarithms?
1.6 What is "homogenisation"
1.7 What is the Friedrich equation?
1.8 What is the Bürgers equation?
1.9 What is the KDV equation?
1.10 What is the natural selfsimilar variable for heat equation?
1.11 In which one of the 3 decks of Triple Deck is flow separation?

2. Exercice

Let us look at the following ordinary differential equation :

$$
\left(E_{\varepsilon}\right) \quad \varepsilon \frac{d^{2} y}{d x^{2}}+1-y=0,
$$

valid for $0 \leq x$, with boundary conditions $y(0)=0$ and $y(\infty)=1$. Of course ε is a given small parameter. We want to solve this problem with the Matched Asymptotic Expansion method (if you prefer use Multiple Scales or WKB).
2.1) Why is this problem singular?
2.2) What is the outer problem obtained from $\left(E_{\varepsilon}\right)$ and what is the possible general form of the outer solution?
2.3) What is the inner problem of $\left(E_{\varepsilon}\right)$ and what is the inner solution?
2.4) Solve the problem at first order (up to power ε^{0}).
2.5) Suggest the plot of the inner and outer solution.
2.6) What is the exact solution for any ε.

M2, Fluid mechanics 2011/2012

Multiscale Hydrodynamic Phenomena

Friday, December 7th, 2012
Part II. : 2h30min all documents.

Flow in elastic tubes blood flow in Arteries

The five sections are independent (at first order). They all correspond to the papers given at the end. Read the Kundu Cohen chapter (KC08) as introduction, the Ling and Atabek (LA72) paper, and the Womersley (W55) seminal paper.
Starting from Navier Stokes equations we want to obtain the LA72 equations (Question 1) and show that if integrated across the section (Question 2) and linearized we have the KC08 equations (Question 4), and that a viscous solution is W55 (Question 3). A long time an distance analysis is in Question 5.

Equations

1.1 What are the hypothesis to write equations (1) (2) and (3) in LA72?
1.2 There are two lengths of scale in the problem : the unperturbed radius say R_{0}, and a long scale, say λ corresponding to the blood pulse wave, we have $R_{0} \ll \lambda$. Find in " 2 . Statement of the problem" of LA72 a clue of this and find in KC08 the relevant hypothesis. Note that in KC08, $A_{0}=\pi R_{0}^{2}$ and $a_{0}=R_{0}$.
1.3 We have another scale which is not always small : the variation of radius $R-R_{0}$ we define $R=R_{0} \bar{R}$. But we define as well $\bar{R}=1+\varepsilon \bar{R}_{1}$ This is a ε which is not always small. Find in " 2 . Statement of the problem" a clue of this. Find in KC 08 the discussion of the small perturbation of radius.
1.4 Write (3) in LA72 with scale R_{0} and λ for r and z. Introduce the blood flow velocity scale W_{0}.

What is the relevant scale for U_{0} ? (note that KC08 uses u for w).
1.5 We use T the time of the pulse flow as the natural time scale (why not?). Let us call P_{0} the scale of pressure (around a given p_{e} pressure KC 08).
Write (1) (2) and (3) from (LA72) with scales $T, \lambda R_{0}$ and W_{0}.
1.6 Present the equation (2) from (LA72) like this:

$$
\frac{\partial \bar{w}}{\partial \bar{t}}+A \bar{w} \frac{\partial \bar{w}}{\partial \bar{z}}+B \bar{u} \frac{\partial \bar{w}}{\partial \bar{r}}=-E \frac{\partial \bar{p}}{\partial \bar{z}}+C\left(\frac{\partial^{2} \bar{w}}{\partial \bar{r}^{2}}+\frac{\partial \bar{w}}{\bar{r} \partial \bar{r}}+D \frac{\partial^{2} \bar{w}}{\partial \bar{z}^{2}}\right)
$$

identify $A B C E$ and D
1.7 In $\S 2.3$, LA72 argue that we can neglect "the term $\partial^{2} w / \partial z^{2}$, which is negligible in comparison with the radial derivatives", why?
1.8 A special regime corresponds to the Womersley problem, were the flow is linearized, but viscosity present and were the pressure gradient is a given harmonic function $e^{i n t}$, this is equation (1) from W55. Show that $n=2 \pi / T$.
1.9 W55 defines what is called now the Womersley's number : α. Write it with T, R_{0} and ν.
1.10 What suggests this linearized study from W55 and linearized analysis from KC08 about the magnitude of A and B from Quest. 1.5 ? Define an ε_{2} with A and B (value of ε_{2} according to KC08?).
1.11 E should be equal to one. Why?
1.12 One of the next sentences is "Because of the small radial velocity and acceleration, the radial variation of pressure within the artery can also be neglected", prove it from LA72 (1).
1.13 Write the final system from (1) (2) and (3) with $R_{0} / \lambda \ll 1$, t with $E=1$, with ε_{2} and with $1 / \alpha^{2}$. This system should look like a boundary layer system.
1.14 Is it consistent with LA72 (5) ?
1.15 Discuss the boundary conditions (6) (7) and (8) from LA72.
1.16 From (6), write a relation between W_{0} and R_{0} and λ and ε.
1.17 Write A and B with ε
1.18 Write P_{0} with ε
1.19 Up now, we do not have λ the longitudinal scale. We turn now the interaction with the wall. In KC08 (17.55), the wall is supposed to be elastic, in LA72 (4) the tissues are supposed to have some weight. Define a small parameter relative to the mass m in LA72 (4).
1.20 Write KC08 (17.55) or (17.58) as $p-P_{e}=k\left(R-R_{0}\right)$
1.21 From this, show that we have a relation between λ / T and k and ρ and R_{0}.
1.22 Write the final system with all the boundary conditions and all the scales.

Equations before Integral method

Preparing the integral method, we take the system from LA72, and show that it can be integrated across the section. This will give an integral system.
2.1 Expand $\frac{d(\phi r)}{d r}$ and simplify $\frac{d \phi}{d r}+\frac{\phi}{r}$
2.2 From equation (3) (7) and (8) of LA72, show that $Q=\int_{0}^{R} 2 \pi r w d r$ the flux of mass is linked to $\partial R / \partial t$.
2.3 Show that LA72 (2) is

$$
\frac{\partial}{\partial \bar{t}}(\bar{r} \bar{w})+\varepsilon\left(\frac{\partial}{\partial \bar{z}}\left(\bar{r} \bar{w}^{2}\right)+\frac{\partial}{\partial \bar{r}}(\bar{r} \bar{u} \bar{w})\right)=-\bar{r} \frac{\partial}{\partial \bar{z}} \bar{p}+\frac{2 \pi}{\alpha^{2}}\left(\frac{\partial}{\partial \bar{r}}\left(\bar{r} \frac{\partial}{\partial \bar{r}} \bar{w}\right)\right)
$$

2.4 We define $Q_{2}=\int_{0}^{R} 2 \pi r w^{2} d r$ the flux of momentum. Write 2.3 with \bar{Q}_{2} and \bar{Q} and the value of $\bar{\tau}_{w}=\frac{\partial}{\partial \bar{r}} \bar{w}$ at the wall. Of course the final integral system is not closed, as we do not know the relation between Q and Q_{2}, and between τ_{w} and Q, this is done with Womersley profiles.

Womersley famous solution for pulsatile flow in tubes.

3.1 Show from question 1.X to 2.X that equation (1) of W55 is relevant under some hypothesis, note that the factor $2 \pi / \alpha^{2}$ that you have maybe, comes from the choice of time scale. Use now Womersley notations. 3.2 Verify that (3) is a solution of (1).
3.3 Suppose that α is small. What does it mean in terms of frequency and viscosity?
3.4 Suppose $\alpha=0$, show that W55 (2) gives Poiseuille flow in this case, is it a regular or singular problem?
3.5 Suppose that α is large. What does it mean in terms of frequency and viscosity?
3.6 Suppose $1 / \alpha=0$, show that W55 (2) is a singular problem?
3.7 Introduce a boundary layer near the wall $y=1-\varepsilon \tilde{y}$, why this form?
3.8 Show that the inner problem is exponential.
3.9 Plot the solution.
3.10 Expand (3) and show that $\alpha \rightarrow 0$ gives Poiseuille.
3.11 Compute Q_{2} and τ_{w} as a function of Q in Poiseuille case.
3.11 Expand (3) and show that $\alpha^{-1} \rightarrow 0$ gives the previous exponential solution (difficult).

The linear wave solution

Along questions 1.X we established the long wave approximation, in 2.X we established the integral equations.
At this point, we needed some information destroyed by the integration, this information is the shape of the velocity. A good idea is to say that the velocity profile looks like a Womersley profile that we established in 3.X. In fact we supposed a Poiseuille profile, with this closure one closes the system, so we have (17.53) of KC08 in full form :

$$
\frac{\partial \pi R^{2}}{\partial t}+\frac{\partial}{\partial z} Q=0, \text { and } \frac{\partial}{\partial t} Q+\frac{\partial}{\partial z}\left(\frac{4}{3} \frac{Q^{2}}{\pi R^{2}}\right)=\pi R^{2} \frac{\partial}{\partial z} p-8 \nu \frac{Q}{R^{2}} \text { and } p-p_{e}=k\left(R-R_{0}\right)
$$

4.1 Show that the previous system is the one we obtained. Deduce that KC08 (17.54) is wrong.
4.2 What hypothesis allow us to write (17.56) and (17.57)?
4.3 Compute the Moens-Korteweg velocity with k.
4.4 Write a ∂ 'Alembert equation for the pressure.
4.5 General solution of 4.4 ?
4.6 The artery is supposed to be infinite, what does it mean in term of time for a pulse given at the entrance?
4.7 A pulse is given in $z=0, p=p_{0} \sin (2 \pi t / T)$ for $0<t<1 / 2$, what is the solution in $z t$?
4.8 Of course arteries are not infinite, estimate λ from KC08, conclusions?

Long distance behaviour

In fact the pressure may be expressed as $\bar{p}=\bar{R}+\varepsilon_{v} \frac{\partial \bar{R}}{\partial t}$ if we suppose a Kelvin Voigt model for the relation between the pressure and the change of radius.
5.1 Write the constant of the dimensional Kelvin-Voigt law with the previous scales and ε_{v}.
5.2 With suitable scales, small perturbations of the flow (neglect non linear terms in the advection) in a viscoelatic artery are :

$$
\left\{\begin{array}{l}
\frac{\partial \bar{R}}{\partial \bar{t}}=-\frac{\partial \bar{Q}}{\partial \bar{x}} \\
\frac{\partial \bar{Q}}{\partial \bar{t}}=-\frac{\partial \bar{R}}{\partial \bar{x}}+\varepsilon_{v} \frac{\partial^{2} \bar{Q}}{\partial \bar{x}^{2}}
\end{array}\right.
$$

is it correct?
5.3 Show that a multiple scale analysis may be done to obtain the behaviour of a pulse wave going to the right in the tube.
5.4 Deduce that in the rigth moving frame, with suitable variables $\bar{\tau}$ and $\bar{\xi}$:

$$
\frac{\partial}{\partial \bar{\tau}} \bar{R}_{1}=\frac{1}{2} \frac{\partial^{2}}{\partial \bar{\xi}^{2}} \bar{R}_{1}
$$

5.5 Show that we can define a selfsimilar solution of 5.4 of constant integral on the domain in ξ (i.e. $\left.\int_{0}^{\infty} \bar{R}_{1} d \bar{\xi}=1\right)$.
5.6 Plot the propagation of a pulse along an infinite artery.

Bibliography

Womersley 1955 Philosophical Magazine 46:199-221.
Ling \& Atabek 1972, J.. Fluid Mech. (1972), vol. 55, part 3, pp493-511
Kundu \& Cohen 2008 Fluid Mechanics

'querpeasi-annssa,.d

 of this communication.
It is shown that, wh

 walls (Womersley, in press). solution for oscillatory motion of a viscous liquid in a tube with rigid

ә.одәләчя рия

$\operatorname{rim}_{i u} \leq \frac{\partial}{V}=\frac{r e}{m e} \frac{a}{I}-\frac{r e}{m e} \frac{l}{I}+\frac{z^{r} e}{m_{z} e}$
st uoţou jo uoṭrnba әपLL
the liquid, ρ the density of the liquid, $\nu=\mu / \rho$ the kinematic viscosity.
 repeated here for completeness. Let R be the radius of the tube, w the from observed pressure-gradient (Womersley, in press). This solution is

XXIV. Ooullatory Motion of a Viscous Liquid in a I'hin-w a
$\cdot \frac{\tau^{\gamma} \rho}{n_{z} \rho} \frac{z^{j}}{I}=\frac{z^{x} \rho}{n_{z} \rho}$

$$
\left[\frac{\frac{z}{\frac{z}{1}}}{}\left(\frac{V}{0_{V}}\right)-\mathrm{I}\right] \frac{0 p}{4 马}=\left(\frac{p}{0 p}-\mathrm{I}\right) \frac{0 p}{4 马}={ }^{2} d-d
$$

＇（،．MPI әqm，，

$$
\frac{x \varrho}{\left.\left(V^{\partial} d-d\right)\right) \varrho}-=\left(\frac{x \varrho}{n \varrho} n+\frac{\mu \varrho}{n \varrho}\right) \forall^{d}
$$

 ${ }^{\prime} 0=\frac{x_{\varrho}}{\left(n_{V}\right) \rho}+\frac{t \varrho}{\forall \rho}$ $\left(\varepsilon S^{\circ} L I\right) \quad 0=\frac{x^{\prime}}{\left(n_{V}\right) \rho}+\frac{\rho \rho}{\forall \rho}$ $\left(t S^{\circ} L I\right)$

（Sc＇LI）

（1997），by evaluating the strain on the midwall of the tube，

$\frac{\partial^{2} p}{\partial t^{2}}=\frac{E h}{2 a_{0} A_{0}} \frac{\partial^{2} A}{\partial t^{2}}=\frac{\partial p}{\partial A} \frac{A_{0}}{\rho} \frac{\partial^{2} p}{\partial x^{2}}$
where，$c^{2}=\frac{E h}{2 \rho a_{0}}=\frac{A}{\rho} \frac{d p}{d A}$ ．Equation（17．61）is the wave equation，and the quantity，

（ $29 \circ \mathrm{LI}$ ）

（ $79^{\circ} \mathrm{LI}$ ）

n_{z} 元 I n_{z}
، $\frac{z^{x} \varrho}{d_{z} \rho} \frac{\sigma}{{ }^{0} V}=\frac{z^{l} \varphi}{V_{z} \rho}$

 Under the various conditions prescribed，the resulting flow may be treated as one to x ，and subtracting the resulting equations，we get，

 to the tube radius is of interest to us．In particular，we wish to calculate the wave speed．
Since the disturbance wave length is much greater than the tube diameter，the time propagation of a disturbance wave of small amplitude and long wave length compared Consider a homogeneous，incompressible，and inviscid fluid in an infinitely long，
horizontal，cylindrical，thin walled，elastic tube．Let the fluid be initially at rest．The

3．Modelling of Flow in Blood Vessels

 and $\frac{\partial p}{\partial A}=\frac{E h}{2 A_{0}}$
$\frac{{ }^{0} V^{0 p} Z}{4 马}=\frac{V \varrho}{d \varrho}$ pue $\cdot\left({ }^{0} V-V\right) \frac{{ }^{0} V^{0}{ }^{0} Z}{y_{马}}={ }^{{ }^{2} d}-d$

 both the geometric and elastic nonlinear effects come into play, see Ling (1970)

 arteries, see Fry, Griggs \& Greenfield (1964) and Ling, Atabek \& Carmody (1969) fail to give an adequate representation of the flow field, especially in large be satisfactory in describing certain aspects of the flow in small arteries, they Stomes equations and small elastic deformations. Although they are shown to of articles is given by Cox (1969).
 include the effect of initial stresses, perivascular tethering and orthotropic and

 treatment of the problem has been subjected to constant changes and modifica
 The study of blood flow in arteries has occupied the attention of the researchers
for over 150 years. Like most of the problems of life sciences, it is a complex one чо!̣эnропй $\cdot \mathrm{I}$
agree well with the corresponding experimental data at a given location along the artery can be determined. The computed results gradient and pressure-radius function the velocity distribution and wall shear Stokes equations as well as the nonlinear behaviour and large deformations of
the arterial wall. Through the locally measured values of the pressure, pressure developed. The theory takes into account the nonlinear terms of the NavierAn approximate numerical method for calculating flow profiles in arteries is

(Received 1 March 1972)

By S. C. LING and H. B. ATABEK

A nonlinear analysis of pulsatile flow in arteries

 generate a similar effect. These two latter effects will be discussed in detail in
 layer

 in most parts of the aorta, the momentum boundary layer is developed locally

 the flow can be explained in terms of the combined effects of fast propagation

(ii) The perivascular tethering has a strong dampening effect on the longitudinal
motion of the arterial wall, hence this motion may be neglected, see Patel,
wave.
(i) The radial motion of the arterial wall is primarily dictated by the pressure greatly simplified through the following three experimental observations. make a formidable boundary-value problem. However, the problem can be s with each other. This set of equations and conditio
 bloo problem should include equations which govern the motion of blood and the

pressures and heart rates.

 data. The simplicity of the

$$
(y)_{d}-\left(\eta^{\prime} z\right) d=\frac{z^{\ell} \mathcal{Y}}{y_{z} \ell} \frac{y^{\mu z}}{u}
$$ artery is negligible. Therefore the equation of motion for the arterial wall can

 pressure is known (determined experimentally). Let us denote this functional denote the inner radius of the artery. We assume that the variation of R with
 As is indicated above, the longitudinal motion of the arterial wall is significantly

se uәəp!cn әq

 arrested by the perivascular tethering. Here we shall neglect this component of
kinematic viscosity of blood.
Here t denotes time, u and w denote the components of the fluid velocity in the r

$$
0=\frac{z \varrho}{m \varrho}+\frac{\iota}{n}+\frac{\mu \varrho}{n \varrho}
$$

the following form:
 рия о!়, The motion of blood is governed by the Navier-Stokes equations and the Since our aim is to use locally measured quantities to predict the local flow
characteristics, the choice of the origin of z is immaterial. shall use the cylindrical co-ordinates r, θ and z, with z along the axis of the vessel. For this problem blood can be taken as an incompressible Newtonian fluid. We 2.1. Equations governing the motion of blood af the arterial wall from the motion of the blood, while the third obs
allo of the arterial wall from the motion of the blood, while the third observation will The first two of the above observations will permit one to decouple the motion convected into the descending aorta. by the aortic arch and arterial branches are found to be localized and are not (1969). Similarly, asymmetrical velocity profiles and secondary flows developed placement length of blood for one heart beat, see Ling, Atabek \& Carmody to a distance of 10 diameters, which is again approximately equal to the dis-

all explicit z dependence from the equations. need for boundary conditions on z. This will be accomplished, later, by eliminating
 stream flows on the local flow. Since the aim is to determine the local flow from
 $\cdot 0={ }^{0}=\alpha\left[\iota /\left(\eta^{\prime} z^{〔} l\right) n \rho\right]$ $\left.w(r, z, t)\right|_{r=R(z, t)}=0$,
proper boundary and initial conditions. In the radial direction the boundary
conditions are

 As a result of the replacement of $\partial p / \partial z$ with a known function, (5) now contains $\left(\frac{\mu e}{m_{e}} \frac{l}{\mathrm{I}}+\frac{z^{\prime \ell}}{m_{z} \ell}\right) a+\left(\eta^{\prime} z\right)_{A}=\frac{z \rho}{m_{e}} n+\frac{\mu \ell}{m_{e}} n+\frac{\eta \ell}{m_{\rho}}$ (2) may be written as shall assume that $F(z, t)$ is an experimentally determined, known function. Then

 Equation (2) may be simplified by dropping the term $\partial^{2} w / \partial z^{2}$, which is negligible 2.3. Simplification of the equation of motion a function of time.

 496
1.4 continuity $W_{0} / \lambda=U_{0} / R_{0}$ so $U_{0}=R_{0} W_{0} / \lambda$
1.6 It is straightforward that $A=B=T W_{0} / \lambda$ and $E=P_{0} T /\left(\rho \lambda W_{0}\right) C=\nu T / R_{0}^{2}$ and $D=R_{0}^{2} / \lambda^{2}$.
$1.10 A=B=\varepsilon_{2}$.
1.16 LA72 (6) boundary condition for the transverse velocity $U_{0}=\varepsilon R_{0} / T$ continuity $W_{0} / \lambda=U_{0} / R_{0}$ so $W_{0}=\varepsilon \lambda / T$
1.17 $A=B=W_{0} T / \lambda$ so $A=B=\varepsilon$ hence $\varepsilon_{2}=\varepsilon$.
$1.18 P_{0}=\rho \lambda W_{0} / T$ so that $P_{0}=\varepsilon \rho \lambda^{2} / T^{2}$

