M2, Fluid mechanics 2010/2011

Multiscale Hydrodynamic Phenomena

Friday, December 3th, 2010

Heat transfer in a Pipe, influence of a large Péclet number

We consider the heat transfer to a viscous incompressible fluid flowing steadily in a circular pipe of radius R. For laminar flow, the velocity distribution in the pipe $\left(u(r)\right.$, with $\left.u(0)=U_{0}\right)$ is parabolic in r. The equation for the temperature distribution is :

$$
\begin{equation*}
\rho c u(r) \frac{\partial T}{\partial x}=k\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}\right) \tag{1}
\end{equation*}
$$

where ρ is the fluid density, c the fluid specific heat, k the thermal conductivity, all supposed constants. Let the temperature be raised at the wall from the constant value T_{0} for $x<0$ to T_{1} for $x>0$) see figure. Far enough upstream $x=0$ the temperature of the fluid is T_{0}.

We will see that various scales appear in this problem depending on the large value of the Péclet number (defined by $\left.P e=U_{0} R /(k /(\rho c))\right)$. The parts are independant.

Part 1 Lévêque Problem

1.1. Show that the steady, invariant in x, and by rotation, solution of the flow in a pipe is parabolic in r. What is the value of the constant pressure gradient associated (as function of U_{0} the value on the axis x in $r=0$).
1.2. Write the heat equation (Eq. 1) without dimension using U_{0}, R and defining $T=T_{0}+\left(T_{1}-T_{0}\right) \bar{T}$ (put overbars for non dimensional variables). Identify the Péclet number.
1.3. Write all the boundary conditions. This final non dimensional problem is called $H_{(1 / P e)}$, it may be solved with FreeFem++. This is done and iso temperatures are plotted on figure 2 left, and the temperature $\bar{T}(\bar{x}, 0)$ is plotted right for increasing values of $P e$. Deduce from those graphs that there may be a problem for large P_{e}.
1.4. Show that the problem $H_{(1 / P e)}$ is singular.

Fig. 1 - The flow at temperature T_{0} in $x<0$, there is a temperature discontinuity in $x=0$ to T_{1}, image from Cole J.D. Perturbation Methods in Applied Mathematics 1968. The four first sentences of this exam are from this book.
1.5. Define the external problem H_{0}, solve it for \bar{T}.
1.6. We now look at the internal problem, justify that we have to introduce a new variable so that $\bar{r}=1-\varepsilon \tilde{r}$ and $\tilde{x}=\bar{x}$.
1.7. Find ε as a function of the given parameters. Be careful with the velocity.
1.8. Write the internal problem with all its boundary conditions.
1.9. Show that $\eta=\tilde{r} \tilde{x}^{-1 / 3}$ is the similarity variable.
1.10. Find the exact selfsimilar expression of the temperature for the inner problem (you can recognize the incomplete gamma function $\Gamma(a, z)=\int_{z}^{\infty} t^{a-1} e^{-t} d t$ for $\left.a=1 / 3\right)$.
1.11. Write the composite approximation.

Fig. 2 - Left, iso temperatures of the numerical solution for various values of $P e$ (increasing from 10 to 1000) from top to bottom). Right the numerical solution of the mid channel value $\bar{T}(\bar{x}, 0)$ for several values of $P e$ with \bar{x} in abscissa (large values of $P e$ are on the right/ bottom, small on the left/top.

Part 2 Graetz Problem.
Looking at the numerical solution, one sees that far from $x=0$ the thermal boundary layer merge at the center. This part is devoted to this merging which occurs for $x \gg R$ when $P e \gg 1$, so we introduce a new large scale R / ε.
2.1. Explain why we change the scales so that $\hat{r}=\bar{r}$ and $\varepsilon \bar{x}=\hat{x}$ in $H_{(1 / P e)}$.
2.2. Find ε as a function of the given parameters. Obtain the Graetz problem :

$$
\left(1-\hat{r}^{2}\right) \frac{\partial \hat{T}}{\partial \hat{x}}=\frac{\partial^{2} \hat{T}}{\partial \hat{r}^{2}}+\frac{1}{\hat{r}} \frac{\partial \hat{T}}{\partial \hat{r}}
$$

what are the boundary conditions? (it may be possible to define $\left.T=T_{1}+\left(T_{0}-T_{1}\right) \hat{T}\right)$.
2.3. Show that one can construct the general solution as an infinite sum of elementary functions of separated variables : $\hat{T}=\sum_{n=0}^{n=\infty} \psi_{n}(\hat{r}) \Phi_{n}(\hat{x})$. Find the ODEs for $\psi_{n}(\hat{r})$ and $\Phi_{n}(\hat{x})$.
2.4. Show that $\Phi_{n}(\hat{x})$ is an exponential. The ODE for $\psi_{n}(\hat{r})$ must be solved numerically. Can you guess
the shape of $\psi_{n}(\hat{r})$ for increasing n and draw them?

Part 3 Local Problem.

Part 1 was devoted to $\bar{x}=O(1)$, part 2 to $\bar{x} \gg 1$, now in part 3 we turn to $|\bar{x}| \ll 1$. We observe what happens in the vicinity of the position of the change of temperature.
3.1. We have to cross the abrupt change in $\bar{x}=0, \bar{r}=1$. As this region is of small extent, it is natural to take the same scale : longitudinal and transversal $\bar{x}=\varepsilon \tilde{\xi}$ and $\bar{r}=1-\varepsilon \tilde{\zeta}$. Write $H_{(1 / P e)}$ for large $P e$ and find ε.
3.2. Show the following equation and write the associated boundary conditions :

$$
\tilde{\zeta} \frac{\partial \tilde{\theta}}{\partial \tilde{\xi}}=\frac{\partial^{2} \tilde{\theta}}{\partial \tilde{\xi}^{2}}+\frac{\partial^{2} \tilde{\theta}}{\partial \tilde{\zeta}^{2}}
$$

3.3. Discuss the local solution computed by FreeFem++ and plotted on figure3. 3.4. Pedley T.J. (in the

Fig. 3 - Iso temperature near the discontinuity $x=0$.

Annex of "The Fluid Mechanics of Large Blood Vessels" Cambridge University Press 1980) after lot of computations showed that for large $\tilde{\xi}$ the temperature behaves as $\tilde{\xi}^{-1 / 3}$. Is it consistent with part 1 ?

Part 4 Conclusion.
Draw a long tube and put all the scales from the previous part and draw some typical temperature profiles.

Fig. 4 - Left, the numerical solution \bar{T} written with the selfsimilar variable $\eta=\tilde{y} / \bar{x}^{1 / 3}$ collapsing on the selfsimilar solution labelled Γ and the slope at origin : $1+g^{\prime}(0) \eta$. Right the numerical solution of the mid channel value $\hat{T}(\hat{x}, 0)$ for several values of $P e$ with $\hat{x} / P e$ in abscissa, the curves collapse on the Graetz solution.

Master SdI mention MFE
 Hydrodynamics
 Test

December 3, 2010
2 hour - all documentation is authorized

1 We consider incompressible potential flow. Recall the definition of the potential and the stream function for axisymmetric flow in spherical coordinates.

2 Recall the form of the streamfunction and potential for uniform flow ov velocity U.

3 For a point source of strength $\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{s}\right)$ the velocity is $u_{r}=Q /\left(4 \pi r^{2}\right)$. Find the corresponding velocity potential.

4 For the same point source find the corresponding stream function.

5 Consider the limiting case of a source-sink pair of large strength separated by a small distance. Show that the doublet solution

$$
\begin{equation*}
\phi=\frac{m}{r^{2}} \cos \theta \quad \psi=-\frac{m}{r} \sin ^{2} \theta \tag{1}
\end{equation*}
$$

where m is the limiting value of $Q \delta s / 4 \pi$ with Q the source strength and δs the separation.

6 By adding a uniform flow to the previous doublet solution, obtain the potential flow around a sphere. What is the radius of the sphere?
$7 \quad$ Find the potential and the stream function for a source and a sink of strength Q separated by a given distance a to which the uniform flow is added.

8 Show that one obtains the equation of the flow around an object of spheroidal shape.

9 (Hard question, don't waste too much time on it.) Give the equation of the object in the simplest possible form.

