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General remark: there is no need to repeat in your paper the proofs and

derivations given in the course. Questions are of variable difficulty. Answers to

this part of the exam should be given on a separate paper.

1 In all the following questions we consider slow, viscous, Newtonian, incom-

pressible flow. Consider a swimming microorganism that moves by distortion

of its body shape. The equations are, with standard notations

−∇p + µ∇2u = 0 = ∇ · σ (1)

and

∇ · u = 0 (2)

where u and p are the velocity and the pressure and σ is the stress tensor. Let

(u, σ) be the velocity and stress fields that are the solution to the above eqations

such that there is no net force or torque on the swimming body, and let (û, σ̂)

be the solution of the equations for translation of the same body with the same

shape at velocity Û when acted upon by an external force F̂(t).
The reciprocal theorem (Batchelor) states that the solutions (u, σ) and (û, σ̂)

are related by �

S(t)
n · σ̂ · udS =

�

S(t)
n · σ · ûdS (3)

where S(t) is the instantaneous boundary of the swimming object,and n is the

unit outward normal to S. Show that the right hand side of (3) vanishes. (Hint:

the body is self propelled).

2 The surface velocity for the self propelled swimmer is then decomposed

into a translational velocity U(t) and a disturbance motion u�
. Show that

F̂(t) · U(t) = −
�

S(t)
n · σ̂ · u�

dS. (4)

3 Consider now a sphere of radius a. The surface of the spherical microor-

ganism may in effect have complex motions because of the presence of motor

proteins or cilia. Show that

U(t) = − 1

4πa2

�

S
u�

dS. (5)

Reference [1] Stone H. and Samuel, A. 1996, Propulsion of microorganisms

by surface distortions, Phys. Rev. Lett. 77, 4102.
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Exercice 1
Let us look at the following ordinary differential equation :

(Eε) ε
d2y

dx2
+ x2 dy

dx
− y = 0,

valid for 0 ≤ x ≤ 1, with boundary conditions y(0) = 1 and y(1) = 1. Of course ε is a given small
parameter.
We want to solve this problem with the Matched Asymptotic Expansion method.
1) Why is this problem singular ?
2) What is the outer problem obtained from (Eε) and what is the possible general form of the outer
solution ?
3) Discuss the position of the boundary layer (x = 0 or x = 1) find the new local scale δ(ε) at the
singular point.
4) What is the inner problem of (Eε) and what is the inner solution ?
5) Solve the problem at first order (up to power ε0).
6) Suggest the plot of the inner and outer solution.
7) Construct the composite expansion and draw it for a small ε.

Exercice 2

Separation of Jets or thermal boundary layers from a Wall
The following sentences are extracted from Smith & Duck (Q.Jl Mech appl. Math. Vol XXX Pt 2,

1977 pp 143 -156) ”Separation of Jets or thermal boundary layer from a Wall” :
”The need to investigate the structure of a jet flow near its point of departure from a wall arises in
many diverse situations. Examples are found in rotating fluids in free convection boundary layers as
well for wall jet per se near a concave corner or other discontinuity in wall conditions. In the problem
we have in mind a steady planar jet-like boundary layer flow has been established along a fixed smooth
surface by some imposed constraint. the jet must then leave the wall. The cause of this expulsion from
the wall may be an impending collision with a jet moving in the opposite direction or a finite change
in the wall slope (...).”
See figure ?? for a sketch. Then the basic flow at high Reynolds number is presented :

”For these problems there exists a basic scale U∞, say, a typical length scale L and, if ν represents
the kinematic viscosity of the fluid, the Reynolds number Re = U∞L/ν is large. It is supposed that,
due to one the agencies mentioned above, the viscous jet flow has been set up in a boundary layer of
typical thickness O(LRe−1/2), outside of which the motion is relatively slow, and there is no slip at
the wall.”
”We then ask : how does the jet react ahead of its departure from the wall and what is the form of

2



U0(Y )

inviscid, no flow

viscous
 flow

LRe−1/2

L

Fig. 1 – A jet developing along a wall

the separation ? (...) We propose below that the upstream response in fact takes places over a length
scale O(LRe−3/7) .” Of course this scaling is one of the solution of the exam, we will have to prove it
in the responses to the questions.
”The flow is assumed to be steady, laminar and two-dimensional and incompressible.”
”The flow develops an interaction over a streamwise length scale O(LRe−3/7) centered about the point
of separation. The interaction has a double deck structure in which the unknown induced pressure and
displacement are linked by a novel relation peculiar to the jet flow situation. During the interaction
the fluid near the wall forms a viscous sublayer, driven along by the induced local pressure gradient,
whereas the majority of the boundary layer reacts in an invisicid displaced fashion.”

The interaction self induced by the flow :
”Upstream of separation the sublayer pressure rises slightly, causing a decrease in the skin friction, and
the sublayer expands. The associated movement of fluid in the inviscid region then induces a pressure
fall across the jet, but, because the pressure at the edge of the jet does not alter, the transverse
pressure gradient reinforces the pressure rise at the wall. So the process is mutually reinforcing. ”
Let us define the point x0 = O(1) where there is the very small accident in the wall jet (like a bump,
a wedge...) ; we set up a multi Deck structure around this point. We change the scales to look closer
at this point.

”We set x = x0 + ε3X where the coordinate X is O(1) within the interaction zone” (L is the scale
of x).”Then the presence of the jet-like profile upstream implies the conditions, for X → −∞

u→ U0(Y ) + ... v → O(Re−1/2) p→ O(Re−1)

with Y = Re1/2y defining the boundary layer coordinate. Here U0(Y ) has the properties :
U0(Y ) = U ′

0Y + O(Y 2) as Y → 0 and U0(Y )→ 0 as Y →∞. U ′
0 is a given positive constant. Outside

the boundary layer the motion is inviscid and relatively slow.

1̊ ) Write the non dimensional Navier Stokes equations and discuss the boundary conditions for the
basic flow profile U0(Y )
2̊ ) Discuss the boundary conditions in Y and X
3̊ ) First when Y = O(1) (region I), we have the form”, with ε and π unknown up to now :

u = U0(Y ) + εu1 + ... v = ε−2v1Re−1/2 p = πp1

”The Navier-Stokes equations show that the small disturbances here are effectively inviscid and the
streamwise pressure gradient is negligible, but the transverse pressure gradient acts significantly.”
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Subsititute this Ansatz in the incompressibility equation and in the longitudinal Navier Stokes equation
and show that u1 and v1 may be written with the help of an unknown function −A as in the classical
Triple Deck theory. Show then that the hypotheses of the sentence leads to a transverse pressure gradient
(∂p1

∂Y ) proportional to −A′. Propose the relation between the scale of pressure π and
√

Re and ε.
4̊ )Lower Deck problem, show that with u = εû, v = εβRe−1/2v̂, Y = εŷ and p = εαp̂, the Lower Deck
equations are then :

∂û

∂X
+

∂v̂

∂ŷ
= 0, û

∂û

∂X
+ v̂

∂û

∂ŷ
= − dp̂

dX
+

∂2û

∂ŷ2
.

What is the value of α and β ?
5̊ ) What are the boundary conditions for û and v̂ in ŷ = 0 and ŷ →∞ and in X → −∞ ?
6̊ ) In matching the pressure between the top of the Lower Deck and the bottom of the Main Deck
deduce the scaling of the pressure π as a function of the Reynolds number. Deduce the value of ε as a
function of the Reynolds number. Note here that there is no inviscid Upper Deck.
7̊ ) By integration across the jet, show that the pressure through the Main Deck verifies :

p1(x,∞) = p̂(X) + [
∫ ∞

0
U0(Y )2dY ](A′′)

taking into account that there is no inviscid disturbance outside the jet deduce the relation between
p̂(X) the pressure in the Lower Deck and A the displacement function.
8̊ ) Verify that all the scalings of figure ?? are correct. Verify that the longitudinal pressure gradient
is negligible in the Main Deck as it was supposed.
9̊ ) Extra question, linearise the Lower Deck equations around the basic state û = U ′

0ŷ, v̂ = 0 and p̂ = 0
and show that perturbation of the longitudinal velocity in eKxφ′(ŷ) and of the transverse velocity in
−eKxφ(ŷ) may be written. The solution of this system gives the value of the exponential K. As says
Stewartson : ”the possibility of a free interaction has been established, it is analogous to the study
of the supersonic free interaction.”

Fig. 2 – The interacting Double Deck structure, read : Re−1/2 Re−9/14 and Re−3/7
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Exercice 1

1) When ε is 0, the outer problem is an ODE of degree 1, and we have two BC.
2) The outer problem E0 is x2 dy

dx − y = 0, so that y′/y = 1/x2,
after integration ln(y) = C − 1/x so that y(x) = Ae−1/x

3) So yout(x) = e1−1/x so that yout(1) = 1 but yout(0) = 0 6= 1.
The boundary layer is likely to be in x = 0. It is not possible to solve y(x) = Ae−1/x with y(0) = 1.
Let us introduce x = δx̃ and y = ỹ(x̃). So ε d2y

dx2 + x2 dy
dx − y = 0 is εδ−2 d2ỹ

dx̃2 + δ2δ−1x̃2 dỹ
dx̃ − ỹ = 0 The

first term (the term with the second order derivative) is indeterminate up to now, but it was small,
and we want it back. The second is small (with y′), the third is or order unity. The dominant balance
gives then with the first and the third εδ−2.
4) The thickness of the boundary layer is δ =

√
ε. The inner problem is with : x =

√
εx̃ d2ỹ

dx̃2 − ỹ =
0 so ỹ = Be−x̃ + Dex̃.
5) The boundary condition that we want to impose is ỹ(0) = 1. The solution is ỹ = Be−x̃ +(1−B)ex̃.
The matching : yout(x→ 0) = ỹ(x̃→∞) so B = 1.
6) and 7) The composite solution is ycomp = e−x/

√
ε + e1−1/x − 0.
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Fig. 3 – Left the outer solution yout(x) = e1−1/x, right the inner solution ỹ = e−x̃

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

y
H
x
L

0 0.2 0.4 0.6 0.8 1
x

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
H
x
L

Fig. 4 – Left the full solution for ε = 0.1, 0.05 0.025 plain line, the outer solution large dashing line
and the inner solution written in outer variable e−x/

√
ε. Right the composite solution (ε = 0.025) and

the full solution.

See Carl M. Bender,Steven A. Orszag, Advanced Mathematical Methods for Scientists and Engi-
neers : Springer 1999
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Exercice 2
1) No slip condition, matching with a fluid at rest at infinity. The Re−1/2 allows to write a Prandt
system of equations.
2) The condition in X correspond to the beginning of the interaction. It will be useful for the Lower
Deck equations.
3) incompressibility the order of magnitude (ε)/((ε)3) = (ε−2Re−1/2)(Re−1/2) gives ∂u1

∂X + ∂v1
∂Y = 0. We

neglect the transverse pressure U0
∂u1
∂X + v1

∂U0(Y )
∂Y = 0.

We deduce that u1 = AU ′
0(Y ) and v1 = −A′(X)U0(Y ) as in the classical triple Deck Theory.

The transverse equation is U0
∂v1
∂X = −∂p̂(Y )

∂Y if the balance ε−5Re−1 = π holds.
4) β = −1 and α = 2
5) no slip condition, X → −∞ : matching with the linear incoming profile û→ U ′

0ŷ
6) the pressure is of order ε2 in the Lower Deck and of order ε−5Re−1 in the Main Deck. We then
deduce ε = Re−1/7

7) ∂p̂(Y )
∂Y = −U0

∂v1
∂X = U2

0 A′′ so by integration we have the proposed equation (p̂ is the value of the
pressure in Y = 0 by matching). At infinity there is no perturbation of pressure, so the interacting
relation is : p̂ = −[

∫∞
0 U0(Y )2dY ](A′′).

See the original article :
Smith F.T. & Duck P.W. (1977) ”Separation of Jets or thermal boundary layer from a Wall” : Quartely
Journal of Mechanics and Applied. Mathematics. Vol XXX Pt 2, 1977 pp 143 -156

6


















