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22 août 2022

Looking at self similar solution is a common point of view in
fluid mechanics. It seems a bit magical, but we will try to show in
this chapter that it is not, and that it is a powerful tool. First we
recall what is a ”self similar” (”auto semblable”, ”automodèle”, ”ho-
mogène”) concept. Then we present examples of self similar solutions
using the method of stretching the variables. With application to
the self similar solution of the heat equation... Then we define with
Barenblatt [5, 6, 7] the concept of incomplete similarity. Next, we
show link of selfsimilarity with the Π theorem. Following the books
of Cole [9, 10] we then present some ideas on invariances for ODEs
and present a short and dirty introduction to Lie groups.

1 Introduction : Examples of Selfsimila-

rity and Invariance

Two geometrical objects are called similar if they both have the
same shape. The second object may be obtained from the first by the
result of a uniform scaling (enlarging or shrinking). One object can be
obtained from the other by uniformly ”stretching” the same amount
on all directions, possibly with additional rotation and reflection.
• Equilateral triangles are all similar.
• Thalès theorem is an example of similarity.
• Cheese : Camembert is not self similar, but there is a similarity in
radius with such cheeses (when cutting a wheel of Morbier, or Conté).

Pont Lévêque as well, even it is squared, except at the end, it becomes
squared again.
Morbier, and for sure Roquefort must stay self similar (NEVER cut
the tip of a Roquefort, it destroys its invariance).
• The self similar knife Opinel (this is the ”french” -Swiss Army knife
or ”french” Letherman), very useful to share the Camembert.
• Italians have ”moka express” coffee machine 8, Russian have ma-
triochkas 6, in America, no need, every thing is just huge.
• Fractals are self similar... a photo of the Brittany coast at various
scales (figure 1, the fractal dimension is 1.25).
• Large scale/ small scale has the opposite meaning on a map : a large
scale map reveals details, a small scale one is global. It is the reverse
in mechanics, small details have a small scale.
• Self similarity and anamorphosis, example of Len(n)a (see figure 2).
The eye is very sharp to detect errors in similarity.
• The ”golden number” is an example of internal selfsimilarity (perso-
nal interpretation). Take a segment of unit length, cut it at length φ in
two parts of length φ and 1−φ. The ratio of the large segment by the
small is the ratio of the length by the large segment, φ/(1−φ) = 1/φ.
This gives φ = (

√
5− 1)/2 ' 0.618 (see figure 3).

• If u(x, y) is a function, then if u is invariant by translation along x,
then, for any h, we have u(x+ h, y) = u(x, y), but as :

u(x+ h, y) = u(x, y) + h
∂

∂x
u+

h2∂2

2∂x2
u...

then ∂
∂x
u = 0, invariances by rotation will give ∂

∂θ
u = 0, etc.

u(x + h, y) may be written as (1 + h ∂
∂x

)u, this expression will be
useful.
• Importance of invariances, Curie principle of symmetry, ”When
certain effects show a certain asymmetry, this asymmetry must be
found in the causes which gave rise to them. (Curie 1894)”.
• Noëther theorem ” If a system has a continuous symmetry property,
then there are corresponding quantities whose values are conserved
in time.” this is done by perturbations of the ”action” (defined as the
time integral of a function known as the Lagrangian L, example ∂t

- MHP SSS. PYL 2.1- P.-Y. Lagrée, Self Similar Solutions

http://www.lmm.jussieu.fr/~lagree
http://www.ida.upmc.fr/~lagree


energy, ∂r momentum
• In practice the idea is to look wether the solution of a pro-
blem u(x, y) collapse on a same curve defined by a function U if
u(x, y) = U(y/f(x)). The function f(x) may be found by substitution
in the PDE, in order to obtain a ODE for U . For example (figure 4)
in Navier Stokes for the flow over a flat plate ; f(x) =

√
x, or in the

heat equation it will be T (x, t) = Θ(x/f(t)) with f(t) =
√
t.

We will not present a complex theory, we will just present some
classical examples of self similar solution by the help of the scaling
invariance.

Unfortunately, the examples are very simple, and are well known
since the second year of University (the heat equation ∂tT = ∂2

xT ,
with the self similar variable x/

√
t). As it is a problem that can be

solved with simple functions, it has been presented early in academic
curses. The purpose of this course is to look at these solutions with a
new eye, and to show that there exists a complicated generalization
which is the theory of Lie Groups (see section §7). This theory allows
to obtain all the invariant solutions of a PDE. This theory is however
very very difficult to use, but his weak form : the scaling invariance,
is very useful. Looking for self similar solutions in experiments (either
numerical or practical) is a powerful tool to ”explain” and understand
the flows. The next chapters devoted on boundary layers will use all
those concepts of scale invariance and reduction to ODEs.

It is worth to say that we deliberately do not insist on the Π
theorem (that we will see in section §5).

The fundamental initial book on dimension is the Sedov one [20], I
had the chance to find it as bargain at Gibert (those book shops have
very good scientific books and comics and novels as well) on the Saint
Michel sidewalk. The books of Barenblatt (the last one [6] is the more
accomplished, but the firsts are a bit more simple) give other examples,
and claim that selfsimilarity is powerful method of analysis and to find
asymptotic solutions. The Bluman books ([9] and [10]) are fascinating,

they present the generalisation of the scaling invariance with the Lie
groups. Finally I am indebted to my professors J.-S. Darrozès [4] and
D. Euvrard [14] who showed me scale invariance in the class room.

Figure 1 – The coast of Brittany is self similar, there is scale in-
variance (scale 120km, 20km, 3 km, 150m, 40m GoogleEarth and 4m
PYL). At different height of observation, the shape is the same. Frac-
tals are famous example of self similar objects. We will not deal about
fractals in this chapter.

Figure 2 – Similarities in the plane, application to image processing.
Part of the original picture of ”Lena” miss November 72 (left) has been
mis reproduced for a conference (center) and used as test image for
image processing since 73. Notice that lot of people use their TV as a
similarity (or anamorphosis) tool and display images like the stretched
16/9 on the right. This example shows that if an image is not properly
rescaled, by the same scale in both directions, the result is visible.
Source : http://www-2.cs.cmu.edu/∼chuck/lennapg/lenna.shtml and
http://www.lenna.org/full/len full.html
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1 − φ{ {{φ
1

Figure 3 – The Golden ratio φ = (
√

5 − 1)/2 may be in-
terpreted as an internal selfsimilarity. The series of Opinel
Knifes are selfsimilar. (http://www.opinel.com ). The Ato-
mic explosion is a famous selfsimilar solution Sedov [20]
http://www.scholarpedia.org/article/Image:AtomicBombFig910.jpg

).

Figure 4 – The flow over a flat plate computed with Freefem++ at
Re = 500 is Self Similar : at five cuts indicated we plot and superpose
ū(x̄, ȳ

√
Re/x̄).

Figure 5 – A self similar family of musical instruments (photo
François Blanc)

Figure 6 – Two self similar families of Matriochkas (photo PYL)
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Figure 7 – Self similar Moka Italian coffe machine, find PYL

Figure 8 – Idea of Christmas’ present, the book of Thomas Séon.
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2 Scaling Invariance on a PDE

2.1 application to the the self similar solution of
heat equation in a semi infinite domain

This is a well know example, we reexplain it quickly. We consider a
semi infinite space (x > 0), at initial temperature T0, at time t = 0,
the plane x = 0 is cooled (or heated !) at temperature Text. We want
to know the temperature in x > 0 as a function of time. The problem
consists to solve the heat equation in a semi infinite domain with an
initial and two boundary conditions :

ρcp(
∂T
∂t

) = k(∂
2T
∂x2

), at t = 0 we have T (x, t = 0) = T0

and for t >0 we have T (x = 0, t) = Text.

The second boundary condition in space is T (x→∞, t) = T0. We have
the classical heat coefficients : k is the Fourier coefficient, ρ the density
and cp the heat capacity. One writes a = k/(ρcp) the diffusivity. The
first move of the game is the choice of the adimentionalisation. Let
us write t = τ t̄ (τ is unknown) and x = Lx̄, (L is given, any length)
and T = Text + (T0 − Text)T̄ (this choice is reasonable for T as it

changes between T0 to Text). In taking τ = L2ρcp
k

the equation without
dimensions is :

∂T̄
∂t̄

= ∂2T̄
∂x̄2

, with conditions T̄ (x̄ = 0, t̄) = 0, T̄ (x̄, 0) = 1 and
T̄ (∞, t̄) = 1.

Of course the choice τ = L2ρcp
k

is not innocent. It satisfies the
dominant balance principle which states that we have to retain as

much as possible terms in the equations. If we take τ � L2ρcp
k

, then

the equation is ∂T̄
∂t̄

= 0, it means that the time scale is too small, so

that there is no change of temperature. If we take L2ρcp
k
� τ , then

the equation is ∂2T̄
∂x̄2

, it means that the time scale is too large, so that
the temperature is constant in the media, but we can not satisfy the
T̄ (∞, t̄) = 1 condition.
Those two late case are with less terms in the equations, they are not

enough ”rich”. That why the dominant balance (or Least Degeneracy)
has been introduced.

Self Similar solution :

Once we have suitably made the problem without dimensions, we
introduce the self similar solution by invariance stretching.

This technique consists to find by inspection all the dilations that
do not change the equation and the boundary conditions. We stretch
the variables as :

x∗ = αx̄, t∗ = βt̄, T ∗ = γT̄ .

So the stretched equation is ∂T ∗

∂t∗
= (γ/β)∂T̄

∂t̄
and ∂2T ∗

∂x∗2
,= γα−2 ∂2T̄

∂x̄2
, and

very important as well, the boundary conditions : γT̄ (x̄ = 0, t̄) = 0,
and γT̄ (x̄, 0) = 1. The ”star” and ”bar” problems must be invariant,
this is the case when α2 = β and γ = 1.
The solution for the temperature depends on the time and space,
T̄ = f(x̄, t̄) we can write it : is an implicit function of the three
variables is T̄ − f(x̄, t̄) = 0, so that we can use an implicit form for
the solution :

F (x̄, t̄, T̄ ) = 0 is equivalent to T̄ = f(x̄, t̄),

invariance states : F (αx̄, βt̄, γT̄ ) = 0 or

F (αx̄, t̄α2, T̄ ) = 0.

We may change the definition of the variables, as long as we have
always 3 variables. If we divide the first by the square root of the
second, keep unchanged the second and the third, the new implicit
relation is :

F2(x̄t̄−1/2, α2t̄, T̄ ) = 0.

We have a functional relation which is true for every value of α. This
argument does not exist. The expression is in fact

F3(x̄t̄−1/2, T̄ ) = 0.
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So the solution is T̄ = θ(η) with η = x̄t̄−1/2. We substitute in the heat
equation :

∂T̄

∂t̄
= θ′(η)

∂η

∂t
= −θ

′

2

η

t̄
and

∂T̄

∂x̄
= θ′t̄−1/2, so

∂2T̄

∂x̄2
= θ′′t̄−1,

the final problem is now an ODE :

(−η/2) = θ′′/θ′, θ(0) = 0 and θ(∞) = 1.

In most cases, this ODE has to be solved numerically, as it is now very
simple to do that, the solution may be considered as exact. Here, we
may go on : Log(θ′) = −η2/4 and thanks to the BCs :

θ(η) =

∫ η/2
0

exp(−ξ2)dξ∫∞
0
exp(−ξ2)dξ

=
2√
π

∫ η/2

0

exp(−ξ2)dξ

as it is well known that
∫∞

0
exp(−ξ2)dξ =

√
π/2.

error function and complementary error function are defined by :

erf(x) =
2√
π

∫ x

0

exp(−ξ2)dξ and erfc(x) = 1− erf(x).

the solution is :
θ(η) = erf(η/2)

it increases from 1 to 0 (figure) :

2.2 Taking the ”wrong” Self similar variable

If we play good, we are winners, we obtain as here η = x√
t
, which

gives : ηθ′ + 2θ′′ = 0. If we do not play well, we are losers, we may
take η = x2/t, this variable is similar. But, in this case we have :

−2θ′ − ηθ′ − 4ηθ′′ = 0.

The solution is not so simple to compute. Of course, the solution is
θ = erf((

√
η)/2), so that, as expected :

θ = erf((
√
x2/t)/2) = erf((x/

√
t)/2).
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Figure 9 – Left self similar solution erf(η/2). Right temperature
erf(x/2/

√
t)

But it is not easy to see it ! (it is the same for η = t̄/x̄2 the solution is
θ = erf(1/2/

√
η)

In fact, there is no rule to obtain the good similar variable which
gives the most simple ODE !

2.3 Another example of self similar solution of
heat equation in an infinite domain

The case of constant energy released in a domain leads to a different
solution, if now we suppose that a constant energy has been released
(or a constant mass in the case of selfsimilar solution of concentration
diffusion equation, Ficks law) :

∫
T̄ dx̄ = 1

so that now we have another relation instead of γ = 1 which came
from the boundary condition we have γ = 1/α, which comes from the
initial condition or

F (αx̄, t̄α2, T̄ /α) = 0.

then

F (x̄/
√
t̄, t̄α2, T̄

√
t̄) = 0.
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the self similar variable is again η = x̄/
√
t̄ the solution is T̄

√
t̄ = θ(η)

doing the derivations

−θ/2− ηθ′/2 = θ′′

then −(ηθ)′/2 = (θ′)′, no flux at infinity : −(ηθ)/2 = (θ′), so that
θ = e−η

2/4/(2
√
π) as

∫∞
−∞ e

−x2 =
√
π,

θ =
1

2
√
πt̄
e−x̄

2/(4t̄)

here plot the solution.... the temperature has always a Gaussian shape.
The width of the Gaussian increases when time increases. At time 0,
the initial release is in fact a Dirac.

2.4 A numerical example : heat equation

After a short time, for any initial temperature distribution
T (x, 0) = T0(x), for −5 < x < 5 as long as

∫ 5

−5
T0dx = 1, the solution

is near the self similar solution T = exp(−η2/4)

2
√
πt

. Of course, for large
time, the boundary condition breaks the self similar solution. But
there exists a sufficient long time during which the flow is self similar.

• See exemples in Basilisk
explicit finite volume
http://basilisk.fr/sandbox/M1EMN/BASIC/heat.c.

the implicit heat equation
http://basilisk.fr/sandbox/M1EMN/BASIC/heat imp.c.

Figure 10 – (moovie) : solution of the heat equation T (x, t) as a function

of x in a finite domain −5 < x < 5 in red, 2
√
πtT (x, t) as a function of x/

√
t

in green, and exact self similar function exp(−η2/4) in blue. As long as the

width of the distribution of T is smaller than 10, the self similar and the

numerical solution are superposed [click to launch the movie, QuickTime

Adobe/ Reader required]..
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2.5 application to the vortex : the ”Lamb-Oseen
Vortex”

Another classical solution with self similar variables.

diffusion of a line vortex This is the classical problem of the
destruction of the singular line vortex by viscosity. The non dimensio-
nal unsteady axi Navier Stokes equations

∂v̄

∂t̄
=

∂

∂r̄
(
1

r̄

∂(r̄v̄)

∂r̄
) (1)

with at t = 0, v̄ = 1
r̄

and v̄ = 0 in r = ∞. We need as an extra
boundary condition that the velocity is regular, so u(0, t) = 0. We
look for invariant solution by scale dilatation :

r̄ = r∗r̂, t̄ = t∗t̂, v̄ = v∗v̂,

this gives

v∗

t∗
∂v̂

∂t̂
=

v∗

r∗2
∂

∂r̂
(
1

r̂

∂(r̂v̂)

∂r̂
) with the initial condition v∗v̂ =

1

r∗
1

r̂
(2)

If we take v∗ = 1/r∗ and t∗ = r∗2 for any fixed r∗, the problem (1) (and
its boundary conditions) is exactly the same for the ”hat” variables
and for the ”bar” variables.
Under the following transforms :

∀r∗ r̄ = r∗r̂, t̄ = r∗2t̂, v̄ = r∗−1v̂,

equation (1) and its b.c. are invariant

∂v̂

∂t̂
=

∂

∂r̂
(
1

r̂

∂(r̂v̂)

∂r̂
) initial condition v̂ =

1

r̂
(3)

Let us find a self similar solution, the solution is written in the implicit
way :

F (r̄, t̄, v̄) = 0, ∀r∗ > 0

by invariance :

F(r∗r̂, r∗2t̂, r∗−1v̂) = 0, ∀r∗ > 0

or after rearranging the variables :

F (r∗r̂, t̂/r̂2, r̂v̂) = 0, ∀r∗ > 0

this is true for any r∗, so r∗ does not exist : η = t̂/r̂2, r̂v̂ = f(η)

Unlucky guy ! The best choice is η = r̂2/t̂, et v̂ = f(η)/r̂. Let us use
this second choice. Change of variables x̄, t̄ in η gives the chain rule
derivatives

∂

∂r̄
=
∂η

∂r̄

∂

∂η
,

∂

∂t̄
=
∂η

∂t̄

∂

∂η
, (4)

∂

∂r̄
=

2η

r̄

∂

∂η
,

∂

∂t̄
=

η

−t̄
∂

∂η
, (5)

We rewrite (1) with v̄ = f(η)/r̄ and the derivation : ∂v̄
∂t̄

= −η
t̄
f ′ and

as well : ∂
∂r̄

(1
r̄
∂(r̄v̄)
∂r̄

) = ∂
∂r̄

(2f ′

t̄
) = 2∂

t̄∂r̄
f ′ = 4η

r̄
f ′′ we deduce an ODE from

the PDE :

f ′ + 4f ′′ = 0, with boundary conditions f = 1− e−η/4.
We obtain the final velocity of the Lamb-Oseen vortex :

v̄ =
1

r̄
(1− exp(−r̄2/(4t̄)))

This solves the problem.

If we take instead of this second choice, the first one : η = t̄/r̄2

the ODE equation is now : (1 − 8η)f ′ − 4η2f ′′ = 0 whose solution is
less trivial. It is f = 1− e−1/(4η). So that again, we obtain the SAME
SOLUTION for the velocity

v̄ =
1

r̄
(1− exp(−r̄2/(4t̄)))

So, everything is OK, if we do not take the ”good” selfsimilar variable,
the result remains the same.
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Figure 11 – Computed solution with the NS solver Gerris as a function
of r̄ for different times (from 0 to 2 every 0.1) superposed on the
analytical solution (left) and plot as a fonction of the similar variable

(here η = r̂2/t̂ which is different to the 2D case !) right. Notice the
very good comparison.

Figure 12 – Two trailing wing vortices. Steve Morris

http://www.airliners.net

2.6 Numerical example : the ”Batchelor Vortex”

There are some interesting solutions with vortices. The previous
vortex is an unsteady solution of the Navier Stokes equations. This
vortex is destroyed by time, here we will look at a vortex which is
destroyed in space along his axis. This is the Batchelor vortex (”Axial

flow in trailing line vortices” JFM 1964). The configuration is a wake in
which a vortex develops. The core of the vortex is the chosen scale, the
longitudinal scale is then large, so that the final system is in boundary
layer scales

w
∂v

∂z
+ u

∂v

∂r
+
uv

r
=

∂

∂r

(
1

r

∂rv

∂r

)

w
∂w

∂z
+ u

∂w

∂r
= −∂p

∂z
+

1

r

∂

∂r

(
r
∂w

∂r

)

−v
2

r
= −∂p

∂r

Axial $ow in trailing line vortices 649 

3. The development of an axisymmetric trailing vortex 
Although the existence of strong axial flow has been seen to be an inevitable 

feature of the core of a trailing vortex, provided only that total head losses are 
not large, it will be useful to consider briefly the development of the excess axial 
velocity. There is also the associated and important question of the way in which 
the diameter of the vortex core is determined by the upstream conditions. The 
evolution of an axisymmetric and approximately cylindrical trailing vortex out 
of the vortex sheet shed by one side of a wing is complicated by dependence on 
the precise geometry of the wing, and only loose qualitative arguments seem to 
be possible. 

It is as well to distinguish two different processes in this transition from vortex 
sheet near the wing to trailing vortex further downstream, viz. (1) the rolling-up 
of the sheet, and ( 2 )  the contraction (or expansion) of the region of non-zero 
vorticity in a plane transverse to the free stream. The process of rolling-up of 
a vortex sheet with a free edge is well understood in principle, although it is 
difficult to work out the details in a particular case. The free edge of the vortex 
sheet curls over, under the influence of the induced velocity field of the vortex 
sheet, and takes up the form of a spiral with a continually increasing number of 
turns, as depicted in figure 1, which is one of many reproductions of a sketch due 
to Prandtl. Observation of the velocity distribution behind a wing supports 
such a picture (see, for example, Modern Developments in Fluid Dynamics, edited 
by S. Goldstein, 5 12). 

FIQURE 1. Prandtl’s sketch of the rolling-up of a trailing vortex sheet. 

The second of the two processes is a change in lateral dimensions of the partially 
rolled-up vortex. Observation of wing-tip vortices leaves no doubt that in some 
circumstances this change is a contraction, yielding a more concentrated vortex, 
although it is not clear what distinguishes these circumstances. Some authori- 
tative writers have given the impression that the two processes are equally 
inevitable; for instance, we find, in 5 12 of Modern Developments, the statement: 
‘The (plane) trailing vortex sheet. . . is not a possible stable form. It would roll 
up at its edges, the vorticity being concentrated more and more in the rolled-up 
portions, until it presented the appearance of two concentrated vortices a t  a 
distance apart somewhat less than the span of the aerofoil.’ However, I believe 
that, whereas rolling-up of the free edge of vortex sheet is inevitable, concentra- 

t Since the strength of the vortex sheet is zero downstream from the centre of the wing, 
one might ask why the sheet from one side of the wing does not have two free edges, both 
of which roll up. The vortex sheet does indeed distort over its whole area, but it is obvious 
from the expression for the induced velocity due to a sheet of given form that the rate of 
distortion of the sheet is greatest where the gradient of strength of the sheet is greatest, 
and this occurs near the ‘edge’ shed from the wing-tip. 

Figure 13 – Two vortices. (Batchelor ”Axial flow in trailing line vor-
tices” JFM 1964).

This problems remains non linear, far away from the birth of the
vortex, as it is expected to decrease in velocity, and as the wake is
expected to be weaker, the problem can be linearized : v = vθ, w =
1 + wz, where |wz| � 1. So, by linearization, w ∂w

∂z
= 1∂wz

∂z
+ ... etc.

∂vθ
∂z

=
∂

∂r

(
1

r

∂rvθ
∂r

)

∂wz
∂z

= −∂p
∂z

+
1

r

∂

∂r

(
r
∂wz
∂r

)

−v
2
θ

r
= −∂p

∂z
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The solution for vθ is just the previous one, with t replaced by space :

rvθ = (1− exp(−r2/(4x)))

the self similar variable is say : η = r2/(4x) the vortex is larger and
larger along the axis, circulation is constant in the inviscid part far
away. The velocity creates a depression in the core, this depression
modifies the longitudinal velocity. So the associated pressure is, as
dr = dη/(2η/r) and as 1/r2 = 1/(4ηz)

p =
1

8z

∫ ∞

0

1− e−ξ2

ξ2
dξ =

1

8z
(−P (η))

defining the exponential integral function (Bender Orzag p 252)

E1(z) =

∫ ∞

z

e−t/tdt

note that Ei(z) = −
∫∞
−z e

−t/tdt and E1(z) = −Ei(−z) where Ei is
the exponential integral from Mathematica.

Batchelor remarks that

P (η) =
1− e−η2

η
+ 2ei(η)− 2ei(2η)

so as ∂η/∂x = −η/x

−∂p
∂z

= − 1

8z2
(P (η) + ηP ′(η)) = − 1

8z2
(ηP (η)))′

then
∂wz
∂z

=
1

r

∂

∂r

(
r
∂wz
∂r

)
− 1

8z2
(ηP (η)))′

This is the radial heat conduction with a source. If this source is a
finite release, say s the solution is just like the classical diffusion

∂wz
∂z

=
1

r

∂

∂r

(
r
∂wz
∂r

)
+ sδ

which gives
s

4πz
exp(−η)

proportional to the total generated by the source. The wz is then of
order O(z−1) But, this is not enough precise, if we look more closely
at the global balance : integrating over rdr (remember w = 1 + wz)

∂

∂z
(1− w)rdr +

∂

∂r

(
r
∂w

∂r

)
= − 1

4z
(ηP (η)))′dη

as ∂w
∂r

= 0 both in 0 and ∞,

∂

∂z

∫ ∞

0

(1− w)rdr = − 1

4z
[ηP (η)))]∞0

further more P = η−2 for large η, then

∂

∂z

∫ ∞

0

(1− w)rdr =
1

4z

∫ ∞

0

(1− w)rdr =
1

4
Log(z)

this suggested to Batchelor that the solution has the following expan-
sion :

w = 1− 1

8z
Log(z)Q1(η) +

1

8z
Q2(η)− L1

8
e−η

the first is the dominant Log(z)/z followed by the next which is 1/z,
the last is a possible initial defect value. by substitution, the leading
order gives :

ηQ′′1(η) +Q′1(η) + ηQ′1(η) +Q1(η) = 0

the general solution is

Q1 = C1exp(−η) + C2exp(−η)Ei(η)

so as the non singular solution is just Q1 = exp(−η). Next, the Q2

problem can be computed

ηQ′′2(η) +Q′2(η) + ηQ′2(η) +Q2(η) = −Q1 + P + ηP ′
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the non singular first integral is

Q′2(η) +Q2(η) =
exp(−η)− 1

η
+ P (η)

With Mathematica we obtain

Q2 = e−η (2eηEi(−2η)− 2eηEi(−η)− Ei(−η) + log(−η)− iπ + γ − log(4))

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2
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h

Q
2HhL

e-
h

PHhL

Figure 14 – The asymptotic solutions (Batchelor ”Axial flow in trai-
ling line vortices” JFM 1964).

As a numerical test we start at z = 100 and put those solutions,

Figure 15 – Self similar solution from the numerical solution
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3 Classical Examples of self similarpro-

blems

3.1 Rayleigh problem

Called Stokes first problem : impulsive start of a flat plate At time
t = 0, u(y > 0) = 0 and u(y = 0) = 1.

3.2 Diffusion of a vorticity sheet

At time t = 0, u(y > 0) = 1 and u(y < 0) = −1,

3.3 Diffusion in two different media

At time t = 0, u(y > 0) = 1 where ν = ν1 and u(y < 0) = −1 where
ν = ν2.

3.4 viscous collapse of a heap

Huppert first problem : viscous collapse of a heap on an horizontal
plate.

∂h

∂t
− g

3ν

∂

∂x
h3∂h

∂x
= 0 or

∂h

∂t
− k ∂

∂x
h3∂h

∂x
= 0 or

∂h

∂t
− (k/4)

∂2h4

∂x2
= 0

H = T−1/5 and X = T 1/5 selfsimilar solution

h = t−1/5H(xt−1/5)

3.5 viscous collapse on a slope of a heap

Huppert second problem : viscous collapse of a heap on an inclined
plate.

3.6 Dispersive surface waves

equation
∂η

∂t
=

∂η

∂x3
with

∫ ∞

−∞
η = 1.

Invariance T = X3 and HX = 1 η = t−1/3f( x
t1/3

)
so f ′′′ = −ηf ′/3− f/3 hencef ′′ = ηf/3 solution

η = 3−1/3t−1/3Ai(3−1/3 x

t1/3
)

3.7 Blasius

2f ′′′(η) + f(η)f ′′(η) = 0, f(0) = f ′(0) = 0 and f ′(∞) = 1.

3.8 Falkner Skan

f ′′′(η)+f(η)f ′′(η)+β(1−f ′(η)2) = 0, f(0) = f ′(0) = 0 and f ′(∞) = 1.

3.9 Temperature in Blasius

2f ′′′(η) + f(η)f ′′(η) = 0, f(0) = f ′(0) = 0 and f ′(∞) = 1.

2g′′(η) + Prf(η)g′(η) = 0, g(0) = 0 and g(∞) = 1.

if Pr = 1 g = f ′.

3.10 Temperature in natural convection

The heated vertical plate variable de similitude η = ỹ
x̄1/4

, et la forme
suivante pour la fonction de courant :

ψ = x̄3/4f(η) et T̃ = g(η).
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le problème autosemblable est :

4f ′′′ + 3ff ′′ − 2f ′2 + 4g = 0;

4g′′ + 3Prfg′ = 0;

3.11 Other examples

In Birkhoff [2] are some classical equations such as :

— heat equation,
— Prandtl Meyer,
— simple waves are sel similar solution of x/t ;
— Taylor Maccoll, non steady conical inviscid compressible flows,
— spiral viscous flow,
— laminar boundary layer,
— Ekman Layer.

In the book of Sedov [20] are the strong explosion and more...

In boundary layer theory, they are a lot of self similar problems :

— Classical Blasius solution,
— boundary flow in a converging channel,
— Falkner Skan,
— Bickley jet (Schlichting)

Books of Bluman & Cole, [9] and & Kumei [10] contain many of
those classical example, se as well Cantwell [11] and Henriksen [12] as
well.

See Barenblatt [5][6][7] : the ∂tH = ∂xH
2

Example of drops see Eggers and Fontelos [13]

Singularity of model equations (separation of boundary layer
Goldstein), singularity in time .... Hypersonic flows, hydraulic jump,
Thermal flows, convection in boundary layer, free convection...

Ill posed equations

A note on Scale invariance in Physics :
Playing with symmetries to construct by hand a model EDP (cf Cahn
Hillard)
Critical phenomena...
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3.12 Influence of the initial condition

The numerical example of section 2.4 shows numerically that a
given initial distribution of temperature approaches quickly the self
similar solution. This can be obtained asymptotically and thus give
some estimates of the convergence. The following is possible because
here the equation is linear and the algebra is simple.

Suppose that we solve again the problem of heat diffusion :

∂T̄

∂t̄
=
∂2T̄

∂x̄2
,

with constant energy condition
∫ +∞
−∞ T̄ dx̄ = 1. We saw that the self

similar solution is with η = x̄/
√
t̄ :

θ(x̄, t̄) =
1

2
√
πt̄
e−x̄

2/(4t̄).

But in fact when t̄→ 0, we have θ →∞ for x̄ = 0 (for x̄ 6= 0, θ → 0)
and at any time

∫
θdx̄ = 1. We conclude that the the solution tends

toward a Dirac distribution at initial time (the Dirac distribution is 0
everywhere, except in 0 where it is infinite ; its integral over the domain
is one). We say that θ(x̄, 0) = δ(x̄). The θ(x̄, t̄) function solves :

∂θ

∂t̄
=
∂2θ

∂x̄2
, and θ(x̄, t̄ = 0) = δ(x̄).

By definition, when a function solves a differential problem with
a direc source it is called the ”Green function” of the differential
problem (here heat equation). This ”Green function” allows to
reconstruct solutions by superposition as we will do next.

Suppose now, that we give an initial distribution of temperature
T̄ (x̄, 0) = T̄0(x̄) of unit integral

∫ +∞
−∞ T̄0(x̄)dx̄ = 1. By property of

Dirac distribution, we can we write it :

T̄ (x̄, 0) =

∫ +∞

−∞
T̄0(ξ)δ(x̄− ξ)dξ.

By superposition (following Germain [15]), we are able to construct
the full solution as a convolution of the previous kernel and the initial
distribution, so that time evolution of temperature is

T̄ (x̄, t̄) =
1

2
√
πt̄

∫ +∞

−∞
T̄0(ξ)e−(x̄−ξ)2/(4t̄)dξ.

This is the full solution of the problem. We now rewrite it and do
some asymptotics in it.

We now transform this exact solution in order to find an asymptotic
description of it, writing (−(x̄− ξ)2/(4t̄)) with x̄ = η

√
t̄ :

(−(x̄− ξ)2/(4t̄)) = (−(η2/4− ηξ/(2
√
t̄) + ξ2/(4t̄))

the exponential is

e−η
2/4eηξ/(2

√
t̄)−ξ2/(4t̄)

expanding in powers of ξ (which is small enough, but not so small)

the part eηξ/(2
√
t̄)−ξ2/(4t̄) :

eηξ/(2
√
t̄)−ξ2/(4t̄) = (1 + ηξ/(2

√
t̄) + η2ξ2/(8t̄) + ...)e−ξ

2/(4t̄)

and as e−ξ
2/(4t̄) = 1−ξ2/(4t̄)+... so that the expansion of the expression

is
eηξ/(2

√
t̄)−ξ2/(4t̄) = 1 + ηξ/(2

√
t̄) + ξ2(η2 − 2)/(8t̄) + ...

Multiplied by T̄0(ξ) and integrated with respect to ξ, it writes :

T̄ (x̄, t̄) =
1

2
√
πt̄
e−η

2/4
(
I0 + ηI1/(2

√
t̄) + (η2 − 2)I2/(8t̄) +O(t̄−3/2)

)

where we have defined the moments of the initial distribution (I0 = 1
by hypothesis) :

I0 =

∫ +∞

−∞
T̄0(ξ)dξ, I1 =

∫ +∞

−∞
ξT̄0(ξ)dξ, I2 =

∫ +∞

−∞
ξ2T̄0(ξ)dξ...

This expression shows the influence of the initial condition on the
selfsimilar solution. It gives estimates in time of the precision of the
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solution. For instance, a symmetrical distribution gives a precision
at order O(t̄−1). Anyway, for time large enough, only the selfsimilar
solution 1

2
√
πt̄
e−η

2/4 is visible. It shows again how useful the self similar
solution is.
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3.13 Non Self similarity

3.13.1 non Self similarity of heat equation

The method of selfsimilarity reduces the order of the PDE (often in
practice from 2 to 1 variable : an ODE). We have just seen how precise
is the self similar solution. But remember that the real problem is a
PDE, and was described by (at least) two variables. So, in fact the
similar variable is just a change of variable, instead of using x and t
one uses η = x/

√
t, and one other say τ = t. The problem is always

a problem with two variables (η, τ) instead of (x, t), so the chain rule
derivation gives, as η(x, t) and τ(x, t) :

∂

∂t
=
∂η

∂t

∂

∂η
+
∂τ

∂t

∂

∂τ
,

∂

∂x
=
∂η

∂x

∂

∂η
+
∂τ

∂x

∂

∂τ
, (6)

∂

∂t
= − η

2τ

∂

∂η
+

∂

∂τ
,

∂

∂x
=

1√
τ

∂

∂η
, (7)

so that the heat equation with the new couple of variables is :

∂

∂t
u =

∂2

∂x2
u is τ

∂

∂τ
u =

∂2

∂η2
u+ η

∂

∂η
u,

some times one prefers to use τL = Log(t) as variable, then the heat
equation with the new variables τL = Log(t) and η = x/

√
t is :

∂

∂τL
u =

∂2

∂η2
u+ η

∂

∂η
u.

This allows to interpret the selfsimilar solutions as steady solutions
(with respect to τL) in a special variable transformation (here η).
This is a reason why when solving PDEs, we have some times a lot of
chances to find a selfsimilar solution at enough long time (but not so
long). It means that the solution is attracted to the selfsimilar one.

3.13.2 non Self similarity of the advection equation

As another example let us look

∂

∂t
u+ u

∂

∂x
u = 0

η = x/t is a possible ss variable

∂

∂t
= −η

τ

∂

∂η
+

∂

∂τ
,

∂

∂x
=

1

τ

∂

∂η
, (8)

so that
∂

∂t
u = −u ∂

∂x
u is τ

∂

∂τ
u = (η − u)

∂

∂η
u,

if we use τL = Log(t) as variable, then the advection equation

∂

∂τL
u = (η − u)

∂

∂η
u

let see what happens near teh self similartity

u = u0 + εu1 + ...

with u0 the self similar solution which is η

∂

∂τL
u1 =

∂

∂η
u1

this is stable. The selfsimilar solutions is a steady solutions in a
special variable transformation. This is a reason why when solving
PDEs, we have some times a lot of chances to find a selfsimilar
solution at enough long time (but not so long). It means that the
solution is attracted to the selfsimilar one.

3.13.3 non Self similarity

It means that the selfsimilar solution describes (Barenblatt p18)
the ’intermediate asymptotic’ behavior of solutions of wider classes
of problems in the range where the solutions no longer depend on
the details of the initial and/or boundary conditions. To study the
approach to the selfsimilar solution, one may in practice develop the
solution by separation of variables, like

f0(η) + F (τ)f1(η) + ....
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where f ′′0 + ηf ′0 = 0 solves the selfsimilar heat equation, and this
allows to obtain the first perturbation of the selfsimilar problem as
an eigen value problem, as we see that we obtain separated variables
with dF (τ)/dτ/F (τ) = cst, so F is a power of τ

u = f0(η) + τnf1(η) + ...

For the heat equation, or the boundary layer equation, it may be
shown that all the n are negative [cite Steinruck : Libby Fox 64].

If positive n exist, then non-unique solutions of spatial initial value
problem appear, (this is the case in hypersonic flows see Neiland (MZG
69), or in thermal flows see Rida (ZAMP 96), Steinrück [22], Lagrée
[16]).

3.14 Scaling invariance is a ”group” of transfor-
mation

Let us do a final remark on the self similar solutions that will be use-
ful to understand the theory of Lie groups that we will see thereafter.
If u(x, t) satisfies the heat equation

∂tu = ∂2
xu, u(0, t) = 1, u(x, 0) = 1,

then we know that u∗(x; t) = u(ax, a2t) satisfies the heat equation for
any a 6= 0 So we may say that we have a group of transformations{
Ta

}
a∈IR∗

. This group is defined by :

u(x, t)→ Tau(x, t) = u(ax, a2t), a 6= 0

we have the law TboTa = Tab, associativity and commutativity.
The unit element (neutral) is T1, and every element has an inverse
Tao(Ta)

−1 = T1 wich is (Ta)
−1 = T1/a.

The question is : does a u exist such ∀a 6= 0, the function is invariant
by the group Tau = u. It means :

∀x ∀t ∀a we have u(x, t) = u(ax, a2t).

In order to solve it, let η = x/
√
t and define v(η, t) = u(x, t), then the

invariance is
v(η, t) = v(η, a2t) ∀a 6= 0

this functional equation shows that v does not depend on t, this leads
to the invariant form (similarity form)

u(x, t) = f(x/
√
t).

the η is called the similarity variable (see [10] page 25, or Euvrard
[14]).

Hence, f(x/
√
t) is clearly invariant in all the transformations Ta.

3.15 Conclusion of the section

So up to this point, we have identified invariances by change of
scales, that gives solutions with less variables. This multiplicative in-
variance is a group of transformations. Of course, we only use simple
PDEs, but we hope that this may be useful for more complex PDE’s.
In the next sections, we will present the Π theorem which is a wea-
ker point of view, and the next one the Lie Group transform which
is a stronger point of view. Before that, we will see what is the ”self
similarity of second type”.
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4 Intermediate asymptotics and Self si-

milarity of second type

4.1 Introduction

We will study here in the next subsection the temperature in a
finite slab of width 2L. In the previous heat equation problem the
extra length was absent of the analysis.

One point of view is to say that the finite slab is like a semi
infinite media when we are near the wall at small time. We call it
”intermediate asymptotics” after Barenblatt. The idea is to say that
self similar solutions are solution as long as some parameters remain
small (here the inverse of the width of the slab is the small parameter).

We were dealing in fact with what is called Selfsimilarity of first
kind. It means that in the case that we will study (heat equation
in a finite slab), if the inverse of the adimensional size of the slab is
smaller and smaller, then the solution tends toward the solution of
the heat equation in a semi infinite media. It is a regular behavior.

This is not always the case, so Barenblatt introduced ”Self simila-
rity of second type”. Self similarity of second type consists to try to
reintroduce such lost parameters in the resolution. If the influence is
regular, then we have the first kind. If not, it is the second case : let
us test this on the case of the wedge which is a good example.

4.2 Heat Equation as Intermediate asymptotics

There is an hidden parameter : the width of the object because
infinite object do not exist in real life. Let us start by a slice of
width 2L (finite in x but always infinite in y and z ! ! !). The problem
consists to solve the heat equations with an initial and two boundary
conditions :

ρcp(
∂T
∂t

) = k(∂
2T
∂x2

), at t = 0 we have T (x, t = 0) = T0 and for t >0 we
have T (x = 0, 2L, t) = Text.

Let us write t = τ t̄ (τ is unknown) and x = Lx̄, (L is given) and
T = Text + (T0 − Text)T̄ (this choice is reasonable for T as it changes
between T0 to Text). In fact the wall is not infinite, is height h and
width `, are such that h >> L and ` >> L so that it seems infinite.
The time scale is obtained by what we call dominant balance. It means
that if we take τ = L2/a with a = k/ρcp depending on the material
uniquely. The non dimensional problem is :

∂T̄
∂t̄

= (∂
2T̄
∂x̄2

) with T̄ = 1 in t̄ = 0 and T̄ = 0 in t̄>0 and x̄ = 0 and 2.

Now what is the link with the selfsimilar solution ? In fact the self
similar solution was dealing with a semi infinite domain. Here it is
finite, but the self similar solution may be reobtained if we look at the
heat equation at small time (or at small distance from the interface).
That is why we call this ”intermediate asymptotics”. Let us define
t̃ = εt̄, we have to change the scale of space as well. In x = 0 , the
same in x = 2.
We take x̃ = εxx̄, we use always the same scale for the temperature
T̄ (x̄, t̄) = (T − Text)/(T0 − Text). so that

∂T̄

∂t̃
= εε−2

x

∂2T̄

∂x̃2
by dominant balance εx =

√
ε.

So we have the boundary condition T̃ (x̃ = 0, t̃) = 0 and the asymp-
totic matching T̄ (x̄, t̃) when x̄ goes to 0 is T̃ (x̃, t̃) when x̃ goes to
infinity : i.e. T̃ (x̃→ 0+, t̃) = T̄ (x̄→∞, t̄), which is 1.

The solution has the generic form :

F (T̄ , x̄/
√
t̄, x̄) = 0.

or, introducing the previous ε :

F (T̃ , x̃/
√
t̃,
√
εx̃) = 0.

In fact the self similar problem is obtained from the complete one
when the length of the slab become larger and larger in the internal
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variables, i.e. when ε goes to zero. When there is no problem, this is
called self similarity of first kind.

lim
ε→0

F (T̃ , x̃/
√
t̃,
√
εx̃)) = Φ(T̃ , x̃/

√
t̃)

Now, if, by chance

lim
ε→0

F (T̃ , x̃/
√
t̃,
√
εx̃)) = Φ((εx̃)αT̃ , x̃/

√
t̃) = 0

with a special exponent α (the anomalous exposant), this is self simi-
larity of second kid.

4.3 Heat Equation is a First type Self Similarity :
solution of the Heat Equation in a finite slab

To verify this first type similarity, let us solve the complete problem
in the slab.

∂T̄

∂t̄
= (

∂2T̄

∂x̄2
)

with T̄ = 1 in t̄ = 0 and T̄ = 0 in t̄>0 and x̄ = −1 and 1 (0 and 2 by
translation).

We search the solution as separated variables T̃k = f(t̃)g(x̃) and
obtain easily

Tk = e−k
2 t̃ sin(kx̃+ φk),

The boundary condition give φk = 0 and : sin(2k) = 0 of solution
ki = (2i− 1)π/2. The temperature is then

Σi>0Aiexp(−k2
i t̃) sin(kix̃)

Taking into account the initial value in time 1 = Σi>0 Ai sin(kix̃), we
have thanks to Fourier

∫ 2

0

sin(kix̃) sin(kjx̃)dx̃ = δij and

∫ 2

0

sin(kix̃)dx̃ =
4(−1)i+1

π(2i− 1)

so that the Ai are :

Ai =
4(−1)i+1

π(2i− 1)

Finally we have the exact solution as a Fourier series :

T̃ =
4

π
Σn>0

(−1)n−1

2n− 1
exp(−(2n− 1)2π

2

4
t̃) sin((2n− 1)πx̃/2).

We have the full solution. Now what is the link with the selfsimilar
solution ? Let us see this next.

t

x

 figure 4: tracé de T(x,t)=erf(
x

2!t
) pour t=0.5; 1; 1.5; 2; 2.5; 3.

x

t

 figure 5: tracé de erf(
x

2!t
) pour x=0.5; 1; 1.5; 2; 2.5; 3.

Remarque, si on joue bien avec les variables de similitude on trouve "=x/!t, qui donne :

"#' +2  #'' =0. Si par malchance on choisit "=x2/t  on trouve: -2 #' - " #' - 4 " #''=0
La solution en est bien entendu #=erf(!"/2), mais elle est n'est pas simple à voir!!! Il n'y a
pas de règle précise pour le choix de la bonne variable. De toutes façons, il faut à la fin
résoudre une équation différentielle (les cas de solutions exactes, comme ici sont
rarissimes).

3. Observons ce qui se passe pour les temps court et les petites distances dans la solution

complète: posons   x
_
 = -1 + $ x̂   et    t

_
 = $2 t̂ . et  développons  T

_
 à $ petit (n fixé):

** cos((2n-1)%x
_

/2) = 0 + sin((2n-1)%/2) sin((2n-1) % $ x̂ /2)  = (-1)n sin((2n-1)% $ x̂/2)

= (-1)n sin(kn x̂)

** exp (- (2n-1)2
%2

4
 t
_
 ) = exp (- (2n-1)2

%2

4
 $2 t̂  ) = exp (- kn

2 t̂ )

on a posé kn = (2n-1) $ % /2  et comme kn+1-kn= %$

 T
_

 = 
2
% &n>0 exp (- kn

2 t̂ ) sin(kn  x̂) 
(kn+1 - kn)

kn

PC1 -5-

Figure 16 – Plot T̄ (x̄, t̄) =
erf( x̄

2
√
t̄
) for t̄ = 0.5 1.0 1.5 2.0 2.5

and 3.0

La définition de l'intégrale de Rieman, en posant  nmax=(kmax/!/"+1)/2 (avec kmax>>1,
"<<1 et nmax>>1) permet  d'identifier:

2
!  

#$
$%

0

kmax

 exp(- k2 t̂ ) sin(k x̂) 
dk
k

  = 

n=nmax

&
n=0

 exp (- kn
2 t̂ ) sin(kn  x̂) 

(kn+1 - kn)
kn

on fait tendre " vers 0:      T
_

 ->  
2
!  '

0

(

 exp(- k2 t̂ ) sin(k x̂) 
dk
k

or   
2
!  '

0

(

 exp(- k2 t̂ ) sin(k x̂) 
dk
k

  =  
2
)!  '

0

*/2
exp(-+2)d+ !!!

Pour démontrer cette dernière égalité, il faut beaucoup d'astuce...  il faut remarquer d'une
part que

 
, 

,b
  '

0

(

 exp(-a2 k2) sin(2bk) k-1 dk  = 2  '
0

(

 exp(-a2 k2) cos(2bk) dk

=  '
-(

(

 exp(-a2 k2) cos(2bk) dk

puis intégrer   '
-(

(

 exp(-a2 k2) cos(2bk) dk  =  '
0

(

 exp(-a 2 k2 + 2 i b k) dk =

 '
-(

(

 a-1 exp(-a2 (k-i b/a2)2 - b2/a2) a dk =  )! a-1 exp(- b2/a2 )

car il est bien connu que  '
0

(
 exp(-+2 )d+=

)!
2

. cqfd

Pour les Saints Thomas, on trace ici erf(*/2) et  T
_

(-1+ * )t, t) fonctions de * pour

différents t sur la figure 6. La courbe erreur erf(*/2) et la solution T
_

(-1+ * )0.05, 0.05)
sont confondues.
Conclusion:
aux temps très courts, il faut mieux vaut utiliser erf (les modes de Fourier s'ajoutent mal),
ensuite, aux temps intermédiaires on écrit le développement complet (en pratique les
premiers termes). Aux temps longs: on ne garde que le premier terme de la série!!!! (à
chacun d'adapter son critère de passage d'une solution à l'autre en fonction de la précision
voulue).

*

 figure 6: erf(*/2) et  T
_

(-1+ * )t, t) pour t=0.05 0.1 et 0.2 (20 modes).

PC1 -6-
Figure 17 – Plot of erf(η/2) and

T̄ (η
√
t̄, t̄) for t̄ = 0.05 0.1 and 0.2

(20 modes). At short time, they are
superposed as expected.

4.3.1 Heat Equation in a semi inifinite domain

It may be shown in the complete solution in a slab, can reproduce
the erf solution

T̃ =
4

π
Σn>0

(−1)n−1

2n− 1
e−(2n−1)2 π

2

4
t̃ sin(

(2n− 1)πx̃

2
)→ 2√

π

∫ x

0

exp(−ξ2)dξ

for small x̃ and t̃.
To show that, we take for granted x̃ = εx̂ et t̃ = ε2t̂ and the deve-

lopment of T̃ at ε small (and n fixed) :

- MHP SSS. PYL 2.19- Self Similar Solutions

http://www.lmm.jussieu.fr/~lagree


• expand cos((2n−1)πx̄/2) = 0 + sin((2n−1)π/2) sin((2n−1)πεx̂/2)
so that, with kn = (2n− 1)επ/2

cos((2n− 1)πx̄/2) = (−1)n sin((2n− 1)πεx̂/2) = (−1)n sin(knx̂)

• then expand exp(−(2n− 1)2 π2

4
t̄) = exp(−(2n− 1)2 π2

4
ε2t̂) = e−k

2
n t̂

where we put kn = (2n − 1)επ/2 too and as kn+1 − kn = πε, so that
the expansion is :

T̄ =
2

π
Σn>0exp(−k2

nt̂) sin(knx̂)(kn+1 − kn)kn

By definition of the Riemann integral if we write

nmax = (kmax/π/ε+ 1)/2

(with kmax >> 1, ε << 1 and nmax >> 1) it allows to write :

2

π

∫ kmax

0

exp(−k2t̂) sin(kx̂)dk/k = Σn=nmax
n=0 e−k

2
n t̂ sin(knx̂)(kn+1−kn)/kn

if ε goes to 0 :

T̄ → 2

π

∫ ∞

0

exp(−k2t̂) sin(kx̂)dk/k

but the following identity holds :

2

π

∫ ∞

0

exp(−k2t̂) sin(kx̂)dk/k =

∫ η/2

0

exp(−ξ2)dξ

wich is the expected error function.

To establish this last identity, we have to notice that ;

∂

∂b

∫ ∞

0

e−a
2k2 sin(2bk)k−1dk = 2

∫ ∞

0

e−a
2k2 cos(2bk)dk

and this is as well
∫∞
−∞ e

−a2k2 cos(2bk)dk. Then integrating this expres-
sion

∫ ∞

−∞
exp(−a2k2)cos(2bk)dk =

∫ ∞

0

exp(−a2k2 + 2ibk)dk =

=

∫ ∞

−∞
a−1exp(−a2(k − ib/a2)2 − b2/a2)adk =

√
πa−1exp(−b2/a2)

because it is well known that
∫∞

0
exp(−ξ2)dξ =

√
π

2
.

In other words it says that the solution of the semi infinite media is
the same that the solution in a finite slab when the thickness of the
slab goes to infinity. Or it says that the solution of the semi infinite
media is the same than the solution in a finite slab when the time
scale is small.

When the limits of the two problems are the same, the selfsimilarity
is said of first kind.
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�2α

Figure 18 – flow round a triangular shape of base `

4.4 The wedge : selfsimilarity of second type

4.4.1 Testing selfsimilary

The inviscid 2D steady flow past a wedge (fig 18) solves the Lapla-
cian for the stream function with null value on the body, and far away
the derivative of the stream function is the given velocity. Let us use
the velocity as velocity scale and

−→∇2
ψ = 0

with ψ = 0 on the body (see figure 20 left for a sketch of the flow
around a triangle. The velocity is unity at infinity. We try at first the
classical way to deal with equations when we hope for selfimilarity.
The group of symmetries

ψ = ψ∗ψ̂, x = x∗x̂, y = y∗ŷ

leaves the far boundary condition invariant for ψ∗ = y∗ and the
differential equation is invariant for x∗ = y∗. The group is then
ψ = x∗ψ̂, x = x∗x̂, y = x∗ŷ. We write in an implicit way the solu-
tion so that

F (x, y, ψ) = 0, with the invariance F (x∗x̂, x∗ŷ, x∗ψ̂) = 0

this is true for any x∗ > 0, so we may imagine to change the function
F , and introduce another one, where we just changed

F (x, y, ψ) = 0, changed into G(x∗x̂, ŷ/x̂, ψ̂/x̂) = 0

as this is valid for any x∗, we guess that the first slot is not relevant,
and as tan θ = ŷ/x̂, we deduce that ψ̂ = x̂Ψ(θ) the selfsimilar variable
is the angle θ

Now let us see the last boundary condition, which is at the given `,
we see that this BC destroys the self similar structure.

A way to reobtain selsimilarity is to say that ` goes to infinity. But
in this case we have problems to ajust the boundary conditions far
from the wedge. We can not obtain ∂yψ = 1 the free stream condition.

It seems that we can not find a selfsimilar variable which satisfies
all the boundary conditions : .

4.4.2 Second Kind selfsimilar solution

In fact there exists one, but we have to change the boundary condi-
tions far from the wedge of length ` and look at the flow near the
apex (small r). The small parameter is the ratio r/` so that we test
the following anzatz, λ is called the anomalous exponent.

Φ = rF (θ)(
r

`
)λ

we solve the equation as an eigen value problem. We find the classical
wedge solution :

Φ = r cos((λ+ 1)θ − γ)β(
r

`
)λ

with

λ =
α

π − α and γ = −πλ.

the coefficient β is unknown.

4.4.3 Exact Solution

The inviscid flow past a wedge admits an exact solution which is ob-
tained thanks to Schwartz-Christoffel mapping (see Milne-Thomson).
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Let αi be the interior angles of a simple closed polygon of n vertices,
so that :

α1 + α2 + ...+ αn = (n− 2)π

then : the transformation from the ζ-plane to the z-plane, defined by

dz

dζ
= K

∏

i=1,n

(ζ − ai)αi/π−1

transforms the real axis in the ζ-plane into the boundary of a closed
polygon in the z-plane in such a way that the vertices of the poly-
gon correspond to the points ai, and the interior angles are αi. The
constant K may be complex.

Φ(z) = Re(ξ(z)), and Ψ(z) = Im(ξ(z)). where the transform deals
with the points corresponding to the vertices of the polygon in the z
plane :

z(ξ) =

∫ ξ

0

s−α/π(s− ξ1)1/2+α/π(s− ξ2)−1/2ds.

Note : z(ξ1) = `(1 + i tanα), z(ξ2) = `, Let |ξ| � ` and develop the
integral in which we set ξ1 = ζ1` , ξ2 = ζ2`, so that :

z(ξ) = `α/π
∫ ξ

0

s−α/π(s/`− ζ1)1/2+α/π(s/`− ζ2)−1/2ds,

z(ξ) ∼ `α/π(−ζ1)1/2+α/π(−ζ2)−1/2

∫ ξ

0

s−α/πds,

so that

z(ξ) ∼ πeiα

π − αζ
1/2+α/π
1 ζ

−1/2
2 `(ξ/`)(π−α)/π.

Inverting the relation we obtain that

ξ = `(z/`)π/(π−α)βe−
iαπ
π−α or ξ = r(z/`)α/(π−α)βe

π(θ−α
π−α

having defined β = ζ
−π+2α
π−α

1 ζ
2π
π−α
2 When have then...

Φ = r cos((λ+ 1)θ − γ)β(
r

`
)λ

with

λ =
α

π − α and γ = −πλ.

That is exactly the solution of the problem

dimensional analysis yields (ã = λ̃/ρ̃c̃p)

(ρ̃c̃p)
√

ãt̃∆T̃

∆Q̃0︸ ︷︷ ︸
Π

= φ




x̃ − x̃0√
ãt̃︸ ︷︷ ︸

Π1

,
δ̃√
ãt̃︸︷︷︸

Π2

,

√
ãt̃

x̃0︸︷︷︸
Π3

,

√
ãt̃

l̃ − x̃0︸ ︷︷ ︸
Π4




If Π2, Π3, Π4 # 1: Π = φ(Π1, 0, 0, 0) complete similarity (similarity of
the first kind).
intermediate asymptotics valid for for:

δ̃2

ã
# t̃ # x̃2

0

ã
,
(l̃ − x̃0)

2

ã

Time large enough that details of initial temperature distribution are
negligible, but time small enough that boundary effects still play no
role.

25

H. Steinrück Asymptotic Methods in Fluid Mechanics, CISM, Udine 21-25. Sept. 2009

3.4 Incomplete similarity
3.4.1 Flow past a wedge
We try to apply similar arguments as in the case of heat conduction to
the inviscid flow past a wedge.

2α

θU x

y

r0
l

r

26
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dimensional analysis:
parameters Ũ∞, ϕ,r̃,l̃, Φ̃

ψ̃

Ũ∞r̃
= φ

(
ϕ,

δ̃

r̃
,
r̃

l̃

)

intermediate parameter regime δ̃ # r̃ # l̃ and assuming complete
similarity yields ,

Φ̃

Ũ∞r̃
= φ (ϕ, 0, 0))

potential (φxx + φyy = 0) flow yields

φ′′ + φ = 0, φ′(α) = φ′[2π − α) = 0

⇒ ψ = 0 no complete similarity!
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Exact solution (Schwartz-Christoffel mapping)

Φ(z) = real partU ξ(z),

z(ξ) =

∫ ξ

0

s−α/π(s − ξ1)
1/2+α/π(s − ξ2)

−1/2 ds.

Note: z(ξ1) = l(1 + i tan α), z(ξ2) = l,

α

ξ

l

z

0 0

l(1 + i tan α)

ξ1 ξ2

z = r eiθ
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ã
,
(l̃ − x̃0)

2

ã
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Figure 19 – Those two figures have been extracted from H. Steinrück
Asymptotic Methods in Fluid Mechanics, CISM, Udine 21-25. Sept.
2009.

4.4.4 Comparison

Comparisons with FreeFem++ would be a good idea.

4.5 Moffat Eddies

We looked at the ideal flow in a wedge, but the viscous flow in
a wedge of angle 2α (Moffatt H K 1963 J. Fluid Mech. 18 1-18) is
complicated as well. The solution of the Stokes equation is expected
to be

ψ = rλfλ(θ)

which has to be put in the biharmonic equation. If one of the bounda-
ries is moving, the ”physical” problem is the problem of the Taylor’s
scraper. The scaling is of the first kind, and λ = 2. But, if the flow
is driven by two-dimensional stirring at a distance far away from the
corner, λ is determined by the transcendental equation

sin(2(λ− 1)α) = −(λ− 1) sin(2α).
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Figure 20 – Moffat eddies in the ”cours des Houches” 1973

(2.23) If 2α < 146o, this equation admits no real solutions. There are
however complex solutions, which correspond to an infinite sequence
of progressively smaller and smaller eddies. Since λ is complex, the
strength of the eddies decreases as one comes closer and closer to the
corner.

The appearance of an infinite system of vortices due to only the
viscosity effect is unexpected. It is common that viscosity has a dissi-
pative role, here it is an organizing factor. The disappearance of these
vortices for α > 73o is also unexpected.

4.6 Diffusion with two coefficients : second type

Barenblatt the cooled/heated problem

∂

∂t
T =

∂2

∂x2
T for

∂

∂t
T > 0 and

∂

∂t
T = (1 + ε)

∂2

∂x2
T for

∂

∂t
T < 0

for ε = 0, the solution is in T = 1√
t
Φ(x/

√
t) the solution is searched

with an anomalous exponent

T =
1

t(1+α)/2
φ(x/

√
t)

4.7 Conclusion

This method of looking at selfsimilar variables has been reviewed by
Barenblatt in his various books or reviews, from [8] in 1973, [7] in 79,
[6] in 1996 and [5] in 2006. It is funny to notice that from Barenblatt
point of view, a wave :

φ = f(x− ct)
is a self similar solution in ξ, τ variables with x = Log(ξ), t = Log(τ).
As x− ct = Log(ξ)− cLog(τ) = Log( ξ

τc
) so that if F (η) = f(Log(η)) :

φ = f(x− ct) = F (
ξ

τ c
),

which is obviously a selfsimilar form !

The second type of selfsimilarity is less common, but it is power-
full, (Barenblatt’s most outstanding contribution is the analysis of the
turbulent boundary layer).

The anomalous exponent of the second type similarity is in fact a
log in the example at the end of this chapter.
The concept of intermediate asymptotic is an elegant way to justify
the use of selfsimilarity when some parameters are negligible (or ne-
glected).
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5 Pi Theorem

5.1 Vaschy-Buckingham or Π theorem

The Vaschy-Buckingham or Π theorem is classical (named after
Aimé Vaschy 1892, Edgar Buckingham, 1914). We deliberately do not
use it up to now. But the scales invariance that we used is linked to
the origin of Π theorem : The equations of physics are independent on
the system of units, the change of units is a kind of scaling : one meter
is 254 inches, one knot is half a meter per second... So, it consists to
count the number of variables in the problem and to compare it to the
number of fundamental units.

n = ](Parameters)− ](M,L, T )

We then construct n numbers without dimension. For example a
length has dimension [L], a velocity has dimensions [L][T ]−1, a force
[M ][L][T ]−2. It may be interpreted in terms of matrix linear system
on the power of the dimensions [M ]α[L]β[T ]β.

5.2 Examples

See Sedov and Barenblatt and Bluman and Cole Bluman and
Kumei among others for the über classical simple systems :
• Find the period (say T , dimension [T ]) of pendulum of length `
(dimension [L]) of mass m ([M ]) in the gravity field g (dimension
[L][T ]−2) :
− Here we have ](Parameters) = 4 and ](M,L, T ) = 3 so one
number without dimension. We see that m is not useful, so T

√
g/` is

the number.
The next move in this problem is to find the angle θ as func-
tion of the initial angle θ0 as function of time t for a pendu-
lum of length ` of mass m in the gravity field g. In this case
](Parameters)− ](M,L, T ) = (6− 3) = 3, then the 3 numbers are θ,
θ0 and t

√
g/` relation is θ = F (θ0, t

√
g/`)

• Find the drag force D on a sphere (dimension [M ][L][T ]−2) of

radius R (dimension [L]) in a viscous flow of viscosity µ (dimension
[M ][L]−1[T ]−1) of velocity U (dimensions [L][T ]−1) .
− We have ](Parameters) − ](M,L, T ) = (4 − 3) = 1 Drag force
force is [M ][L][T ]−2 which is µRU (Stokes force). So D/(µRU) is
without dimension.
• Find the drag force D on a sphere (dimension [M ][L][T ]−2) of
radius R (dimension [L]) in a viscous flow of viscosity µ (dimension
[M ][L]−1[T ]−1) of velocity U (dimensions [L][T ]−1) and of density ρ
(dimensions [M ][L]−3) .
− We have ](Parameters) − ](M,L, T ) = (5 − 3) = 2 Drag force
force is [M ][L][T ]−2 which is µRU and we have Reynolds number
Re = ρUR/µ. So D/(µRU) is function of ρUR/µ. It can be as well
D/(ρU2) is function of ρUR/µ ; which is the same.
• Pressure drop in a Pipe ∆p with ρ, µ, R and Q. Find the drag
by unit length [M ][L]−2[T ]−2. in a pipe having the debit Q (di-
mension [L3]/[T ]), the driving pressure gradient −dp/dx (dimension
[M ][L]−2[T ]−2), the viscosity ν (dimension [L]2[T ]−1) and the radius
(dimension [L]).
• find the radius (dimension [L]) of the atomic explosion of 1945 as
a function of the energy released (dimension [M ][L]2[T ]−2) and the
density (dimension [M ][L]−3) and the time (dimension [T ]),

v =
r

t
V (ξ); ρ = ρ0R(ξ); p = ρ0

(r
t

)2
P (ξ), with ξ =

r

(Et2/ρ)1/5

• find the diffusion length (dimension [L]) of the heat equation as func-
tion of time (dimension [T ]) and the diffusivity a (dimension [L]2[T ]−1)
.
• Find the massic rate of flow (dimension [M ]/[T ], volumic mass
ρ = [M ][L]−3) through a triangular spillway ”deversoir” (chute flow
in the gravity field g = [L][T ]−2) of characteristic size h ([L]),
Q = C(α)ρg1/2h5/2 (from Sedov where the definition is strange)

• Find the frequency ν (dimension 1/[T ]) of the wing beat of a flying
insect, (g gravitational acceleration ; S, the wing surface ; ρ air density ;
and m, the mass of the insect.

• Find the pulsating frequency ν (dimension 1/[T ]) of oscillation of a
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liquid drop, it depends on the surface tension σ, the liquid density ρ,
and the mean radius of the drop.

5.3 Discussion

This is in fact another point of view of selfsimilarity. It is based on
the fact that the equations of physics are independent on the system
of units. The initial definition of similarity follows Barenblatt [6]
follows : physical phenomena are called similar if they differ only in
respect of numerical values of the dimensional governing parameters ;
the values of the corresponding dimensioneless parameters being
identical.

We deliberately do not insist on this point of view, as it is in fact a
problem of scale invariance.

Furthermore, the Mechanical point of view is that we often have
all the equations of the phenomena, we just want to solve them in
special cases. For instance, we have to Solve Navier Stokes equations,
and that is all.

5.4 Diffusivity, OK

For example, looking at the heat equation ∂c
∂t

= a∂
2c
∂t2

, (a = k/ρcp) it
is the same to do :
scale the equation by x = Lx̄, t = τ t̄, c = c0c̄ and use the dominant
balance argument to obtain L2 = aτ and to adimensionalise (say that
concentration has a special unit mol/l) : ∂c̄

∂t̄
= ∂2c̄

∂x̄2
. From this we use

the scale invariance and obtain the η = x̄/
√
t̄ variable.

Saying that we have to find the diffusion length L (dim [L]) as
a function of time τ (dim. [T ]) having a diffusivity a of dimension
([L[T ]−2), gives (there is no mass, but there is concentration)

n = ](c, c0, x, t, a)− ](C,L, T ) = 2

so c/c0 and x2/(at) is without dimension, it is of course, the same than
previously. Let remark that the Π theorem, does not need exactly the

knowledge of all the equations of Physics, but al least the constitutive
laws : we have to know the existence of a to construct the parameter
without dimension x2/(at).

5.5 Diffusivity, not OK

Take the same example but with velocity ∂u
∂t

= ν ∂
2u
∂t2

, at time t = 0
we impose u(x = 0, t) = U0.

The Πtheorem gives (there is no mass) :

n = ](u, U0, x, τ, ν)− ](L, T ) = 3

the Π-theorem gives :

u/U0 = F (x/
√
νt, U0x/ν).

The selfsimilarity theory gives

u/U0 = F (x/
√
νt).

the Πtheorem does not take into account the linearity of the equation,
so it is less powerfull...

5.6 Drag force

Case of the drag force the way to present things like : Find the drag
force on a sphere (dimension [M ][L][T ]−2) of radius R (dimension [L])
in a viscous flow of viscosity ν (dimension [L]2[T ]−1) of velocity U
(dimensions [L][T ]−1) .

so

5.7 Comments

Furthermore scale invariance may be applied to any PDE regardless
wether it is physical or not.

Barenblatt [5], himself, though he is found of the Π theorem,
says page 63 ”the set of selfsimilar solution which cannot obtained
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from dimensional considerations is considerably richer than the set
of self-similar solutions whose form is completely determined by
dimensional analysis”...

The next section is devoted to invariance of ODEs before the section
on Lie groups which are the generalisation of scale invariance. This is
a intermezzo to be convinced of the existence of solutions in y/xn.
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6 Scaling Invariance on a ODE

6.1 definition

At first, we will deal with ODEs (as in [9]). ODE means Ordinary
Differential Equations (EDO in French) .We introduce scaling inva-
riance for them. A differential equation is said to be invariant under
a scaling transformation when the differential equation reads the same
in the new coordinates.

Imagine the following problem :

dy

dx
= F (x, y),

and let us introduce the transformation x∗ = αx and y∗ = βy. this
is a streaching or similitudinous transformation. The transformation
gives :

dy∗

dx∗
=
β

α
F (
x∗

α
,
y∗

β
),

the definition of invariance is then :

β

α
F (
x∗

α
,
y∗

β
) = F (x∗, y∗).

We will see next what my be obtained from this invariance.

6.2 Consequences for a ODE

6.2.1 Separation of variables

The first case that may arise is that the α and β are independent.
In this case :

βF (x, y) = αF (αx, βy),

the derivative by α implies :

0 = F (αx, βy) + αxF1(αx, βy)

where F1 is the derivative with respect to the first variable of the 2
variables function F (, ). Written in the star variable it is :

0 = F (x∗, y∗) + x∗
∂

∂x∗
F (x∗, y∗),

by direct integration it yields

F (x∗, y∗) = g(y∗)/x∗.

So that the invariance βF (x, y) = αF (αx, βy) reads βg(y) = g(βy)
derivation by β gives g(y) = yg′(βy) so g(βy)/β = yg′(βy) hence :

g′(y∗)

g(y∗)
=

1

y∗
.

that we solve in g(y∗) = ay∗, where a is a constant, the final form of
F is then

F (x, y) = a
y

x
.

The differential equation is then

dy

dx
= a

y

x

which is solved by separation of variables. So we will keep in mind
that the separation of variable is linked to independent scalings like
here.

6.2.2 Homegenous equations

An homogenous ODE is by definition invariant by any stretching
by the same α of the variables :

F (x, y) = F (αx, αy)

By the definition this is true for any α, so α can be arbitrarily chosen
to simplify the form of the equation. Using the simple change of va-
riables y = u(x)x, then y′ = xu′+u. Then using the identityF (x, y) =
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F (αx, αy) to simplify the equation by choosing to set α to be 1/x, we
transform the original problem into the separable differential equa-
tion :

x
du

dx
+ u = F (1, u(x))

which can then be integrated by the usual methods.

6.2.3 Self similarity

The method of separation of variable is well known, we have just
seen that it can be interpreted as a specific case of invariances. If now
β is a function of α, the ”method of self similar variables” will emerge.
The invariance is with β(α) :

βF (x, y) = αF (αx, βy)

the derivative by α implies

β′F (x, y) = F (αx, βy) + αxF1(αx, βy) + αβ′yF2(αx, βy).

Then with the transform :

(
β′α

β
− 1)F (x∗, y∗) = x∗

∂

∂x∗
F (x∗, y∗) + y∗

β′

β

∂

∂y∗
F (x∗, y∗)

the characteristic differential equations obtained from this are (intro-
ducing a parametrisation x∗ = x∗(s∗), y∗ = y∗(s∗), and F ∗ = F ∗(s∗) :

dx∗

ds∗
= x∗,

dy∗

ds∗
= y∗β′/β

then

(
β′α

β
− 1)F (x∗, y∗) =

dx∗

ds∗
∂

∂x∗
F (x∗, y∗) +

dy∗

ds∗
∂

∂y∗
F (x∗, y∗)

but by definition of chain rule derivative

dF ∗

ds∗
=
dx∗

ds∗
∂

∂x∗
F (x∗, y∗) +

dy∗

ds∗
∂

∂y∗
F (x∗, y∗)

by comparing, we have

dF ∗

ds∗
= (β′α/β − 1)F

so that
dF

(β
′α
β
− 1)F

=
dx∗

x∗
=

dy∗

β′α
β
y∗

so integration of dx∗

x∗
= dy∗

β′α
β
y∗

gives η constant with η = y∗/x∗
β′α
β and

integration of dF

(β
′α
β
−1)F

= dx∗

x∗
gives

F (x∗, y∗) = x∗(
β′α
β
−1)G(y∗/x∗

β′α
β )

with G an arbitray function. As there is no dependance of F on α, β′α
β

is a constant say k, so β = αk. then the differential equation

dy

dx
= xk−1G(y/xk)

is invariant under the transformation x∗ = αx and y∗ = αky.

All this means that the function are constants along specific curves.

The homogenous case is a simplification of this case.

6.3 Conclusion

As a conclusion, we observe that the invariance by scalings of an
ODE induces y/xk variables.... This will be useful and natural the-
reafter with PDE. Before, let us introduce the concept of Lie Groups
which is a generalization of invariances.
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7 Toward Lie Groups

7.1 Definition

Lie groups are for sure a complicated stuff. The interested reader
should look at the bibliography (Bluman Kumei Cole [10] and [9] for
instance) for more details. The book [9] nearly only deals with the
Lie group of the heat equation along 250 pages.

We present here an over-oversimplified view with poor mathema-
tics. We introduce some of the tools and ideas of the method, the
reader should look at [10], [9] for details and sound mathematics.

Following [10] and [9], let x = (x1, x2....xn) lie in a subregion D of
IRn The set of transformations :

x∗ = X(x; ε)

depending on parameter ε with φ(, ) a law of composition of parameter
forms a group of transformations if :
(i) x∗ is in D
(ii) if x∗ = X(x; ε1) and x∗∗ = X(x∗; ε2) then x∗∗ = X(x;φ(ε1, ε2))
(iii) x∗ = x for the neutral element e : X(x; e) = x.
(iv) the law of composition forms a group.

Examples, there are simple examples as :
• Translations along x

x∗ = x+ ε, y∗ = y.

here φ(ε1, ε2) = ε1 + ε2 and e = 0.

• A group of scaling
x∗ = αx, y∗ = α2y.

here φ(α1, α2) = α1α2 and e = 1
One prefers to write with ε = α− 1 so that

x∗ = (1 + ε)x; y∗ = (1 + ε)2y.

here φ(ε1, ε2) = ε1 + ε2 + ε1ε2 and e = 0.

7.2 Infinitesimal transformations

Considering the one parameter Lie group of transformations (x∗ is
of coordinates x∗i )

x∗ = X(x; ε)

with identity ε = 0 and a law of composition φ. We expand about
ε = 0 :

x∗ = x+ ε(
∂X

∂ε
(x; ε))ε=0 +O(ε2).

Let define ξ(x) :

ξ(x) = (
∂X

∂ε
(x; ε))ε=0,

the transformation x+ εξ(x) is called the infinitesimal transformation
of the Lie group.

7.3 Infinitesimal generators

The infinitesimal generator of the one parameter Lie group of trans-
form is the operator :

X = Σiξi
∂

∂xi

so that for any function F (xi)

XF = ξi∂iF

note that Xx = ξ. The group of trandsformation is :

x∗ = X(x; ε) = eεXx = x+ εXx+
1

2
ε2X 2x+ ...
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7.4 Invariant function

Any differential function is an invariant of the Lie group if and only
if for any group transformation

F (x∗) = F (x)

or
F (x) = F (X(x; ε))

Then for this invariant function

F (x∗i ) = F (xi) + εξi
∂

∂xi
F + ...

at order 0 we have F (xi) = F (xi) and at next order

ξi
∂

∂xi
F = 0

This is called the invariant surface condition. The general solution is
obtained by solving the characteristic equation :

dx1

ξ1

=
dx2

ξ2

= ... =
dxn
ξn

This reduces the order of the problem. The genial idea of Sophus
Lie is to replace the complicated F (x) = F (X(x; ε)) into the simpler
caracteristic form dxi

ξi
= ...

Example, let us take the group of scaling

x∗ = eεx, y∗ = e2εy, or x∗ = (1 + ε)x, y∗ = (1 + ε)2y

The infinitesimal generator is using the previous definitions :

X = x
∂

∂x
+ 2y

∂

∂y

a invariant function F is such that

XF = 0 = x
∂F

∂x
+ 2y

∂F

∂y

the corresponding characteristic differential equation reduces to

dx

x
=
dy

2y

with solution y/x2 = cst.

Verification, say that x∗ = eεx, y∗ = e2εy, is the gorup of scaling
F (x∗) = F (eεx, e2εy) is invariant means that dF

dε
= 0 indeed

dF

dε
= eεx

∂F

∂x
+ 2eεy

∂F

∂y
with ε→ 0 gives x

∂F

∂x
+ 2y

∂F

∂y
.

Which is zero along the characteristics :

dx

x
=
dy

2y
i.e. along constant

x√
y

this is indeed the selfsimilar variable.

Example, let us take the group of rotation

x∗ = x cos(ε)− y sin(ε), y∗ = x sin(ε)− y cos(ε).

The infinitesimal generator is using the previous definitions, with ξ1 =
x and ξ2 = 2y

X = x
∂

∂y
− y ∂

∂x

a invariant function F is such that

XF = 0 = x
∂F

∂y
− y∂F

∂x

the corresponding characteristic differential equation reduces to

dx

x
= −dy

y

with solution x2 + y2 = cst, the solution is constant on a radius.
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7.5 Application to a very simple exemple

I think that this section is wrong
Image that we want to solve the problem

Lu =
∂u

∂x
− u = 0

OK, it is easy, let us write :

u∗ = u+ εη, x∗ = x+ εξ,

then we apply the transformation to the equation : ∂x
∂x∗

is

∂

∂x∗
(x− εξ) = 1− ε( ∂x

∂x∗
∂

∂x
+

∂u

∂x∗
∂

∂u
)ξ

∂x

∂x∗
= 1− ε(∂ξ

∂x
+
∂u

∂x

∂ξ

∂u
)

so by definition of u∗ = u(x) + εη(x, u) :

∂u∗

∂x∗
=
∂u∗

∂x

∂x

∂x∗
= (

∂u

∂x
+ ε

∂η

∂x
+ ε

∂η

∂u

∂u

∂x
)
∂x

∂x∗

then
∂u∗

∂x∗
=
∂u

∂x
+ ε(

∂η

∂x
+
∂η

∂u

∂u

∂x
− ∂ξ

∂x

∂u

∂x
− ∂u

∂x

∂ξ

∂u

∂u

∂x
)

The transform of ∂u
∂x
− u is then

(
∂u∗

∂x∗
− u∗) = (

∂u

∂x
− u) + ε(−η +

∂η

∂x
+
∂η

∂u

∂u

∂x
− ∂ξ

∂x

∂u

∂x
− ∂ξ

∂u
(
∂u

∂x
)2)

Invariance of the problem is that for any solution (−η+ ∂η
∂x

) = 0, so
that we have to solve a set of linear equations for the infinitesimals.
So linearity implies ∂ξ

∂u
= 0.

so that ξ = α(x) and successively equating to zero the coefficients
∂η
∂u
− ∂ξ

∂x
= 0 gives η = α′u + a, but as −η + ∂η

∂x
= 0, then α′ = α, so

that α = ex, then ξ = ex and η = exu. So the inifinitesimal generators
are :

X1 =
∂

∂x
and X2 = u

∂

∂u

the first one corresponds to the invariance by translation of the equa-
tion, the second to the invariance by dilatation. The characteristic
equation

dx

ξ
=
du

η
, is dx = du/u

it gives the (expected ! !) solution :

u = ex.

Let us verify that the equation is invariant if u∗ = u+εu, x∗ = x+ε
the transformation gives :

[
∂u∗

∂x∗
− u∗] = [

∂u∗

∂x
1− u∗]

[
∂u

∂x
+ ε

∂u

∂x
]− [u+ εu] =

∂u

∂x
− u+ ε(

∂u

∂x
− u) = 0.

This is a rather simple exemple.
In fact it is part of the ”trivial” infinite parameter Lie group of the

linear operator. A linear system of PDE’s defined by a linear operator
L :

Lu = g(x)

always admits a ”trivial” infinite parameter Lie group of transforma-
tions :

x∗ = x and u∗ = u+ εω(x)

for any ω(x) satisfying Lω = 0 (see [10] page 200).

7.6 Application to the heat equation

The technique is virtually the same for other PDES. In the case of
the heat equation, it has been achieved by Sophus Lee, and necessitates
210 pages in Bluman & Cole [9]. Starting from the PDE

∂u

∂t
− ∂2u

∂x2
= 0
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let us write :

u∗ = u(x, t) + εη(x, t, u), x∗ = x+ εξ(x, t, u), t∗ = t+ ετ(x, t, u),

then we apply the transformation to the equation, compute ∂x
∂x∗

but
now there are terms in ∂τ

∂x
and ∂u

∂t
in it, and we have the new terms

coming from ∂t
∂t∗

to compute. The equation involves second order deri-
vatives. After some algebra we may obtain the expression of invariance
of the PDE. We substitute the equation in it. Next, we impose it to be
linear in the infinitesimals ux uxt and ut ux and u2

x that are present.
This gives :

∂τ/∂u = 0, ∂ξ/∂u = 0, ∂2η/∂u2 = 0.

The resolution of this gives :

ξ = κ+ δt+ βx+ γxt

τ = α + 2βt+ γt2

η = u(−γx2/4− γt/2− δx/2 + λ).

In the x, t space this represents ”trivial” transformations. κ represents
translations in x, α in t, δ is the Galilean invariance, and β is the
streaching invariance. γ represents the projective transformation

x∗ = x/(1− εt); t∗ = t/(1− εt).

From this the infinitesimal generators of the heat equation are

X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = u

∂

∂u
X4 = x

∂

∂x
+ 2t

∂

∂t

X5 = xt
∂

∂x
+ t2

∂

∂t
− (x2/4 + t/2)u

∂

∂u
and X6 =

∂

∂t
− (x/2)u

∂

∂u
The final solution depends on the fact that the domain is bounded or
not.

In the infinite domain, one finds ([10] page 222), the classical

e−x
2/(4t)

√
4πt

and more specificaly :

U0e
−(x−λ/2)2/(4(t+κ))

√
t+ κ

In infinite domain, one may exhibit ([10] page 179)

u = (c1 + c2x/t)
e−x

2/(4t)

√
4πt

the forced solution in eiωt... Other complicated forms may be obtained
involving confluent geometric solutions, see [9] page 213 to 248.

Some other examples of classical solutions are in [9] and [10]
such as the advection equation, the wave equation, the cylindrical
wave equation, the Fokker Planck Equation (and that is nearly
all). See Rosen and Ullrich [23] for the invariance group of the
equation ∂tu = −u · ∇u, Latypov [17] for the nonlinear advection
equation or Coggeshall who construct with this methods the groups
of the inviscid flows. Ma and Hui [19] used the method of Lie group
transformations to derive all group-invariant similarity solutions of
the unsteady two-dimensional laminar boundary-layer equations.
They used formal computation to do that, and present a method of
nonlinear superposition to generate further similarity solutions from
a group-invariant solution. Andrei [1] used as well Maple to find
selfsimilar solutions in boundary layers, unfortunately, he found all
those that have been obtained previously.
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7.7 Conclusion on Lie Groups

As a conclusion, the theory of Lie Groups is fascinating. But it is a
bit complicated. The simple and good enough method consists to find
the simple and evident symmetries (for example in the vortex case by
rotation ∂θ = 0, by translation ∂z = 0... ) and then to use the scaling
transformation on the remaining variables (in the vortex case just r
and t). Then we settle the ODEs of the selfsimilar problem. This is
good enough for a lot of systems.
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8 A special problem involving loga-

rithms : Singularity of the corner

8.1 The problem

Some problems (in MOCVD, in heat, in solids) present a solution
with a logarithmic term in rlog(r), we present here a possible method
to obtain them (thanks to A.A. and J.P for discutions).

Let us consider the following heat problem in the upper half plane
(y > 0) :

∂2T

∂x2
+
∂2T

∂y2
= 0

with a jump in Neuman conditions (the heat flux density changes from
a given value to an adiabatic condition) in y = 0 : such as :

∂T

∂y
= 0 in x > 0 and

∂T

∂y
= −1 in x < 0,

with good enough conditions at infinity. We will show that the local
analytical solution is :

T = krcos(θ)− r

π
(log(r)cos(θ)− θsin(θ))

where k as to be adjusted.
This is a new special case of second type selfsimilarity. The anoma-

lous exponent of the second type similarity is no more real but in fact
a logarithmic term.

8.2 Trying a selfsimilar solution

We try at first the classical way to deal with equations when we
hope for selfimilarity. The group of symmetries

T = T ∗T̂ , x = x∗x̂, y = y∗ŷ

leaves the flux invariant for T ∗ = y∗ and the differential equation for
x∗ = y∗. The group is then T = T ∗T̂ , x = T ∗x̂, y = T ∗ŷ. We write in
an implicit way the solution so that

F (x, y, T ) = 0, with the invariance F (T ∗T̂ , T ∗x̂, T ∗ŷ) = 0

this is true for any T ∗ > 0, so we may imagine to change the function
F , and introduce another one, where we just changed

F (x, y, T ) = 0, changed into G(T̂ /x̂, T ∗x̂, ŷ/x̂) = 0

as this is valid for any T ∗, we guess that the second slot is not relevant,
and as tan θ = ŷ/x̂, we deduce that T̂ = x̂Θ(θ) the selfsimilar variable
is the angle θ (we may have found T̂ = ŷΘ1(θ), but this new function
Θ1(θ) is in fact such as tan(θ)Θ1(θ) = Θ(θ)).

We notice that T̂ = x̂Θ(θ) = r̂ cos(θ)Θ(θ), so we look at solutions
of

1

r

∂

∂r
(r
∂

∂r
T ) +

1

r2

∂

∂θ2
T = 0 like T = r cos(θ)Θ(θ)

so

1

r
(cos(θ)Θ(θ)) +

1

r2
r(Θ′′ − 2 sin θΘ′ − cos(θ)Θ(θ)) = 0.

then Θ′′ − 2 sin θΘ′ so ln(Θ′) = −2cos(θ) + A in θ = π, we have

∂yT = −1

r

∂

∂θ
T

so ∂yT = − sin(θ)Θ + cos(θ)Θ′(θ) = −Θ′(π) = −1 and in 0 we have
Θ′(0) = 0. We have too many Boundary Conditions, and they are not
valid. It seems that we can not find a selfsimilar problem even if we
self similar form was possible.

8.3 Solutions of Heat Equation

8.3.1 Separated variables

Let us start from scratch and look at solution of the Laplacian
operator :

1

r

∂

∂r
(r
∂

∂r
T ) +

1

r2

∂

∂θ2
T = 0
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we now that we can look at solutions like, T = R(r)Θ(θ)

(
R′(r)

rR(r)
+
R′′(r)

R(r)
)r2 = −Θ′′(θ)

Θ(θ)

as we have a function of r equal to a function of θ, this is constant,
it is negative (a positive one does not fit BCs) and writing Θ′′(θ) =
−n2Θ(θ), so Θ(θ) = cos(nθ) ot sin(θ). Those solutions are more gene-
ral than the expected case n = 1 from the selfsimilar analysis. Then
the solutions of

R′(r)

rR(r)
+
R′′(r)

R(r)
+
−n2

r2
= 0

are rn et r−n (if we change ρ = Log(r) it is straightforward) as

(r
∂

∂r
)2R(r)− n2R(r) = 0, with (r

∂

∂r
) = (

∂

∂ρ
)

so the solutions are

rn(Acos(nθ) +Bsin(nθ)) + r−n(Ccos(nθ) +Dsin(nθ))

The normal flux in resp. θ = 0 and in resp. θ = π is

rn(Bn) + r−n(Dn) resp. rn(−Bn) + r−n(−Dn)

we wish it to be resp. zero resp. to be 1, it is not possible to impose
those two BCs.

8.4 Eigen Values

To go further let us remark that solutions in rn(einθ) are zero eigen
values of the Laplacian operator, let us write f(θ) = A cos(nθ) +
B sin(nθ)) so that if we substitute :

−→∇2
(rnf(θ)) = (f ′′ + n2f)rn−2 = 0 as (f ′′ + n2f) = 0.

Now the trick is to use another function rng(θ) so that

−→∇2
(rng(θ)) = [(g′′ + n2g)rn−2].

but (g′′+n2g) is not zero. Now, let us construct a new function which
is F (r) an multiply by the eigen function rnf(θ)

−→∇2
(F (r)rnf(θ)) = [rn−2f(θ)]

(
(2n+ 1)rF ′(r) + r2F ′′(r)

)

if by chance the term with derivatives of F is not zero, but a constant

(
(2n+ 1)rF ′(r) + r2F ′′(r)

)
= α.

Then we construct a new function as the linear combination of the
two previous ones φ = F (r)rnf(θ) + rng(θ) whose laplacian is :

−→∇2
(rng(θ) + F (r)rnf(θ)) = [(g′′ + n2g) + αf(θ)]rn−2,

so that

[(g′′ + n2g) + αf(θ)] = 0.

The solution of

(
(2n+ 1)rF ′(r) + r2F ′′(r)

)
= α

is

F (r) =
αLog(r)− r−2nc1

2n

and as f(θ) = A cos(nθ) +B sin(nθ)), the problem consists to solve

(g′′ + n2g) + α[A cos(nθ) +B sin(nθ))] = 0

which gives solutions for g in t/ sin(nθ)/2/n etc. This is a function of

θ alone. The new function φ solves
−→∇2

φ = 0.

Then by chance we constructed a new solution of the Laplacian. The
idea was to mix functions of r times function of θ one being solution
of the separated problem, the other not and to find the ODE which
solves the problem
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8.4.1 Generalization

Let us generalize this approach, or at least write it in a more abstract
way. Let us define un operator L so that :

L(uφ) = uLφ(φ) + Lu(u)φ,

imagine that we have a solution in the kernel : L(u0φ0) = 0, so that
it reads u0Lφ(φ0) + Lu(u0)φ0 = 0 wich may be solved as

Lu(u0) = λu0 and Lφ(φ0) = −λφ0 (9)

if the λ exists. This is the classical separation of variable method.
We now that those solutions may be written as an infinite sum of

elementary functions, in fact u0 is a set of function uk0 (and there is a
set of φk0) and the solution is a linear combination of

Σ∞k=0u
k
0φ

k
0.

The method that we use is a kind of ”variation of the constant me-
thod”. It means that we multiply φ0 by a u1 which does not solve Lu,
and we multiply u0 by a φ1 with Lφ(φ1) 6= 0.

Now applying the operator to u1φ0 and u0φ1 this gives :

L(u1φ0) = u1Lφ(φ0) + Lu(u1)φ0 = (Lu(u1)− λu1)φ0

L(u0φ1) = u0Lφ(φ1) + Lu(u0)φ1 = (Lφ(φ1) + λφ1)u0

applying now L to u1φ0 + u0φ1 this gives :

L(u1φ0 + u0φ1) = (Lu(u1)− λu1)φ0 + (Lφ(φ1) + λφ1)u0

to obtain a solution of L(u1φ0 + u0φ1) = 0 we do it as for L(u0φ0) =
0, whose solution was Lu(u0) = λu0 and Lφ(φ0) = −λφ0 (see Eq.
9). Then a solution for the new problem is obtained in splitting the
equation (or writting it a again a separate variable problem) by the
introduction of an α so that :

(Lu(u1)− λu1) = αu0 and (Lφ(φ1) + λφ1) = −αφ0.

Those are two ODE’s that we try to solve.

8.4.2 Identification

The heat equation is

L(T ) =
1

r

∂

∂r
(r
∂

∂r
T ) +

1

r2

∂

∂θ2
T = 0

looking for L(T ) = L(R(r)Θ(θ)) we define the LR(R) and LΘ(Θ) by

[R′′(r) +
R′(r)

r
)]Θ(θ) +R(r)[

1

r2
Θ′′(θ)] = LR(R)Θ(θ) +RLΘ(Θ)

so that u is R and φ is Θ, they will give the eigen solutions u0 = r±n,
and φ0 = exp(iθ). Then we look at the new solutions u1 = F (r)rn and
φ1 = g, as defined previously...

8.4.3 Application

We are looking to the field u0φ1 + u1φ0 which is then T = rng(θ) +
F (r)rnf(θ) so that 1

r
∂
∂θ
T = 1 for θ = π. Hence, first in 0 :

rn−1g′(0) + F (r)rn−1f ′(0) = 0

for any r with g′(0) = 0 and f ′(0) = 0, and second

rn−1g′(π) + F (r)rn−1f ′(π) = −1

with f ′(π) = 0 and g′(π)rn−1 = −1. This gives n = 1 (as expected
in the self similar solution ! but we have done a long road since) and
g′(π) = −1 f(θ) = cos(θ) is possible as f ′(0) = 0 and f ′(π) = 0. We
then have to solve

(g′′ + g) + α cos(θ) = 0.

We notice that cos(θ) is solution of cos(θ)′′+cos(θ) = 0, so that we have
solutions in θ cos(θ) ou θ sin(θ). After some algebra we have g(θ) =
c1 cos(θ) + c2sin(θ) − αθsin(θ)/2 and as we wish the good BC for g,

i.e. g′(π) = −1 so απ = −2. The solution for g is 2πc1 cos(θ)+cos(θ)+θ sin(θ)
2π

or

g(θ) = k cos(θ) +
θ sin(θ)

π
.
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The final solution is the sum :

T = F (r)rnf(θ) + rng(θ)

so −Log(r)−r−2nc1
π

r cos(θ) + r(k cos(θ) + θ sin(θ)
π

) This gives us the final
solution

T = kr cos(θ) +
K

r
cos(θ) +

rθ sin(θ)

π
− 1

π
Log(r)r cos(θ)

in which we can exclude 1/r as it is divergent in 0 (which is not
physical).

This term in rLog(r) appears in solids see Barenblatt [7] Leguillon
[18]

Figure 21 – A step change in the flux from 1 to 0. The numerical
solution is compared to the asymptotic solution on which k has been
adjusted.

8.5 Conclusion

This is an example of Log terms arising in a problem which looks
like selfsimilar. In Kelvin’s complete work book (1911, p 190 ”Rota-
tional fluid motlon in a Corner”), there is an example with r2Log(r).
This is a special type of second type selfsimilarity. The occurrence of
logarithmic terms is in fact common in all the Laplacian problems as
the Log solves the Laplacian.
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9 Conclusion

We presented very simple and classical example (well known since
the second year of University) as most of those problems that can be
solved with simple function. A small review of some known examples
has been presented. Interestingly enough, PDE problems leading to
an ODE are now considered as exact solutions as an ODE is not so
complicated to solve.

The purpose of this chapter was to show that there exists a com-
plicated generalization which is the theory of Lie Groups. This theory
allows to obtain all the invariant solutions of a PDE. This theory is
however very difficult to use (and needs a lot of algebra), but his weak
form : the scaling invariance, is very useful. And it is simple. Put-
ting some parameters to 0 (neglecting some phenomena), allows to
use the selfsimilar solutions as intermediate asymptotics. Looking for
self similar solutions in experiment (either numerical or practical) is a
powerful tool to ”explain” and understand the flows.

Références

[1] Andrei Andrei (1998) ”Applications du calcul formel á l’étude
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