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Figure 1 – Flow separation occurs in many situations: (a) around bluff bodies (sphere, ob-
stacles in a liquid stream, Kármán vortex street in clouds past a volcano), usually leading to
oscillations; (b) past convex walls (rounded step, arterial stenosis); (c) past streamlined ob-
jects in presence of an adverse pressure gradient (airfoils).

(Schlichting, 1979). Driven by the development of aeronautics, many theoretical and experi-
mental studies followed. A very large range of strategies do exist now, including in increasing
order of complexity: (i) passive control, (ii) active open-loop control, with actuators requir-
ing energy, (iii) active closed-loop control, where sensors provide measurements (Fiedler &
Fernholz, 1990; Gad-el Hak, 1996; Choi, Jeon & Kim, 2008).

Based on the well-established modern linear control theory (Kim & Bewley, 2007), closed-
loop control theory has the potential to bring performance and robustness. However, Its
application to fluid flows still poses challenges, partly due to the large number of degrees of
freedom involved. Closed-loop control therefore relies either on the use of black-box con-
trollers (Henning & King, 2007; Beaudoin, Cadot, Aider & Wesfreid, 2006; Gautier & Aider,
2013) or on reduced order models, themselves built with identification methods (Tian, Song
& Cattafesta, 2006; Becker, King, Petz & Nitsche, 2007; Juillet, Schmid & Huerre, 2013), ex-
tracted from projection on bases (Rowley, 2005; Barbagallo, Sipp & Schmid, 2009; Bagheri,
Henningson, Hoepffner & Schmid, 2009; Ehrenstein, Passaggia & Gallaire, 2011), or moti-
vated by physical insight (Roussopoulos & Monkewitz, 1996; Alam, Liu & Haller, 2006).

Open-loop control has been successfully applied to separation control: heating, pulsed syn-
thetic jets, wall motion, as well as steady suction or blowing at the wall (McLachlan, 1989;
Fiedler & Fernholz, 1990; Schumm, Berger & Monkewitz, 1994; Seifert, Darabi & Wygnanski,
1996; Garnier, Pamart, Dandois & Sagaut, 2012). Although theoretical analyses start to ad-
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Chapter 2. Amplification of harmonic forcing
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Figure 2.31 – Power density spectra of the shear layer height for the uncontrolled flow at x =
x∗+40δ∗.

↓
W

Figure 2.32 – Snapshots showing the effect of wall control on the flow at Reδ∗ = 448: suction
flow rate W = 0, 0.39, 0.78, 1.17 L/min, i.e. W /LU∞δ∗ = 0, 0.07, 0.14, 0.21 (top to bottom).

↓
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Figure 2.33 – Effect of wall control on the mean flow at Reδ∗ = 448: suction flow rate W = 0,
0.39, 0.78, 1.17 L/min, i.e. W /LU∞δ∗ = 0, 0.07, 0.14, 0.21 (top to bottom).
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examples of flow separation

Werle Cadot Boujo
“inviscid”

“viscous effects”
recirculation

effective body, displacement of stream lines
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dominant equations are “Prandtl” equations

with no slip conditions 
first profile given 
with various boundary conditions at the top

parabolic  
sometimes coupled with an external ideal fluid  
which makes a global retroaction

with various scales

What we will see:

those equations are a good model for flow separation
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decreases the velocity  
(mostly inviscid)

The thin viscous layer near the wall  
is more sensitive to pressure changes 

Heuristic condition for Boundary Layer separation
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Decomposition of the flow 
in an inviscid domain 
and a viscous domain near the wall

singularity of boundary  
layer separation

triple deck

 double deck, triple deck stability

History  

Interactive Boundary Layer

first attempts



“Classical” text book

A good way to “understand” some flows  
and to “feel” the relative influence of the terms in NS 
it is a step after “Bernoulli”



Navier Stokes

Real Full 3D unsteady flows 
   Direct Numerical Simulations : DNS

Reynolds Number controls transition from 
laminar to turbulent 

Very complicated and serious problems

Re = ⇢
U1L

µL

U1

turbulence modeling



Question :  
what is the laminar flow in the limit of  
large Reynolds number? 
steady -> Basic flow for instability theory 
we do not care about turbulence (laminar) 
2D / Axi laminar, steady

Small Reynolds number: viscosity dominates 

Re = ⇢
U1L

µ

Large Reynolds number: inertia dominates 

Micro fluidics, some biological flows

Aerodynamics, most of classical industrial flows

flow is laminar

flow is turbulent



Question :  
what is the flow in the limit of  
large Reynolds number? 
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zero velocities at the wall
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only zero transverse velocity at the wall

1

Re
! 0

an order of derivation disappears 

Question :  
what is the flow in the limit of  
large Reynolds number? 

Re = ⇢
U1L

µ

singular perturbation problem



Question :  
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large Reynolds number? 

1

Re
! 0

• Kirchhoff - Helmholtz

Stewartson
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Figure 41: Steady separation on a cylinder Kirchho↵-Helmoltz problem solved with FreeFem++, with fixed xs =

cos(⇡�↵). Left, if the separation point is before ↵ = 55o (25, 30, 35, 40 45, 50 and 55) the curvature of the streamline

is negative (which is unphysical). Right, if the separation point is after 55o (55, 60, 65, 70, ..., 100, 105,110) the

curvature of the free streamlines has an angle with the body. For an angle of about 55o the stream line is tangent to

the circle.
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Figure 42: Steady separation on a cylinder Kirchho↵-Helmoltz problem solved with FreeFem++, with fixed xs =

cos(⇡ � ↵). Pressure along y = 0 and along the circle, pressure is taken to 0 in the wake. Left, if the separation point

is before ↵ = 55o (25, 30 35 40 45,50 and 55) the pressure decreases from the stagnation point to the chosen xs, with

a square root behavior. For ↵ = 55o, the pressure is tangent. Right, if the separation point is after 55o (55, 60, 65,

70, 80, 90 100,) ) the pressure decreases and re increases. This final counter pressure should move xs
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Figure 42: Steady separation on a cylinder Kirchho↵-Helmoltz problem solved with FreeFem++, with fixed xs =

cos(⇡ � ↵). Pressure along y = 0 and along the circle, pressure is taken to 0 in the wake. Left, if the separation point

is before ↵ = 55o (25, 30 35 40 45,50 and 55) the pressure decreases from the stagnation point to the chosen xs, with

a square root behavior. For ↵ = 55o, the pressure is tangent. Right, if the separation point is after 55o (55, 60, 65,

70, 80, 90 100,) ) the pressure decreases and re increases. This final counter pressure should move xs
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Boundary Layer

7.1.3 Separation on a cylinder, Sychev analysis

x=O p ~.~( K L OII= 0 

[ tf~Ob 0 
a 

d~x ~ -~-K (--  x)-V~ --  O(k2), 

becomes infinite as - x  --~ 0 if k ~ 0. 

The curvature  of the f ree  s t reamline 

de i kx-v2 ~ 0 ( i ) ,  (x ~ 0) Fig. 1 • ~ - -  
dx 2 

(x -~ 0) (1,2) 

(1.3) 

in the general  case also becomes infinite as x --*0. The case involving flow with k < 0 is physical ly impos-  
sible since then the free s t reamline in tersects  the surface of the body (Fig. 1). The case k > 0 is usually 
discarded based on the fact that an infinitely large positive p re s su re  gradient at the point x=0 would lead to 
a much ear l ie r  separat ion of the flow. The case k=0 cor responds  to the known Br i l lou in-Vi l la t  condition 
according to which a positive p res su re  gradient along the zero  s t reamline is lacking and the phenomenon of 
separat ion is not physical ly justifiable. This then enables us to make  the following assumption: in real  flows 
of a liquid with large Reynolds numbers  (R) the external nonviscous flow in some neighborhood of the point 
x =0 may be described by the relat ions (1.2) and (1.3) with the constant k > 0 depending on the number R and 
tending towards  zero  as R - * ~ .  In other words,  as R-* ~, the limiting flow state is the nonviscous flow 
satisfying the BriUouin-Vil la t  condition everywhere  with the exception of the singnlar point x =0, where the 
limiting t ransi t ion p roces s  is singnlar.  Therefore  we assume that 

k = e(B)k0, B ~-- UooLIv (1.4) 

Since under these assumptions the p r e s s u r e  increment  in a neighborhood of the where e (R) --- 0 for R --- ~ .  
separat ion point 

Ap N 8(--x)'/, (1.5.) 

is, in accord  with Eqs. (1.1), small,  then in the main par t  of the boundary layer  (where the longitudinal veloc-  
ity component u is of the order  of unity) velocity changes AU implied by this t e r m  are  small. However, 
close to the wall a region may be found in which 

u N ha  ~ ]/hp ' ~  e'i, (--x) '/, (1.6) 

Since the initial velocity profile u in the main par t  of the boundary layer  (corresponding to an ex te r -  
nal flow satisfying the Br i l lou in-Vi l la t  condition) is such that 

a ~ Y for x-~O, Y .~R' / ,y- -~O (1.7) 

then the thickness of the considered region of the sublayer  adjacent to the wall is 

a Y ~ a ~ s'~ (--x)'/, (1.8) 

This sublayer  must be viscous in order  to satisfy the no-sl ip  condition; i.e., we require  that 

0~ ap 02a (1.9) 
Ox Ox OY 2 

Substituting into the relat ions (1.9) the es t imates  (1.5)-(1.8) obtained for  u, Ap, and AY, we obtain 

Ax N e 6 (1.10) 

i.e., an est imate of the longitudinal dimension of the region in which the p rocess  of interaction of the bound- 
a ry  layer  with the external nonviscous flow has a determining influence. Then the p r e s s u r e  gradient in the 
region (1.10) becomes 

dp ~ e ( - - x )  -V' N e(AX)-V~ N e -z (1.11) 
dx 

This gradient of p r e s s u r e  is induced by the displacement action of the boundary layer,  and the lat ter  
is expressed in its principal  t e r m  by the change in thickness of the sublayer  (whose magnitude is on the 
order  of the charac te r i s t ic  thickness,  since here  u ~ Au). Therefore ,  on the basis  of relat ions (1.8) the 
total  change in the boundary layer  thickness in the region (1.10) is 
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Fig. 1.4 The form of the free streamlines for Kirchhoff flows with various posi-
tions of the separation point.

A detailed derivation of the relations that are the basis for the for-
mulas (1.3.1), (1.3.2) can be found in the book by Birkhoff and Zaran-
tonello (1957) or in the work of Imai (1953) and of Ackerberg (1970).

It should be noted that for k < 0 the flow is physically impossible:
in this case the free streamline intersects the body surface (Figure 1.4),
since its curvature according to (1.3.1) acquires an infinitely large pos-
itive value. The case k > 0 is usually rejected on the basis that the
corresponding infinitely large positive pressure gradient (1.3.2) would
lead to earlier separation of the flow as it approaches the point x = 0.
Therefore the requirement k = 0, which is referred to as the condition
of "smooth separation" of Brillouin (1911) and Villat (1914),5 is usually
used as the condition defining a unique solution of the problem. But
in this case the positive pressure gradient along the surface of the body
is totally absent, and the appearance of separation cannot be explained
from a physical standpoint.

The way out of this paradox was indicated for the first time in the work
of Sychev (1972). The main idea of this work consists in the fact that
the constant k is taken to be positive and depends upon the Reynolds
number such that

fc(Re) -> 0 as Re -> oo. (1.3.3)

This assumption implies that the limiting flow state as Re —» oo will
be an inviscid flow satisfying the Brillouin-Villat condition. However,
such a limit process is singular: at any arbitrarily high Reynolds num-
ber there will be a vanishingly small vicinity of the point \x\ = 0 with a

For example, for a circular cylinder the separation point, according to this
condition, is located at 0 — 55°, where 6 is the polar angle measured from
the forward stagnation point (Brodetsky, 1923).

Figure 45: Steady separation on a cylinder, Brillouin Villat condition the curvature of the free streamlines is tangent

to the body at the ”separation point”. Left from original 1972 Sychev’s paper. Center from Vladimir V. Sychev,

Anatoly I. Ruban, Victor V. Sychev, Georgi L. Korolev ”Asymptotic Theory of Separated Flows”. Left, from the

initial edition Sychev Sychev, which is more clear.

In the freestreamline framework of 2D steady ideal fluids, we showed that the pressure on the body in
a neighborhood of the separation point is (changing Imai notations, xs � x = �s, udu

dx
= � dp

dx
) so that

pressure gradient and pressure are:

dp

dx
=

k

2
p

xs � x
+ .... before separation, and after p = p0.

p = p0 � k
p

xs � x + .... before separation, and after p = p0.

whereas the curvature (
d✓

ds
) of the free stream line is k

2
p

x�xs
, where xs is the point of separation. The

streamline shape is ys(x) =
3k

2
(x � xs)3/2 (Smith uses �k in his 1977 paper).

It was noticed that this solution presents it self a paradox:
• If k < 0, pressure decreases to 0 (see figure 42 left), but stream lines enter in the obstacle (see figure 41
left). This is impossible.
• If k > 0, stream lines live the obstacle with an angle (see figure 41 right). The pressure decreases and
increases just before xs. So that its gradient will create a boundary layer separation before xs, so before the
”separation point” it self.... This is impossible.
• The sole solution is k = 0, this is the Brillouin-Villat condition: the curvature of the free streamlines
is tangent to the body at the ”separation point”. This continuity of curvature was written by Brodetsky
1923 as well. But the flow is smooth, there is no counter pressure. So there is no separation. This is the
”Brillouin-Villat” paradox.

This is discussed in Sychev Book and in Stewartson (d’Alembert’s Paradox 1981). With complicated
analysis Brillouin 11 Villat 14, Birkho↵ 57. See Ruban [19] p201. We will see latter that the good idea
comes from Sychev, a small positive counter pressure exists:

k(Re) ! 0 as Re ! 1,

it is vanishingly small with the Reynolds number.
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p = p0 � k
p

xs � x + .... before separation, and after p = p0.

whereas the curvature (
d✓

ds
) of the free stream line is k

2
p

x�xs
, where xs is the point of separation. The

streamline shape is ys(x) =
3k

2
(x � xs)3/2 (Smith uses �k in his 1977 paper).

It was noticed that this solution presents it self a paradox:
• If k < 0, pressure decreases to 0 (see figure 42 left), but stream lines enter in the obstacle (see figure 41
left). This is impossible.
• If k > 0, stream lines live the obstacle with an angle (see figure 41 right). The pressure decreases and
increases just before xs. So that its gradient will create a boundary layer separation before xs, so before the
”separation point” it self.... This is impossible.
• The sole solution is k = 0, this is the Brillouin-Villat condition: the curvature of the free streamlines
is tangent to the body at the ”separation point”. This continuity of curvature was written by Brodetsky
1923 as well. But the flow is smooth, there is no counter pressure. So there is no separation. This is the
”Brillouin-Villat” paradox.

This is discussed in Sychev Book and in Stewartson (d’Alembert’s Paradox 1981). With complicated
analysis Brillouin 11 Villat 14, Birkho↵ 57. See Ruban [19] p201. We will see latter that the good idea
comes from Sychev, a small positive counter pressure exists:

k(Re) ! 0 as Re ! 1,

it is vanishingly small with the Reynolds number.
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The sole solution is k=0, this is the  Brillouin-Villat condition: the curvature of the free 
streamlines is tangent to  the body at the "separation point" But the flow is smooth, there 
is no counter pressure. So there is no separation. This is the "Brillouin-Villat" paradox
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Figure 41: Steady separation on a cylinder Kirchho↵-Helmoltz problem solved with FreeFem++, with fixed xs =

cos(⇡�↵). Left, if the separation point is before ↵ = 55o (25, 30, 35, 40 45, 50 and 55) the curvature of the streamline

is negative (which is unphysical). Right, if the separation point is after 55o (55, 60, 65, 70, ..., 100, 105,110) the

curvature of the free streamlines has an angle with the body. For an angle of about 55o the stream line is tangent to

the circle.
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Figure 42: Steady separation on a cylinder Kirchho↵-Helmoltz problem solved with FreeFem++, with fixed xs =

cos(⇡ � ↵). Pressure along y = 0 and along the circle, pressure is taken to 0 in the wake. Left, if the separation point

is before ↵ = 55o (25, 30 35 40 45,50 and 55) the pressure decreases from the stagnation point to the chosen xs, with

a square root behavior. For ↵ = 55o, the pressure is tangent. Right, if the separation point is after 55o (55, 60, 65,

70, 80, 90 100,) ) the pressure decreases and re increases. This final counter pressure should move xs
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Figure 42: Steady separation on a cylinder Kirchho↵-Helmoltz problem solved with FreeFem++, with fixed xs =

cos(⇡ � ↵). Pressure along y = 0 and along the circle, pressure is taken to 0 in the wake. Left, if the separation point

is before ↵ = 55o (25, 30 35 40 45,50 and 55) the pressure decreases from the stagnation point to the chosen xs, with

a square root behavior. For ↵ = 55o, the pressure is tangent. Right, if the separation point is after 55o (55, 60, 65,

70, 80, 90 100,) ) the pressure decreases and re increases. This final counter pressure should move xs
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7.1.3 Separation on a cylinder, Sychev analysis

x=O p ~.~( K L OII= 0 

[ tf~Ob 0 
a 

d~x ~ -~-K (--  x)-V~ --  O(k2), 

becomes infinite as - x  --~ 0 if k ~ 0. 

The curvature  of the f ree  s t reamline 

de i kx-v2 ~ 0 ( i ) ,  (x ~ 0) Fig. 1 • ~ - -  
dx 2 

(x -~ 0) (1,2) 

(1.3) 

in the general  case also becomes infinite as x --*0. The case involving flow with k < 0 is physical ly impos-  
sible since then the free s t reamline in tersects  the surface of the body (Fig. 1). The case k > 0 is usually 
discarded based on the fact that an infinitely large positive p re s su re  gradient at the point x=0 would lead to 
a much ear l ie r  separat ion of the flow. The case k=0 cor responds  to the known Br i l lou in-Vi l la t  condition 
according to which a positive p res su re  gradient along the zero  s t reamline is lacking and the phenomenon of 
separat ion is not physical ly justifiable. This then enables us to make  the following assumption: in real  flows 
of a liquid with large Reynolds numbers  (R) the external nonviscous flow in some neighborhood of the point 
x =0 may be described by the relat ions (1.2) and (1.3) with the constant k > 0 depending on the number R and 
tending towards  zero  as R - * ~ .  In other words,  as R-* ~, the limiting flow state is the nonviscous flow 
satisfying the BriUouin-Vil la t  condition everywhere  with the exception of the singnlar point x =0, where the 
limiting t ransi t ion p roces s  is singnlar.  Therefore  we assume that 

k = e(B)k0, B ~-- UooLIv (1.4) 

Since under these assumptions the p r e s s u r e  increment  in a neighborhood of the where e (R) --- 0 for R --- ~ .  
separat ion point 

Ap N 8(--x)'/, (1.5.) 

is, in accord  with Eqs. (1.1), small,  then in the main par t  of the boundary layer  (where the longitudinal veloc-  
ity component u is of the order  of unity) velocity changes AU implied by this t e r m  are  small. However, 
close to the wall a region may be found in which 

u N ha  ~ ]/hp ' ~  e'i, (--x) '/, (1.6) 

Since the initial velocity profile u in the main par t  of the boundary layer  (corresponding to an ex te r -  
nal flow satisfying the Br i l lou in-Vi l la t  condition) is such that 

a ~ Y for x-~O, Y .~R' / ,y- -~O (1.7) 

then the thickness of the considered region of the sublayer  adjacent to the wall is 

a Y ~ a ~ s'~ (--x)'/, (1.8) 

This sublayer  must be viscous in order  to satisfy the no-sl ip  condition; i.e., we require  that 

0~ ap 02a (1.9) 
Ox Ox OY 2 

Substituting into the relat ions (1.9) the es t imates  (1.5)-(1.8) obtained for  u, Ap, and AY, we obtain 

Ax N e 6 (1.10) 

i.e., an est imate of the longitudinal dimension of the region in which the p rocess  of interaction of the bound- 
a ry  layer  with the external nonviscous flow has a determining influence. Then the p r e s s u r e  gradient in the 
region (1.10) becomes 

dp ~ e ( - - x )  -V' N e(AX)-V~ N e -z (1.11) 
dx 

This gradient of p r e s s u r e  is induced by the displacement action of the boundary layer,  and the lat ter  
is expressed in its principal  t e r m  by the change in thickness of the sublayer  (whose magnitude is on the 
order  of the charac te r i s t ic  thickness,  since here  u ~ Au). Therefore ,  on the basis  of relat ions (1.8) the 
total  change in the boundary layer  thickness in the region (1.10) is 
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Fig. 1.4 The form of the free streamlines for Kirchhoff flows with various posi-
tions of the separation point.

A detailed derivation of the relations that are the basis for the for-
mulas (1.3.1), (1.3.2) can be found in the book by Birkhoff and Zaran-
tonello (1957) or in the work of Imai (1953) and of Ackerberg (1970).

It should be noted that for k < 0 the flow is physically impossible:
in this case the free streamline intersects the body surface (Figure 1.4),
since its curvature according to (1.3.1) acquires an infinitely large pos-
itive value. The case k > 0 is usually rejected on the basis that the
corresponding infinitely large positive pressure gradient (1.3.2) would
lead to earlier separation of the flow as it approaches the point x = 0.
Therefore the requirement k = 0, which is referred to as the condition
of "smooth separation" of Brillouin (1911) and Villat (1914),5 is usually
used as the condition defining a unique solution of the problem. But
in this case the positive pressure gradient along the surface of the body
is totally absent, and the appearance of separation cannot be explained
from a physical standpoint.

The way out of this paradox was indicated for the first time in the work
of Sychev (1972). The main idea of this work consists in the fact that
the constant k is taken to be positive and depends upon the Reynolds
number such that

fc(Re) -> 0 as Re -> oo. (1.3.3)

This assumption implies that the limiting flow state as Re —» oo will
be an inviscid flow satisfying the Brillouin-Villat condition. However,
such a limit process is singular: at any arbitrarily high Reynolds num-
ber there will be a vanishingly small vicinity of the point \x\ = 0 with a

For example, for a circular cylinder the separation point, according to this
condition, is located at 0 — 55°, where 6 is the polar angle measured from
the forward stagnation point (Brodetsky, 1923).

Figure 45: Steady separation on a cylinder, Brillouin Villat condition the curvature of the free streamlines is tangent

to the body at the ”separation point”. Left from original 1972 Sychev’s paper. Center from Vladimir V. Sychev,

Anatoly I. Ruban, Victor V. Sychev, Georgi L. Korolev ”Asymptotic Theory of Separated Flows”. Left, from the

initial edition Sychev Sychev, which is more clear.

In the freestreamline framework of 2D steady ideal fluids, we showed that the pressure on the body in
a neighborhood of the separation point is (changing Imai notations, xs � x = �s, udu

dx
= � dp

dx
) so that

pressure gradient and pressure are:

dp

dx
=

k

2
p

xs � x
+ .... before separation, and after p = p0.

p = p0 � k
p

xs � x + .... before separation, and after p = p0.

whereas the curvature (
d✓

ds
) of the free stream line is k

2
p

x�xs
, where xs is the point of separation. The

streamline shape is ys(x) =
3k

2
(x � xs)3/2 (Smith uses �k in his 1977 paper).

It was noticed that this solution presents it self a paradox:
• If k < 0, pressure decreases to 0 (see figure 42 left), but stream lines enter in the obstacle (see figure 41
left). This is impossible.
• If k > 0, stream lines live the obstacle with an angle (see figure 41 right). The pressure decreases and
increases just before xs. So that its gradient will create a boundary layer separation before xs, so before the
”separation point” it self.... This is impossible.
• The sole solution is k = 0, this is the Brillouin-Villat condition: the curvature of the free streamlines
is tangent to the body at the ”separation point”. This continuity of curvature was written by Brodetsky
1923 as well. But the flow is smooth, there is no counter pressure. So there is no separation. This is the
”Brillouin-Villat” paradox.

This is discussed in Sychev Book and in Stewartson (d’Alembert’s Paradox 1981). With complicated
analysis Brillouin 11 Villat 14, Birkho↵ 57. See Ruban [19] p201. We will see latter that the good idea
comes from Sychev, a small positive counter pressure exists:

k(Re) ! 0 as Re ! 1,

it is vanishingly small with the Reynolds number.
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close to the wall a region may be found in which 
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a ~ Y for x-~O, Y .~R' / ,y- -~O (1.7) 
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This sublayer  must be viscous in order  to satisfy the no-sl ip  condition; i.e., we require  that 
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Substituting into the relat ions (1.9) the es t imates  (1.5)-(1.8) obtained for  u, Ap, and AY, we obtain 
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i.e., an est imate of the longitudinal dimension of the region in which the p rocess  of interaction of the bound- 
a ry  layer  with the external nonviscous flow has a determining influence. Then the p r e s s u r e  gradient in the 
region (1.10) becomes 
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This gradient of p r e s s u r e  is induced by the displacement action of the boundary layer,  and the lat ter  
is expressed in its principal  t e r m  by the change in thickness of the sublayer  (whose magnitude is on the 
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total  change in the boundary layer  thickness in the region (1.10) is 
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Fig. 1.4 The form of the free streamlines for Kirchhoff flows with various posi-
tions of the separation point.

A detailed derivation of the relations that are the basis for the for-
mulas (1.3.1), (1.3.2) can be found in the book by Birkhoff and Zaran-
tonello (1957) or in the work of Imai (1953) and of Ackerberg (1970).

It should be noted that for k < 0 the flow is physically impossible:
in this case the free streamline intersects the body surface (Figure 1.4),
since its curvature according to (1.3.1) acquires an infinitely large pos-
itive value. The case k > 0 is usually rejected on the basis that the
corresponding infinitely large positive pressure gradient (1.3.2) would
lead to earlier separation of the flow as it approaches the point x = 0.
Therefore the requirement k = 0, which is referred to as the condition
of "smooth separation" of Brillouin (1911) and Villat (1914),5 is usually
used as the condition defining a unique solution of the problem. But
in this case the positive pressure gradient along the surface of the body
is totally absent, and the appearance of separation cannot be explained
from a physical standpoint.

The way out of this paradox was indicated for the first time in the work
of Sychev (1972). The main idea of this work consists in the fact that
the constant k is taken to be positive and depends upon the Reynolds
number such that

fc(Re) -> 0 as Re -> oo. (1.3.3)

This assumption implies that the limiting flow state as Re —» oo will
be an inviscid flow satisfying the Brillouin-Villat condition. However,
such a limit process is singular: at any arbitrarily high Reynolds num-
ber there will be a vanishingly small vicinity of the point \x\ = 0 with a

For example, for a circular cylinder the separation point, according to this
condition, is located at 0 — 55°, where 6 is the polar angle measured from
the forward stagnation point (Brodetsky, 1923).

Figure 45: Steady separation on a cylinder, Brillouin Villat condition the curvature of the free streamlines is tangent

to the body at the ”separation point”. Left from original 1972 Sychev’s paper. Center from Vladimir V. Sychev,

Anatoly I. Ruban, Victor V. Sychev, Georgi L. Korolev ”Asymptotic Theory of Separated Flows”. Left, from the

initial edition Sychev Sychev, which is more clear.

In the freestreamline framework of 2D steady ideal fluids, we showed that the pressure on the body in
a neighborhood of the separation point is (changing Imai notations, xs � x = �s, udu

dx
= � dp

dx
) so that

pressure gradient and pressure are:

dp

dx
=

k

2
p

xs � x
+ .... before separation, and after p = p0.

p = p0 � k
p

xs � x + .... before separation, and after p = p0.

whereas the curvature (
d✓

ds
) of the free stream line is k

2
p

x�xs
, where xs is the point of separation. The

streamline shape is ys(x) =
3k

2
(x � xs)3/2 (Smith uses �k in his 1977 paper).

It was noticed that this solution presents it self a paradox:
• If k < 0, pressure decreases to 0 (see figure 42 left), but stream lines enter in the obstacle (see figure 41
left). This is impossible.
• If k > 0, stream lines live the obstacle with an angle (see figure 41 right). The pressure decreases and
increases just before xs. So that its gradient will create a boundary layer separation before xs, so before the
”separation point” it self.... This is impossible.
• The sole solution is k = 0, this is the Brillouin-Villat condition: the curvature of the free streamlines
is tangent to the body at the ”separation point”. This continuity of curvature was written by Brodetsky
1923 as well. But the flow is smooth, there is no counter pressure. So there is no separation. This is the
”Brillouin-Villat” paradox.

This is discussed in Sychev Book and in Stewartson (d’Alembert’s Paradox 1981). With complicated
analysis Brillouin 11 Villat 14, Birkho↵ 57. See Ruban [19] p201. We will see latter that the good idea
comes from Sychev, a small positive counter pressure exists:

k(Re) ! 0 as Re ! 1,

it is vanishingly small with the Reynolds number.
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The sole solution is k=0, this is the  Brillouin-Villat condition: the curvature of the free 
streamlines is tangent to  the body at the "separation point" But the flow is smooth, there 
is no counter pressure. So there is no separation. This is the "Brillouin-Villat" paradox
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Figure 43: Steady separation on a cylinder with FreeFem++, the separation point is imposed to the value 55o,

Kirchho↵-Helmoltz wake of pressure constant.
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Figure 44: Steady separation on a cylinder with FreeFem++, the separation point is imposed to the value 55o,

Kirchho↵-Helmoltz wake of pressure constant. Iso
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Come back to Navier Stokes
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Ideal Fluid: Euler equations
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Ideal Fluid: Euler equations

u
@u

@x
+ v

@u

@y
= �@p

@x
+

1

Re

✓
@2u

@x2
+

@2u

@y2

◆

@u

@x
+

@v

@y
= 0

u
@v

@x
+ v

@v

@y
= �@p

@y
+

1

Re

✓
@2v

@x2
+

@2v

@y2

◆1

Re
! 0

Linearized solution for the slip velocity

f(x)

u(x, 0) = 1 +
1

⇡
fp

Z
f 0(x)

x� ⇠
d⇠

ue(x) slip velocity on a wall of shape f(x)



singular perturbation problem
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Classical Boundary Layer
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Classical Boundary Layer
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@ũ

@x̃
+ ṽ
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@ũ

@x̃
+ ṽ
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@ỹ

dominant balance



@ũ
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@ũ

@ỹ
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@ỹ
= �@p̃

@x̃
+

@2ũ
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3 Interactive Boundary Layer

3.1 Examples of users

So it became clear that the interaction with the ideal fluid is not weak but

strong. In the early 60 Gad and Curle employed Von Kármán -Pohlhausen

method to try to solve the shock waves-boundary layer interaction, ”with-

out much success” (as quoted by Lees and Reeves [11]. Lees and Reeves in

64 [11] did computations with integral methods, with more success, but the

details are not so clear. Reyhner Flügge Lotz 68 [17] did finite di�erences

on the Boundary layer and succeed by iteration to compute the supersonic

wedge interaction.

Among people working for applications in the aerospace area, some

names are to be associated to IBL/ IVI. Among them:

• Le Balleur, from 1977 understood the interaction and using Von Kármán

profiles did a lot of practical computations at ONERA, in supersonic and

transsonic régimes.

• Veldman as well has is own codes at the National Aerospace Laboratory

NLR in Amsterdam,

• Carter, Jameson at Stanford.

• Cebeci did a huge work (several books on the interactive boundary layer

for example [4] [2]) and applied IVI at Boeing.

• Lock & Williams in a review [15], present the english RAE point of view.

• And last but not least Neiland and Sychev at the TsAGI in USSR.

Of course, this is a very very partial list.

3.2 Interactive Boundary Layer

One other way to bypass Goldstein singularity is to adopt the Interactive

Boundary Layer point of view. It means that we use the classical Prantdl

boundary layer equations :

⌃ũ

⌃x̄
+

⌃ṽ

⌃ỹ
= 0, ũ

⌃ũ

⌃x̄
+ ṽ

⌃ũ

⌃ỹ
= ūe

dūe

dx̄
+

⌃2ũ

⌃ỹ2
,

with no slip boundary conditions (ũ = ṽ = 0 on the body
¯f(x̄)), a first given

velocity profile: Blasius. The matching ũ(x̄, ỹ ⇤⇧)⇤ ūe(x̄).
A result of this computation is the transverse velocity at infinity, remem-
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the induced drag on finite span wings which is a ideal fluid e�ect).

But, everything is not so simple, there are problems when computing the
boundary layer: we remain again the boundary layer separation problem.
But there are other paradoxes: we introduce an other important problem
which is the ”upstream influence problem”. We will show that to solve
those two problems, the good strategy is a strategy of ”strong interaction”
between the boundary layer and the ideal fluid. So it was called ”Interact-
ing Boundary Layer” or ”Viscous Inviscid Interaction” (or Inviscid Viscous
Interaction). Some practical examples from literature and for various flows
régimes are presented.

2 Problems associated with the Boundary Layer

2.1 Separation

We already had a glimpse on the problem of separation of boundary layer.
We saw that for a given external flow, one can not compute the boundary
layer if the skin friction vanishes. This is called Goldstein singularity, close
to the point of separation:

⇥u

⇥y
⇥
⇤

xs � x and v ⇥ 1⇤
xs � x

.

So, for a given external decreasing velocity, there is a possibility of separa-
tion with a singularity. The computation can not pass the separation. Most
of classical text book of fluid mechanics do the same and end their course
on boundary layers by this dead end, for example one can read in Kundu
[9]: ”the boundary layer equations are valid only far downstream as the
point of separation. Beyond it the boundary layer becomes so thick that
the basic underlying assumptions become invalid. Moreover, the parabolic
character of the boundary layer equations requires that a numerical integra-
tion is possible only in the direction of advection (along which information
are propagated), which is /it upstream within the reversed flow region. A
forward (downstream) integration of the boundary layer equations therefore
breaks down after the separation point. Last, we can no longer apply po-
tential theory to find the pressure distribution in the separation region, as
the e�ective boundary of the irrotational flow is no longer the solid surface
but some unknown shape encompassing part of the body plus the separation
region.”

- III . 2-
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régimes are presented.

2 Problems associated with the Boundary Layer

2.1 Separation

We already had a glimpse on the problem of separation of boundary layer.
We saw that for a given external flow, one can not compute the boundary
layer if the skin friction vanishes. This is called Goldstein singularity, close
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of classical text book of fluid mechanics do the same and end their course
on boundary layers by this dead end, for example one can read in Kundu
[9]: ”the boundary layer equations are valid only far downstream as the
point of separation. Beyond it the boundary layer becomes so thick that
the basic underlying assumptions become invalid. Moreover, the parabolic
character of the boundary layer equations requires that a numerical integra-
tion is possible only in the direction of advection (along which information
are propagated), which is /it upstream within the reversed flow region. A
forward (downstream) integration of the boundary layer equations therefore
breaks down after the separation point. Last, we can no longer apply po-
tential theory to find the pressure distribution in the separation region, as
the e�ective boundary of the irrotational flow is no longer the solid surface
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Reynolds number Re is constructed with a velocity (U0) and a typical
length (L) . So, we first non-dimensionalise the equations with L and U0,
and as the Reynolds number is large we obtain Euler equations (with ”bars”
over teh variables i.e. x̄ = x/L, ū = u/U⇥).

ue

Fig. 2 – Le problème générique, on se donne une plaque plane avec une petite
bosse, la plaque est plongée dans un écoulement uniforme.

On calcule ainsi l’écoulement extérieur, qui sera dans la suite très sou-
vent un simple écoulement uniforme. Un des résultats est alors la valeur de
la vitesse de glissement souvent notée ūe.
Près de la paroi, la description de fluide parfait n’est plus valide, il faut
introduire une couche limite. L’établissement de son épaisseur relative passe
par ”le principe de moindre dégénérescence” (Van Dyke [10], Darrozès &
François [4] ”least degeneracy” principle) : on veut garder les termes convec-
tifs et au moins un terme visqueux (on pose ȳ = ỹ�/L) :

ũ
⇧ũ

⇧x̄
� 1

Re(�/L)2
⇧2ũ

⇧ỹ2
,

on dit alors que la couche limite est d’épaisseur relative Re�1/2.

équations dynamiques
Les équations de la dynamique devenaient :

⇧ũ

⇧x̄
+

⇧ṽ

⇧ỹ
= 0,

ũ
⇧ũ

⇧x̄
+ ṽ

⇧ũ

⇧ỹ
=

⇧2ũ

⇧ỹ2

Avec pour conditions aux limites ũ(x̄, 0) = 0, ũ(x̄,⇥) = 1. On en trouvait
une solution semblable (see thereafter the Falkner Skan solution) :

⌅ = x̄1/2f(⇥), ⇤ = x̄, ⇥ = ỹ/
⇤

x̄.

2

ideal fluid

boundary layer
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ũ
⇧ũ
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une solution semblable (see thereafter the Falkner Skan solution) :

⌅ = x̄1/2f(⇥), ⇤ = x̄, ⇥ = ỹ/
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Près de la paroi, la description de fluide parfait n’est plus valide, il faut
introduire une couche limite. L’établissement de son épaisseur relative passe
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⇧ỹ2
,

on dit alors que la couche limite est d’épaisseur relative Re�1/2.

équations dynamiques
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7 Second order boundary layer

7.1 Sequence.

We may think that the second order of the boundary layer may fix the prob-
lems. But in fact not!
Nevertheless, the scheme is as depicted on figure 21. The first order expan-
sion of the ideal fluid creates a first order expansion of boundary layer. This
first expansion disturbes the ideal fluid and creates a second order expan-
sion. This perturbation creates a second order expansion in the boundary
layer and so on.

Figure 21: Classical sequence, image taken from Van Dyke’s book.

7.2 Second Order

Let us look at the transverse velocity in the Boundary Layer, we up to
now never match the transverse velocity. The reason was that is is of order
Re�1/2, which is negligible for the Ideal Fluid. We see that this velocity
induces in the Ideal Fluid.

Starting from the incompressibility equation and adding and substract-
ing the same derivative of the velocity (in the spirit of Von Kármán integral
equations):

�ṽ

�ỹ
= (��ũ

�x
+

�ūe

�x̄
)� �ūe

�x̄
,

we obtain, after integration up to an ỹ (x̄ and ỹ are independent variables)
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On calcule ainsi l’écoulement extérieur, qui sera dans la suite très sou-
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⇧ỹ
=

⇧2ũ

⇧ỹ2
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the velocity is:

ṽ(ỹ)� ṽ(0) = � �

�x̄

⇧ ỹ

0
(ũ� ūe)dỹ � ỹ

�ūe

�x̄

so, if ỹ is large enough and as ṽ(0) = 0 we obtain the behavior for large
enough ỹ:

ṽ(ỹ) ⇥ �

�x̄
(ūe⇥̃1)� ỹ

�ūe

�x̄

This velocity must be multiplied by Re�1/2; and ȳ = Re�1/2ỹ. Now, we
write the velocity in the ideal fluid as a Taylor expansion near the wall for
small ȳ:

v̄ = v̄(x̄, 0) + ȳ
�v̄

�ȳ
+ ... = v̄(x̄, 0)� ȳ

�ūe

�x̄
+ ...

matching this velocity and the boundary layer velocity show that:

v̄(x̄, 0) = Re�1/2 �

�x̄
(ūe⇥̃1)

So that the boundary layer disturbates the ideal fluid at order Re�1/2. It
is called the ”blowing velocity”. So the velocity in the ideal fluid (called
transpiration boundary condition as well):

ū = ū1 + Re�1/2ū2, v̄ = v̄1 + Re�1/2v̄2 p̄ = p̄1 + Re�1/2p̄2....

with ū1(x, 0) = ūe(x).

7.3 Flat plane case

We substitute this in Euler equation and have to find what is the flow created
by a flat plate with a given blowing velocity which is in �

⇤
x̄/2 with � = 1.7.

�
⌅⌅⇤

⌅⌅⇥

�ū2

�ȳ
� �v̄2

�x̄
= 0,

�ū2

�x̄
+

�v̄2

�ȳ
= 0.

(12)

We easily see that an irotationnal solution in r̄, ⇤ like ⌅̄ = ��
⇤

r̄cos( �
2):

ū2 = � �

2
⇤

r̄
sin(

⇤

2
), v̄2 =

�

2
⇤

r̄
cos(

⇤

2
),

allows to fit the boundary conditions, the two velocity are plotted on figure
22. We observe that the ideal fluid longitudinal velocity is zero at the wall,
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Fig. 2 – Le problème générique, on se donne une plaque plane avec une petite
bosse, la plaque est plongée dans un écoulement uniforme.

On calcule ainsi l’écoulement extérieur, qui sera dans la suite très sou-
vent un simple écoulement uniforme. Un des résultats est alors la valeur de
la vitesse de glissement souvent notée ūe.
Près de la paroi, la description de fluide parfait n’est plus valide, il faut
introduire une couche limite. L’établissement de son épaisseur relative passe
par ”le principe de moindre dégénérescence” (Van Dyke [10], Darrozès &
François [4] ”least degeneracy” principle) : on veut garder les termes convec-
tifs et au moins un terme visqueux (on pose ȳ = ỹ�/L) :
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on dit alors que la couche limite est d’épaisseur relative Re�1/2.

équations dynamiques
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Avec pour conditions aux limites ũ(x̄, 0) = 0, ũ(x̄,⇥) = 1. On en trouvait
une solution semblable (see thereafter the Falkner Skan solution) :

⌅ = x̄1/2f(⇥), ⇤ = x̄, ⇥ = ỹ/
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ue

Fig. 2 – Le problème générique, on se donne une plaque plane avec une petite
bosse, la plaque est plongée dans un écoulement uniforme.
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⇧ỹ2
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So that the boundary layer disturbates the ideal fluid at order Re�1/2. It
is called the ”blowing velocity”. So the velocity in the ideal fluid (called
transpiration boundary condition as well):

ū = ū1 + Re�1/2ū2, v̄ = v̄1 + Re�1/2v̄2 p̄ = p̄1 + Re�1/2p̄2....

with ū1(x, 0) = ūe(x).

7.3 Flat plane case

We substitute this in Euler equation and have to find what is the flow created
by a flat plate with a given blowing velocity which is in �
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�ȳ
� �v̄2

�x̄
= 0,

�ū2
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allows to fit the boundary conditions, the two velocity are plotted on figure
22. We observe that the ideal fluid longitudinal velocity is zero at the wall,
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⇧ũ

⇧ỹ
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⇧ỹ2
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�ūe

�x̄

This velocity must be multiplied by Re�1/2; and ȳ = Re�1/2ỹ. Now, we
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⇧ỹ
= 0,

ũ
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�ȳ
� �v̄2

�x̄
= 0,

�ū2

�x̄
+

�v̄2

�ȳ
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7.3 Flat plane case

We substitute this in Euler equation and have to find what is the flow created
by a flat plate with a given blowing velocity which is in �

⇤
x̄/2 with � = 1.7.

�
⌅⌅⇤

⌅⌅⇥

�ū2
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par ”le principe de moindre dégénérescence” (Van Dyke [10], Darrozès &
François [4] ”least degeneracy” principle) : on veut garder les termes convec-
tifs et au moins un terme visqueux (on pose ȳ = ỹ�/L) :
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(ūe⇥̃1)� ỹ
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(ūe⇥̃1)

So that the boundary layer disturbates the ideal fluid at order Re�1/2. It
is called the ”blowing velocity”. So the velocity in the ideal fluid (called
transpiration boundary condition as well):
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ū2 = � �

2
⇤

r̄
sin(

⇤

2
), v̄2 =

�

2
⇤

r̄
cos(

⇤

2
),

allows to fit the boundary conditions, the two velocity are plotted on figure
22. We observe that the ideal fluid longitudinal velocity is zero at the wall,

- II . 32-

effect of the displacement thickness

Perturbation of the Ideal fluid at 
the next order

ideal fluid at next order 



Van Dyke

" =
1p
Re

"2 =
1

Re

"3 =
1

Re3/2

weak effect of the displacement thickness



Boundary Layer

the velocity is:
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�ūe
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�ȳ
� �v̄2

�x̄
= 0,

�ū2
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INTERACTIVE BOUNDARY LAYER

VISCOUS INVISCID INTERACTIONS

Mauss Cousteix: 
Asymptotic Analysis and Boundary Layers 
Scientific Computation Springer 2007,  

“Successive Complementary Expansion Method”

Cebecci Smith

construct an uniform expansion in which epsilon is not so small
is preferable to “Matched Asymptotic Expansion”



ue

Reynolds number Re is constructed with a velocity (U0) and a typical
length (L) . So, we first non-dimensionalise the equations with L and U0,
and as the Reynolds number is large we obtain Euler equations (with ”bars”
over teh variables i.e. x̄ = x/L, ū = u/U⇥).

ue

Fig. 2 – Le problème générique, on se donne une plaque plane avec une petite
bosse, la plaque est plongée dans un écoulement uniforme.

On calcule ainsi l’écoulement extérieur, qui sera dans la suite très sou-
vent un simple écoulement uniforme. Un des résultats est alors la valeur de
la vitesse de glissement souvent notée ūe.
Près de la paroi, la description de fluide parfait n’est plus valide, il faut
introduire une couche limite. L’établissement de son épaisseur relative passe
par ”le principe de moindre dégénérescence” (Van Dyke [10], Darrozès &
François [4] ”least degeneracy” principle) : on veut garder les termes convec-
tifs et au moins un terme visqueux (on pose ȳ = ỹ�/L) :

ũ
⇧ũ

⇧x̄
� 1

Re(�/L)2
⇧2ũ

⇧ỹ2
,

on dit alors que la couche limite est d’épaisseur relative Re�1/2.

équations dynamiques
Les équations de la dynamique devenaient :

⇧ũ

⇧x̄
+

⇧ṽ

⇧ỹ
= 0,

ũ
⇧ũ

⇧x̄
+ ṽ

⇧ũ

⇧ỹ
=

⇧2ũ

⇧ỹ2

Avec pour conditions aux limites ũ(x̄, 0) = 0, ũ(x̄,⇥) = 1. On en trouvait
une solution semblable (see thereafter the Falkner Skan solution) :

⌅ = x̄1/2f(⇥), ⇤ = x̄, ⇥ = ỹ/
⇤

x̄.

2

ideal fluid

boundary layer
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3 Interactive Boundary Layer

3.1 Examples of users

So it became clear that the interaction with the ideal fluid is not weak but

strong. In the early 60 Gad and Curle employed Von Kármán -Pohlhausen

method to try to solve the shock waves-boundary layer interaction, ”with-

out much success” (as quoted by Lees and Reeves [11]. Lees and Reeves in

64 [11] did computations with integral methods, with more success, but the

details are not so clear. Reyhner Flügge Lotz 68 [17] did finite di�erences

on the Boundary layer and succeed by iteration to compute the supersonic

wedge interaction.

Among people working for applications in the aerospace area, some

names are to be associated to IBL/ IVI. Among them:

• Le Balleur, from 1977 understood the interaction and using Von Kármán

profiles did a lot of practical computations at ONERA, in supersonic and

transsonic régimes.

• Veldman as well has is own codes at the National Aerospace Laboratory

NLR in Amsterdam,

• Carter, Jameson at Stanford.

• Cebeci did a huge work (several books on the interactive boundary layer

for example [4] [2]) and applied IVI at Boeing.

• Lock & Williams in a review [15], present the english RAE point of view.

• And last but not least Neiland and Sychev at the TsAGI in USSR.

Of course, this is a very very partial list.

3.2 Interactive Boundary Layer

One other way to bypass Goldstein singularity is to adopt the Interactive

Boundary Layer point of view. It means that we use the classical Prantdl

boundary layer equations :

⌃ũ

⌃x̄
+

⌃ṽ

⌃ỹ
= 0, ũ

⌃ũ

⌃x̄
+ ṽ

⌃ũ

⌃ỹ
= ūe

dūe

dx̄
+

⌃2ũ

⌃ỹ2
,

with no slip boundary conditions (ũ = ṽ = 0 on the body
¯f(x̄)), a first given

velocity profile: Blasius. The matching ũ(x̄, ỹ ⇤⇧)⇤ ūe(x̄).
A result of this computation is the transverse velocity at infinity, remem-
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On calcule ainsi l’écoulement extérieur, qui sera dans la suite très sou-
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which gives the ”blowing velocity”.

v̄e = Re�1/2 d(�̃1ūe)
dx̄

Hence, the outer flow is no more only given by the wall f̄(x̄) but, the wall
is ”thickened” by the boundary layer thickness (or ”blowing velocity”, or
”transpiration boundary condition”), so that for a subsonic flow:

ūe = 1 +
1
⇤

�
f̄(x̄) + Re�1/2 d(�̃1ūe)

dx̄

x� ⇥
d⇥

or in a supersonic flow

ūe = 1� M2

⇥
M2 � 1

[
d

dx̄
f̄(x̄) + Re�1/2 d(�̃1ūe)

dx̄
]

Instead of the usual weak coupling with the hierarchy (figure 6 left), the
boundary layer retroacts on the ideal fluid (figure 6 right). The boundary
layer thickness �1 acts as a fictive wall (cf figure 21 of chapter second or-
der), it disturbs the ideal fluid, the pressure (pressure and velocity ūe(x̄) are
linked) develops the boundary layer itself. It is a strong interaction. The
two layers are coupled. It explains the term ”Interactive Boundary Layer”,
or ”Viscous Inviscid Interaction”.

Most of the separation problems are then solved...

1 1

22

Figure 6: Interactive Boundary Layer

3.3 Justification of the Interactive Boundary Layer

At separation, the displacement boundary layer thickness becomes very
thick. It is then not counterintuitive to think that the ideal fluid will be
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• Lock & Williams in a review [15], present the english RAE point of view.
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⇧ṽ

⇧ỹ
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dūe

dx̄
+

⇧2ũ

⇧ỹ2
,

with no slip boundary conditions (ũ = ṽ = 0 on the body
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at infinity, remember that for large ỹ the transverse velocity behaves as:
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profiles did a lot of practical computations at ONERA, in supersonic and

transsonic régimes.

• Veldman as well has is own codes at the National Aerospace Laboratory

NLR in Amsterdam,

• Carter, Jameson at Stanford.

• Cebeci did a huge work (several books on the interactive boundary layer

for example [4] [2]) and applied IVI at Boeing.

• Lock & Williams in a review [15], present the english RAE point of view.

• And last but not least Neiland and Sychev at the TsAGI in USSR.

Of course, this is a very very partial list.

3.2 Interactive Boundary Layer

One other way to bypass Goldstein singularity is to adopt the Interactive

Boundary Layer point of view. It means that we use the classical Prantdl

boundary layer equations :

⇧ũ
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⇧ỹ
= 0,

ũ
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two layers are coupled. It explains the term ”Interactive Boundary Layer”,
or ”Viscous Inviscid Interaction”.

Most of the separation problems are then solved...
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3.3 Justification of the Interactive Boundary Layer

At separation, the displacement boundary layer thickness becomes very
thick. It is then not counterintuitive to think that the ideal fluid will be
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strong. In the early 60 Gad and Curle employed Von Kármán -Pohlhausen

method to try to solve the shock waves-boundary layer interaction, ”with-

out much success” (as quoted by Lees and Reeves [11]. Lees and Reeves in

64 [11] did computations with integral methods, with more success, but the

details are not so clear. Reyhner Flügge Lotz 68 [17] did finite di�erences

on the Boundary layer and succeed by iteration to compute the supersonic

wedge interaction.

Among people working for applications in the aerospace area, some

names are to be associated to IBL/ IVI. Among them:

• Le Balleur, from 1977 understood the interaction and using Von Kármán

profiles did a lot of practical computations at ONERA, in supersonic and

transsonic régimes.

• Veldman as well has is own codes at the National Aerospace Laboratory

NLR in Amsterdam,

• Carter, Jameson at Stanford.

• Cebeci did a huge work (several books on the interactive boundary layer

for example [4] [2]) and applied IVI at Boeing.

• Lock & Williams in a review [15], present the english RAE point of view.

• And last but not least Neiland and Sychev at the TsAGI in USSR.

Of course, this is a very very partial list.

3.2 Interactive Boundary Layer

One other way to bypass Goldstein singularity is to adopt the Interactive

Boundary Layer point of view. It means that we use the classical Prantdl

boundary layer equations :
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⌃ũ
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⌃ũ

⌃ỹ
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with no slip boundary conditions (ũ = ṽ = 0 on the body
¯f(x̄)), a first given

velocity profile: Blasius. The matching ũ(x̄, ỹ ⇤⇧)⇤ ūe(x̄).
A result of this computation is the transverse velocity at infinity, remem-
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⌅ũ
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dx̄

Hence, the outer flow is no more only given by the wall f̄(x̄) but, the wall
is ”thickened” by the boundary layer thickness (or ”blowing velocity”, or
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⇤
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d⇥

or in a supersonic flow
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dx̄
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Among people working for applications in the aerospace area, some

names are to be associated to IBL/ IVI. Among them:

• Le Balleur, from 1977 understood the interaction and using Von Kármán

profiles did a lot of practical computations at ONERA, in supersonic and

transsonic régimes.

• Veldman as well has is own codes at the National Aerospace Laboratory

NLR in Amsterdam,

• Carter, Jameson at Stanford.

• Cebeci did a huge work (several books on the interactive boundary layer

for example [4] [2]) and applied IVI at Boeing.

• Lock & Williams in a review [15], present the english RAE point of view.

• And last but not least Neiland and Sychev at the TsAGI in USSR.

Of course, this is a very very partial list.

3.2 Interactive Boundary Layer

One other way to bypass Goldstein singularity is to adopt the Interactive

Boundary Layer point of view. It means that we use the classical Prantdl

boundary layer equations :

⇧ũ

⇧x̄
+

⇧ṽ
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⇧ũ

⇧x̄
+ ṽ

⇧ũ
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dūe

dx̄
+

⇧2ũ
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with no slip boundary conditions (ũ = ṽ = 0 on the body
¯f(x̄)), a first

given velocity profile: Blasius. A result of this computation is the velocity

at infinity, remember that for large ỹ the transverse velocity behaves as:

ṽ ⇤ d(
˜�1ūe)

dx̄
� ỹ

⇧ũ

⇧x̄
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⇧ỹ2
,

with no slip boundary conditions (ũ = ṽ = 0 on the body
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ṽ ⇤ d(
˜�1ūe)

dx̄
� ỹ
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profiles did a lot of practical computations at ONERA, in supersonic and

transsonic régimes.

• Veldman as well has is own codes at the National Aerospace Laboratory

NLR in Amsterdam,

• Carter, Jameson at Stanford.

• Cebeci did a huge work (several books on the interactive boundary layer

for example [4] [2]) and applied IVI at Boeing.

• Lock & Williams in a review [15], present the english RAE point of view.

• And last but not least Neiland and Sychev at the TsAGI in USSR.

Of course, this is a very very partial list.

3.2 Interactive Boundary Layer

One other way to bypass Goldstein singularity is to adopt the Interactive

Boundary Layer point of view. It means that we use the classical Prantdl

boundary layer equations :

⌃ũ
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⌃ũ
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which gives the ”blowing velocity”.

v̄e = Re�1/2 d(�̃1ūe)
dx̄

Hence, the outer flow is no more only given by the wall f̄(x̄) but, the wall
is ”thickened” by the boundary layer thickness (or ”blowing velocity”, or
”transpiration boundary condition”), so that for a subsonic flow:

ūe = 1 +
1
⇤

�
f̄(x̄) + Re�1/2 d(�̃1ūe)

dx̄

x� ⇥
d⇥

or in a supersonic flow

ūe = 1� M2

⇥
M2 � 1

[
d

dx̄
f̄(x̄) + Re�1/2 d(�̃1ūe)

dx̄
]

Instead of the usual weak coupling with the hierarchy (figure 6 left), the
boundary layer retroacts on the ideal fluid (figure 6 right). The boundary
layer thickness �1 acts as a fictive wall (cf figure 21 of chapter second or-
der), it disturbs the ideal fluid, the pressure (pressure and velocity ūe(x̄) are
linked) develops the boundary layer itself. It is a strong interaction. The
two layers are coupled. It explains the term ”Interactive Boundary Layer”,
or ”Viscous Inviscid Interaction”.

Most of the separation problems are then solved...
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⌃ũ
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Reynolds number Re is constructed with a velocity (U0) and a typical
length (L) . So, we first non-dimensionalise the equations with L and U0,
and as the Reynolds number is large we obtain Euler equations (with ”bars”
over teh variables i.e. x̄ = x/L, ū = u/U⇥).

ue

Fig. 2 – Le problème générique, on se donne une plaque plane avec une petite
bosse, la plaque est plongée dans un écoulement uniforme.

On calcule ainsi l’écoulement extérieur, qui sera dans la suite très sou-
vent un simple écoulement uniforme. Un des résultats est alors la valeur de
la vitesse de glissement souvent notée ūe.
Près de la paroi, la description de fluide parfait n’est plus valide, il faut
introduire une couche limite. L’établissement de son épaisseur relative passe
par ”le principe de moindre dégénérescence” (Van Dyke [10], Darrozès &
François [4] ”least degeneracy” principle) : on veut garder les termes convec-
tifs et au moins un terme visqueux (on pose ȳ = ỹ�/L) :

ũ
⇧ũ

⇧x̄
� 1

Re(�/L)2
⇧2ũ

⇧ỹ2
,

on dit alors que la couche limite est d’épaisseur relative Re�1/2.

équations dynamiques
Les équations de la dynamique devenaient :

⇧ũ

⇧x̄
+

⇧ṽ

⇧ỹ
= 0,

ũ
⇧ũ

⇧x̄
+ ṽ

⇧ũ

⇧ỹ
=

⇧2ũ

⇧ỹ2

Avec pour conditions aux limites ũ(x̄, 0) = 0, ũ(x̄,⇥) = 1. On en trouvait
une solution semblable (see thereafter the Falkner Skan solution) :

⌅ = x̄1/2f(⇥), ⇤ = x̄, ⇥ = ỹ/
⇤

x̄.

2

ideal fluid

boundary layer
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dx̄
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]

Instead of the usual weak coupling with the hierarchy (figure 6 left), the
boundary layer retroacts on the ideal fluid (figure 6 right). The boundary
layer thickness �1 acts as a fictive wall (cf figure 21 of chapter second or-
der), it disturbs the ideal fluid, the pressure (pressure and velocity ūe(x̄) are
linked) develops the boundary layer itself. It is a strong interaction. The
two layers are coupled. It explains the term ”Interactive Boundary Layer”,
or ”Viscous Inviscid Interaction”.

Most of the separation problems are then solved...
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⇧ỹ2
,

on dit alors que la couche limite est d’épaisseur relative Re�1/2.

équations dynamiques
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⇧ỹ2
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the induced drag on finite span wings which is a ideal fluid e�ect).

But, everything is not so simple, there are problems when computing the
boundary layer: we remain again the boundary layer separation problem.
But there are other paradoxes: we introduce an other important problem
which is the ”upstream influence problem”. We will show that to solve
those two problems, the good strategy is a strategy of ”strong interaction”
between the boundary layer and the ideal fluid. So it was called ”Interact-
ing Boundary Layer” or ”Viscous Inviscid Interaction” (or Inviscid Viscous
Interaction). Some practical examples from literature and for various flows
régimes are presented.

2 Problems associated with the Boundary Layer

2.1 Separation

We already had a glimpse on the problem of separation of boundary layer.
We saw that for a given external flow, one can not compute the boundary
layer if the skin friction vanishes. This is called Goldstein singularity, close
to the point of separation:

⇥u

⇥y
⇥
⇤

xs � x and v ⇥ 1⇤
xs � x

.

So, for a given external decreasing velocity, there is a possibility of separa-
tion with a singularity. The computation can not pass the separation. Most
of classical text book of fluid mechanics do the same and end their course
on boundary layers by this dead end, for example one can read in Kundu
[9]: ”the boundary layer equations are valid only far downstream as the
point of separation. Beyond it the boundary layer becomes so thick that
the basic underlying assumptions become invalid. Moreover, the parabolic
character of the boundary layer equations requires that a numerical integra-
tion is possible only in the direction of advection (along which information
are propagated), which is /it upstream within the reversed flow region. A
forward (downstream) integration of the boundary layer equations therefore
breaks down after the separation point. Last, we can no longer apply po-
tential theory to find the pressure distribution in the separation region, as
the e�ective boundary of the irrotational flow is no longer the solid surface
but some unknown shape encompassing part of the body plus the separation
region.”

- III . 2-

direct resolution

ue(x)prescribed

singularity



some problems: separation

._.- .

N.A.C.A. Technicnl

,,

u

u

—’—— ——. ——— —

/“”r

Fig.1.

\

.,. .,.

Figoa

f,
i

inverse resolution

no problem!

Reyhner, Flügge-Lotz 1968

Catherall, Mangler, 1966

prescribed �̃1



Boundary LayerIdeal Fluid ue �1yw

Keller Box, 
Finite differences....

Finite elements

pressure- blowing velocity
characteristics/ 
panel methods/

finite diff...



Boundary LayerIdeal Fluid ue �1yw



yw + �1 Boundary LayerIdeal Fluid ue �1



Boundary Layer

Ideal Fluidyw + �n
1 un

e

un
BL�n

1

�n+1
1(un

BL � un
e )⇥

IBL IVI

yw + �1 ue �1

Figure 9: ”Direct method”: the geometry gives the velocity which gives the
boundary layer, the rebranching will give the second order e⇥ects. .

method” figure 10. in fact it is not a good idea as it is di⇧cult to rewrite
the Euler codes.

yw + �1 ue

Figure 10: ”Inverse method”, the total geometry (boundary layer thickness and
e⇥ective geometry) give the velocity which gives a total geometry, and so on.

• The good way to solve the boundary layer, is to solve it in inverse, the
good way to solve the ideal fluid is in the direct way. So we have to relax the
input depending on the di⇥erence of the outputs. This is the semi-inverse
coupling by Le Balleur (figure 11).

yw + �n
1 un

e

un
BL�n

1

�n+1
1(un

BL � un
e )⇥

Figure 11: ”Semi Inverse method”, inverse boundary layer, direct ideal fluid. The
di⇥erence of the two output velocities is used to update the displacement thickness,
and so on.

• There are other possibilities, one is the ”quasisimultaneous method”. It
means that during the coupling values computed downstream are reinjected,
which is more useful in the subsonic case.

3.4.3 Semi inverse coupling

The point to be clarified is how to update the new �n+1
1 from �n

1 and the
di⇥erence (un

BL � un
e ), the simplest way is to write:

�n+1 = �n + ⇥(un
BL � un

e )
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A word about the numerics in BL

more robust variation : Keller Box
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(see the end Double Deck)
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3 Interactive Boundary Layer

3.1 Examples of users

So it became clear that the interaction with the ideal fluid is not weak but

strong. In the early 60 Gad and Curle employed Von Kármán -Pohlhausen

method to try to solve the shock waves-boundary layer interaction, ”with-

out much success” (as quoted by Lees and Reeves [11]. Lees and Reeves in

64 [11] did computations with integral methods, with more success, but the

details are not so clear. Reyhner Flügge Lotz 68 [17] did finite di�erences

on the Boundary layer and succeed by iteration to compute the supersonic

wedge interaction.

Among people working for applications in the aerospace area, some

names are to be associated to IBL/ IVI. Among them:

• Le Balleur, from 1977 understood the interaction and using Von Kármán

profiles did a lot of practical computations at ONERA, in supersonic and

transsonic régimes.

• Veldman as well has is own codes at the National Aerospace Laboratory

NLR in Amsterdam,

• Carter, Jameson at Stanford.

• Cebeci did a huge work (several books on the interactive boundary layer

for example [4] [2]) and applied IVI at Boeing.

• Lock & Williams in a review [15], present the english RAE point of view.

• And last but not least Neiland and Sychev at the TsAGI in USSR.

Of course, this is a very very partial list.

3.2 Interactive Boundary Layer

One other way to bypass Goldstein singularity is to adopt the Interactive

Boundary Layer point of view. It means that we use the classical Prantdl

boundary layer equations :

⇧ũ

⇧x̄
+

⇧ṽ

⇧ỹ
= 0, ũ

⇧ũ

⇧x̄
+ ṽ

⇧ũ

⇧ỹ
= ūe

dūe

dx̄
+

⇧2ũ

⇧ỹ2
,

with no slip boundary conditions (ũ = ṽ = 0 on the body
¯f(x̄)), a first

given velocity profile: Blasius. A result of this computation is the velocity

at infinity, remember that for large ỹ the transverse velocity behaves as:

ṽ ⇤ d(
˜�1ūe)

dx̄
� ỹ

⇧ũ

⇧x̄
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⇧ũ
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which gives the ”blowing velocity”.

v̄e = Re�1/2 d(�̃1ūe)
dx̄

Hence, the outer flow is no more only given by the wall f̄(x̄) but, the wall
is ”thickened” by the boundary layer thickness (or ”blowing velocity”, or
”transpiration boundary condition”), so that for a subsonic flow:

ūe = 1 +
1
⇤

�
f̄(x̄) + Re�1/2 d(�̃1ūe)

dx̄

x� ⇥
d⇥

or in a supersonic flow

ūe = 1� M2

⇥
M2 � 1

[
d

dx̄
f̄(x̄) + Re�1/2 d(�̃1ūe)

dx̄
]

Instead of the usual weak coupling with the hierarchy (figure 6 left), the
boundary layer retroacts on the ideal fluid (figure 6 right). The boundary
layer thickness �1 acts as a fictive wall (cf figure 21 of chapter second or-
der), it disturbs the ideal fluid, the pressure (pressure and velocity ūe(x̄) are
linked) develops the boundary layer itself. It is a strong interaction. The
two layers are coupled. It explains the term ”Interactive Boundary Layer”,
or ”Viscous Inviscid Interaction”.

Most of the separation problems are then solved...

1 1

22

Figure 6: Interactive Boundary Layer

3.3 Justification of the Interactive Boundary Layer

At separation, the displacement boundary layer thickness becomes very
thick. It is then not counterintuitive to think that the ideal fluid will be
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⌃x̄
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⌃ṽ
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⌃ũ

⌃x̄
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⌃ũ
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= ūe
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dx̄
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⌃2ũ
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,

with no slip boundary conditions (ũ = ṽ = 0 on the body
¯f(x̄)), a first given

velocity profile: Blasius. The matching ũ(x̄, ỹ ⇤⇧)⇤ ūe(x̄).
A result of this computation is the transverse velocity at infinity, remem-
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Reynolds number Re is constructed with a velocity (U0) and a typical
length (L) . So, we first non-dimensionalise the equations with L and U0,
and as the Reynolds number is large we obtain Euler equations (with ”bars”
over teh variables i.e. x̄ = x/L, ū = u/U⇥).

ue

Fig. 2 – Le problème générique, on se donne une plaque plane avec une petite
bosse, la plaque est plongée dans un écoulement uniforme.

On calcule ainsi l’écoulement extérieur, qui sera dans la suite très sou-
vent un simple écoulement uniforme. Un des résultats est alors la valeur de
la vitesse de glissement souvent notée ūe.
Près de la paroi, la description de fluide parfait n’est plus valide, il faut
introduire une couche limite. L’établissement de son épaisseur relative passe
par ”le principe de moindre dégénérescence” (Van Dyke [10], Darrozès &
François [4] ”least degeneracy” principle) : on veut garder les termes convec-
tifs et au moins un terme visqueux (on pose ȳ = ỹ�/L) :

ũ
⇧ũ

⇧x̄
� 1

Re(�/L)2
⇧2ũ

⇧ỹ2
,

on dit alors que la couche limite est d’épaisseur relative Re�1/2.

équations dynamiques
Les équations de la dynamique devenaient :

⇧ũ

⇧x̄
+

⇧ṽ

⇧ỹ
= 0,

ũ
⇧ũ

⇧x̄
+ ṽ

⇧ũ

⇧ỹ
=

⇧2ũ

⇧ỹ2

Avec pour conditions aux limites ũ(x̄, 0) = 0, ũ(x̄,⇥) = 1. On en trouvait
une solution semblable (see thereafter the Falkner Skan solution) :

⌅ = x̄1/2f(⇥), ⇤ = x̄, ⇥ = ỹ/
⇤

x̄.

2

ideal fluid

boundary layer
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dx̄

� ỹ
⌅ũ
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⇤
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dx̄

x� ⇥
d⇥

or in a supersonic flow
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d

dx̄
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dx̄
]

Instead of the usual weak coupling with the hierarchy (figure 6 left), the
boundary layer retroacts on the ideal fluid (figure 6 right). The boundary
layer thickness �1 acts as a fictive wall (cf figure 21 of chapter second or-
der), it disturbs the ideal fluid, the pressure (pressure and velocity ūe(x̄) are
linked) develops the boundary layer itself. It is a strong interaction. The
two layers are coupled. It explains the term ”Interactive Boundary Layer”,
or ”Viscous Inviscid Interaction”.

Most of the separation problems are then solved...
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Figure 6: Interactive Boundary Layer
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Figure 16: Incompressible flow [click to launch the movie, Adobe Reader
required]. Top the velocity field ũ, ṽ (Prandtl transform), bottom the wall,
here a bump, the displacement thickness ⇥̃1 (starting from Blasius value
1.7 in x̄ = 1), the skin friction (starting from Blasius value 0.3 in x̄ = 1)
and the outer velocity starting from Ideal Fluid value 1 in x̄ = 1. A positive
disturbance of the wall increases the velocity and decreases the displacement.
Separation may occur after the bump, or before the tough.
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4.2 Some numerical examples

4.2.1 Bump on a flat plate in a incompressible (subsonic) flow.

As a first example (fig 16), we present the results for the IBL on a flat plate
with a bump defined by ȳw = �e�25(x̄�2)2 ; with � increasing by steps of 0.01
and Re = 10000. The velocity is:

ūe = 1 +
1
⌅

�
f̄(x̄) + Re�1/2 d(�̃1ūe)

dx̄

x� ⇤
d⇤

Before the bump there is a small decrease of the ūe velocity. In a pure
Hilbert case, the response in ūe is perfectly symmetrical, but here, due to the
boundary layer, the velocity is no more symmetrical. Due to the acceleration
on the bump, the displacement thickness first decreases and increases again
after the bump. It increases more. So, there is a small overshoot of the
thickness associated with the boundary layer separation. This makes the
outer velocity non symmetrical. The skin friction increases before the crest,
and decreases after. This is consistent with the fact that, for instance, before
the crest, the velocity increases, and the boundary layer thickness decreases,
so the slope of the velocity in the boundary layer increases (it is more or
less the ratio of ūe and ⇥̃1), the reverse happens after. We notice that the
maximum of the skin friction is before the crest, after the inflexion point of
the bump, the velocity increases less, but the boundary layer continues to
decrease because of the inertia of the fluid, so the maximum of skin friction
is between the inflexion point of the bump and the crest. There is eventually
a separated bulb with negative skin friction.

4.2.2 Bump on a flat plate in a Supersonic flow.

As a second example (fig 17), we present the results for the IBL on a flat
plate with a bump defined by ȳw = �e�25(x̄�3.5)2 ; but in the compressible
supersonic case, so that the edge velocity is:

ūe = 1� M2

⇥
M2 � 1

[
d

dx̄
f̄(x̄) + Re�1/2 d(⇥̃1ūe)

dx̄
].

The bump creates upstream influence and a separated bulb far upstream.
The skin friction reincreases and then redecreases to create a second sepa-
rated bulb.
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Figure 17: Supersonic flow on a flat plate with a bump [click to launch
the movie, Adobe Reader required]. Top the velocity field ũ, ṽ (Prandtl
transform), bottom the wall, here a bump, the perturbation of displacement
thickness from Blasius ��̃1 (starting from 0 in x̄ = 1), the skin friction
(starting from Blasius value 0.3 in x̄ = 1) and the outer pressure starting
from Ideal Fluid value 0 in x̄ = 1. Note the pressure plateau associated to
separation.
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Figure 18: Subcritical flow on a flat plate[click to launch the movie, Adobe
Reader required]. Top the velocity field ũ, ṽ (Prandtl transform), bottom
the wall, here a bump, the displacement thickness �̃1 (starting from Blasius
value 1.7 in x̄ = 1), the skin friction (starting from Blasius value 0.3 in
x̄ = 1) and the outer velocity starting from Ideal Fluid value 1 in x̄ = 1.
A positive disturbance of the wall increases the velocity and decreases the
displacement. Separation may occur after the bump.
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4.2.3 Bump on a flat plate in subcritical flow.

Nearly the same occurs in the case of the subcritical flow (F < 1) or in the
case of symmetrical pipe flows. The edge velocity is:

ūe = 1 + [f̄(x̄) + ⇥̃1Re�1/2]

It means that the velocity increases and decreases after the crest (see
figure 18). The skin friction is extremal just before the crest, and there may
be flow separation on the lee side. The behaviour is nearly the same than
in the incompressible case but there is no influence of the bump before the
beginning of it, it the incompressible case there was some small e�ect due
to the Hilbert integral.

4.2.4 Bump on a flat plate in a Supercritical flow.

In the supercritical flow, the story is completely di�erent. We observe a
strong upstream influence on figure 19. The velocity decreases due to the
bump, and the skin friction is negative upstream of the bump, the extremum
is on the lee side, after the bump. There is a huge jump in ⇥̃1, a kind of
hydraulic jump.

4.2.5 Wedge on a flat plate in a Supersonic flow.

As final example (fig 20), we present the results for the IBL on a flat plate
with a wedge defined by ȳw = �(x̄�3.5)+; with � increasing by steps of 0.01
and Re = 100000. For enough large � we observe the ”plateau” of pressure
which is the signature of the self induced interaction and upstream influence.
This increase of pressure before the wedge creates a region of reverse flow.
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Figure 19: Supercritical flow on a flat plate [click to launch the movie,
Adobe Reader required]. Top the velocity field ũ, ṽ (Prandtl transform),
bottom the wall, here a bump, the displacement thickness �̃1 (starting from
Blasius value 1.7 in x̄ = 1), the skin friction (starting from Blasius value
0.3 in x̄ = 1) and the outer velocity starting from Ideal Fluid value 1 in
x̄ = 1. A positive disturbance of the wall decreases the velocity and decreases
the displacement. Separation may occur before the bump, note the long
upstream influence.
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4.2.3 Bump on a flat plate in subcritical flow.

Nearly the same occurs in the case of the subcritical flow (F < 1) or in the
case of symmetrical pipe flows. The edge velocity is:

ūe = 1 +
1

1� F
[f̄(x̄) + ⇥̃1Re�1/2]

It means that the velocity increases and decreases after the crest (see
figure 18). The skin friction is extremal just before the crest, and there may
be flow separation on the lee side. The behaviour is nearly the same than
in the incompressible case but there is no influence of the bump before the
beginning of it, it the incompressible case there was some small e�ect due
to the Hilbert integral.

4.2.4 Bump on a flat plate in a Supercritical flow.

In the supercritical flow, the story is completely di�erent. We observe a
strong upstream influence on figure 19. The velocity decreases due to the
bump, and the skin friction is negative upstream of the bump, the extremum
is on the lee side, after the bump. There is a huge jump in ⇥̃1, a kind of
hydraulic jump.

4.2.5 Wedge on a flat plate in a Supersonic flow.

As final example (fig 20), we present the results for the IBL on a flat plate
with a wedge defined by ȳw = �(x̄�3.5)+; with � increasing by steps of 0.01
and Re = 100000. For enough large � we observe the ”plateau” of pressure
which is the signature of the self induced interaction and upstream influence.
This increase of pressure before the wedge creates a region of reverse flow.
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Figure 16: Incompressible flow [click to launch the movie, Adobe Reader
required]. Top the velocity field ũ, ṽ (Prandtl transform), bottom the wall,
here a bump, the displacement thickness �̃1 (starting from Blasius value
1.7 in x̄ = 1), the skin friction (starting from Blasius value 0.3 in x̄ = 1)
and the outer velocity starting from Ideal Fluid value 1 in x̄ = 1. A positive
disturbance of the wall increases the velocity and decreases the displacement.
Separation may occur after the bump, or before the tough.
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Figure 17: Supersonic flow on a flat plate with a bump [click to launch
the movie, Adobe Reader required]. Top the velocity field ũ, ṽ (Prandtl
transform), bottom the wall, here a bump, the perturbation of displacement
thickness from Blasius ��̃1 (starting from 0 in x̄ = 1), the skin friction
(starting from Blasius value 0.3 in x̄ = 1) and the outer pressure starting
from Ideal Fluid value 0 in x̄ = 1. Note the pressure plateau associated to
separation.
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Figure 18: Subcritical flow on a flat plate[click to launch the movie, Adobe
Reader required]. Top the velocity field ũ, ṽ (Prandtl transform), bottom
the wall, here a bump, the displacement thickness �̃1 (starting from Blasius
value 1.7 in x̄ = 1), the skin friction (starting from Blasius value 0.3 in
x̄ = 1) and the outer velocity starting from Ideal Fluid value 1 in x̄ = 1.
A positive disturbance of the wall increases the velocity and decreases the
displacement. Separation may occur after the bump.
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Figure 19: Supercritical flow on a flat plate [click to launch the movie,
Adobe Reader required]. Top the velocity field ũ, ṽ (Prandtl transform),
bottom the wall, here a bump, the displacement thickness �̃1 (starting from
Blasius value 1.7 in x̄ = 1), the skin friction (starting from Blasius value
0.3 in x̄ = 1) and the outer velocity starting from Ideal Fluid value 1 in
x̄ = 1. A positive disturbance of the wall decreases the velocity and decreases
the displacement. Separation may occur before the bump, note the long
upstream influence.
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Figure 20: Supersonic flow on a flat plate with a wedge [click to launch
the movie, Adobe Reader required]. Top the velocity field ũ, ṽ (Prandtl
transform), bottom the wall, here a wedge in x̄ = 3.5, the perturbation of
displacement thickness ��̃1 (starting from 0 in x̄ = 1), the skin friction
(starting from Blasius value 0.3 in x̄ = 1) and the outer pressure starting
from Ideal Fluid value 0 in x̄ = 1. Note the plateau pressure and the
separation far upstream of the wedge.
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IBL IVI

Figure 20: Supersonic flow on a flat plate with a wedge [click to launch
the movie, Adobe Reader required]. Top the velocity field ũ, ṽ (Prandtl
transform), bottom the wall, here a wedge in x̄ = 3.5, the perturbation of
displacement thickness ��̃1 (starting from 0 in x̄ = 1), the skin friction
(starting from Blasius value 0.3 in x̄ = 1) and the outer pressure starting
from Ideal Fluid value 0 in x̄ = 1. Note the plateau pressure and the
separation far upstream of the wedge.
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outline
• the classical Boundary Layer 

• second order Boundary Layer 

• Interactive Boundary Layer 

• some examples of numerical resolution with some 
comparaisons with Navier Stokes 

• the Triple Deck, example of numerical solution 

• the Double Deck, example of numerical solution FD FE 

• summary



Does it work?

• flow in an axi constriction (stenosis) 

• flow over a 2D bump  

• entrance axi flow 

• flow in a 2D channel with a constriction

some comparisons with steady 2D NS



x

steady flow 
increase the degree 
 of closure of the  
stenosis

Exemple: flow in a stenosis RNSP Scales

R H1-aL R

u

x0 0

!

Using:

x� = xR0Re, r� = rR0, u� = U0u, v� = U0
Rev,

p� = p�0 + �0U2
0p and ⇥� = �U2

0
Re ⇥

the following partial di�erential system is obtained from Navier Stokes as Re�⇥:



WSS = (µ
∂u
∂y

)/(µ
4U0

R
)' 0.22

(Re/l)1/2 +3
(1�a)3

a,b

Lagrée Lorthois 05, Lorthois et al 00

Exemple: flow in a stenosis RNSP Scales

R H1-aL R

u

x0 0

!

Using:

x� = xR0Re, r� = rR0, u� = U0u, v� = U0
Rev,

p� = p�0 + �0U2
0p and ⇥� = �U2

0
Re ⇥

the following partial di�erential system is obtained from Navier Stokes as Re�⇥:

Siegel et al 94
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4.2. Interactive Boundary Layer for flow separation
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Figure 4.15 – Comparison of (a) physical flow set-up, (b) configuration used in Navier–
Stokes simulations, and (b) configuration used in IBL calculations, for h/δ∗ = 2 and Reδ∗ =
U∞δ∗/ν = 100, 400, 700. The boundary layer starts at x = 0 and develops according to
δ(x) = 1.72

$
νx/U∞. The reference displacement thickness δ∗ = δ(x∗) is measured at the

reference location x∗ = xb−25δ∗ (vertical dashed lines), where xb is the location of the bump
summit. In Navier–Stokes simulations, all configurations are identical: the bump summit
is located 25δ∗ after the inlet x∗, where the BL displacement thickness is δ∗. In IBL cal-
culations, the bump has a fixed position xb = xb/L = 2 while its height increases towards
h̃ = 1.72

$
2 h/δ∗ as the Reynolds number increases. The numerical inlet is at x = 1.
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Figure 4.1 – Sketch of the bump flow. The flow separates at xs and reattaches at xr (black
dots). The separatrix (blue solid line) encloses the recirculation region (blue shade) of area
Arec and makes angles αs , αr with the wall. Velocity profiles are shown with black lines. The
curve where Ux = 0 (red dashed line) delimits the backflow area (red shade) of area Aback .
The bump wall geometry is parametrized by yw (x) and the separatrix by ysep (x). The axes
are not to scale.

2 Characteristic quantities in separated flows

The evolution of the recirculation length in separated flows with the increase in Reynolds
number Re is well documented (Taneda, 1956; Acrivos, Leal, Snowden & Pan, 1968; Nishioka
& Sato, 1978; Zielinska et al., 1997; Barkley et al., 2002; Marquillie & Ehrenstein, 2003; Gi-
annetti & Luchini, 2007; Passaggia et al., 2012). For instance, in the flow around a circular
cylinder, the recirculation length is known to increase with Re in the steady laminar regime
while it starts to decrease in mean value as Re is further increased in the unsteady laminar
regime. In the present study, we turn our attention to several characteristic quantities which
describe the separation, in complement to the recirculation length: the locations of the two
separation points (xs and xr ) which connect the separatrix, the separation angles (αs and αr )
prevailing at these separation points, the backflow area Aback and the recirculation area Arec .

As an archetypical flow configuration, we consider the flow of a boundary layer above a wall
mounted bump studied as studied through DNS (Marquillie & Ehrenstein, 2003) and through
global stability analysis (Ehrenstein & Gallaire, 2005).

Figure 4.1 is a schematic of typical flow separation. The recirculation region is delimited
by the wall and the separating streamline. This particular streamline, or separatrix, makes
angles αs and αr at the separation point xs and reattachment point xr , respectively. The
wall geometry is described by yw (x) and the separatrix by ysep (x), where x is the streamwise
direction.

In this paper we focus on the following quantities:

1. The location of stagnation points, i.e. separation point xs and reattachment point xr ,
characterized by zero wall shear stress

τs/r = ∂nUt (xs/r ) = 0; (4.1)
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ỹ

(c) IBL

δ̃= 1.72

Figure 4.15 – Comparison of (a) physical flow set-up, (b) configuration used in Navier–
Stokes simulations, and (b) configuration used in IBL calculations, for h/δ∗ = 2 and Reδ∗ =
U∞δ∗/ν = 100, 400, 700. The boundary layer starts at x = 0 and develops according to
δ(x) = 1.72

$
νx/U∞. The reference displacement thickness δ∗ = δ(x∗) is measured at the

reference location x∗ = xb−25δ∗ (vertical dashed lines), where xb is the location of the bump
summit. In Navier–Stokes simulations, all configurations are identical: the bump summit
is located 25δ∗ after the inlet x∗, where the BL displacement thickness is δ∗. In IBL cal-
culations, the bump has a fixed position xb = xb/L = 2 while its height increases towards
h̃ = 1.72

$
2 h/δ∗ as the Reynolds number increases. The numerical inlet is at x = 1.
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Figure 4.1 – Sketch of the bump flow. The flow separates at xs and reattaches at xr (black
dots). The separatrix (blue solid line) encloses the recirculation region (blue shade) of area
Arec and makes angles αs , αr with the wall. Velocity profiles are shown with black lines. The
curve where Ux = 0 (red dashed line) delimits the backflow area (red shade) of area Aback .
The bump wall geometry is parametrized by yw (x) and the separatrix by ysep (x). The axes
are not to scale.
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number Re is well documented (Taneda, 1956; Acrivos, Leal, Snowden & Pan, 1968; Nishioka
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annetti & Luchini, 2007; Passaggia et al., 2012). For instance, in the flow around a circular
cylinder, the recirculation length is known to increase with Re in the steady laminar regime
while it starts to decrease in mean value as Re is further increased in the unsteady laminar
regime. In the present study, we turn our attention to several characteristic quantities which
describe the separation, in complement to the recirculation length: the locations of the two
separation points (xs and xr ) which connect the separatrix, the separation angles (αs and αr )
prevailing at these separation points, the backflow area Aback and the recirculation area Arec .

As an archetypical flow configuration, we consider the flow of a boundary layer above a wall
mounted bump studied as studied through DNS (Marquillie & Ehrenstein, 2003) and through
global stability analysis (Ehrenstein & Gallaire, 2005).

Figure 4.1 is a schematic of typical flow separation. The recirculation region is delimited
by the wall and the separating streamline. This particular streamline, or separatrix, makes
angles αs and αr at the separation point xs and reattachment point xr , respectively. The
wall geometry is described by yw (x) and the separatrix by ysep (x), where x is the streamwise
direction.

In this paper we focus on the following quantities:

1. The location of stagnation points, i.e. separation point xs and reattachment point xr ,
characterized by zero wall shear stress

τs/r = ∂nUt (xs/r ) = 0; (4.1)
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dots). The separatrix (blue solid line) encloses the recirculation region (blue shade) of area
Arec and makes angles αs , αr with the wall. Velocity profiles are shown with black lines. The
curve where Ux = 0 (red dashed line) delimits the backflow area (red shade) of area Aback .
The bump wall geometry is parametrized by yw (x) and the separatrix by ysep (x). The axes
are not to scale.
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cylinder, the recirculation length is known to increase with Re in the steady laminar regime
while it starts to decrease in mean value as Re is further increased in the unsteady laminar
regime. In the present study, we turn our attention to several characteristic quantities which
describe the separation, in complement to the recirculation length: the locations of the two
separation points (xs and xr ) which connect the separatrix, the separation angles (αs and αr )
prevailing at these separation points, the backflow area Aback and the recirculation area Arec .

As an archetypical flow configuration, we consider the flow of a boundary layer above a wall
mounted bump studied as studied through DNS (Marquillie & Ehrenstein, 2003) and through
global stability analysis (Ehrenstein & Gallaire, 2005).

Figure 4.1 is a schematic of typical flow separation. The recirculation region is delimited
by the wall and the separating streamline. This particular streamline, or separatrix, makes
angles αs and αr at the separation point xs and reattachment point xr , respectively. The
wall geometry is described by yw (x) and the separatrix by ysep (x), where x is the streamwise
direction.

In this paper we focus on the following quantities:

1. The location of stagnation points, i.e. separation point xs and reattachment point xr ,
characterized by zero wall shear stress

τs/r = ∂nUt (xs/r ) = 0; (4.1)
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Figure 4.15 – Comparison of (a) physical flow set-up, (b) configuration used in Navier–
Stokes simulations, and (b) configuration used in IBL calculations, for h/δ∗ = 2 and Reδ∗ =
U∞δ∗/ν = 100, 400, 700. The boundary layer starts at x = 0 and develops according to
δ(x) = 1.72

$
νx/U∞. The reference displacement thickness δ∗ = δ(x∗) is measured at the

reference location x∗ = xb−25δ∗ (vertical dashed lines), where xb is the location of the bump
summit. In Navier–Stokes simulations, all configurations are identical: the bump summit
is located 25δ∗ after the inlet x∗, where the BL displacement thickness is δ∗. In IBL cal-
culations, the bump has a fixed position xb = xb/L = 2 while its height increases towards
h̃ = 1.72

$
2 h/δ∗ as the Reynolds number increases. The numerical inlet is at x = 1.
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IBL is not so bad, it allows boundary layer separation, 
qualitative and quantitative comparisons with NS 

Turn now to Triple Deck, the sound asymptotic framework for 
flow separation
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Triple Deck
new scales with balance between inertia and viscosity:

rational asymptotic framework for boundary layer separation

Brown Stewartson Williams 69
Neiland 69
Messiter 70
Sychev 72
Smith 77…

boundary layer in the boundary layer



�3 = ⇥�
x3

∆3

Lower Deck

introduce new scale longitudinally and transversally as 
we look at vanishingly small perturbation of the Blasius 
boundary layer



L'équilibre diffusif/ convectif doit être respecté pour assurer l'adhérence à la paroi:

u
!u

!x
 ~ R-1 

!2 

!y2
 u.

 près de la paroi: "u ~ u ~ #3/#.

Ce qui s'écrit avec les ordres de grandeur  précédents et  compte tenu du fait que l'accident se

produit sur une échelle rapide x3,

"u"u/x3~"u/(#3/#)2.

Cette expression fournit l'ordre de grandeur de l'échelle rapide en fonction du rapport des

couches:

x3~(#3/#)3=$3.

On constate facilement ensuite que la pression est en $2, on admet (dans cette analyse rapide

mais on peut le montrer) qu'elle ne varie pas en y et quelle est encore inchangée au travers du

"Pont Principal" Main Deck. Cette perturbation de #3 de la couche limite produit une

déflexion des lignes de courant  #3=$#. L'angle de déflexion correspondant est donc:

$#/$3.

Cette perturbation est alors ressentie par le fluide parfait comme une bosse de longueur $3 et

d'épaisseur $#. Le fluide parfait linéarisé rétroagit donc avec  $3 comme échelles transverses

et longitudinales ("Pont Supérieur" Upper Deck) à cette bosse d'angle $#/$3. La perturbation

de pression de fluide parfait est donc proportionnelle à l'angle de la bosse en $#/$3. Or l'ordre

de grandeur de la pression compatible dans le Pont Inférieur est $2, donc pour qu'il y ait

rétroaction, il faut que ces deux pression soient égales:

$2=$#/$3

Ce qui donne le paramètre magique:

 $=#-1/4=R-1/8.

1.2. synthèse: développements asymptotiques

1.2.1. pont principal

Il s'agit de la formulation de Stewartson 1969.
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Neiland 69
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So we deduce that in the lower deck the velocity should match to this
quantity

lim
y⇥+⌅

u = (y + A(x))U ⇤B(0)

The convective di�usive equilibrium of the Navier Stokes equations

u
⌅

⌅x
⌅ Re�1 ⌅2

⌅y2

written with the scales:

�

x3
⇥ Re�1 1

(�Re�1/2)2

so that :
x3 = �3.

The pressure is of order �2, and the transverse equations of momentum
gives as in the classical boundary layer:

⌅p

⌅y
= 0

so, the pressure does not depend on y and is constant across the lower deck.
The final system is then:

⌅u

⌅x
+

⌅v

⌅y
= 0, u

⌅u

⌅x
+ v

⌅u

⌅y
= �dp

dx
+

⌅2u

⌅y2
.

With no slip condition at the wall (u = v = 0), the entrance velocity profile
u(x⇤ �⇧, y) = U ⇤B(0)y, and the matching condition with the Main Deck:
u(x, y ⇤⇧) = (y + A)U ⇤B(0).

2.3 Upper Deck

The disturbed velocity in the Main Deck is :

ũ = UB(ỹ) + �A(x)U ⇤B(ỹ); ṽ =
�
⌃

Re

x3
A⇤(x)UB(ỹ)

and for the pressure
⌅p̃

⌅ỹ
= 0

Now let us see what happens at the top of the Main Deck, for ỹ ⇤⇧:

ũ = 1; ṽ =
�
⌃

Re

x3
A⇤(x),

- IV . 4-

u
@u

@x
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Re

@u

@y2
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u(x, y = f(x)) = 0, v(x, y = f(x)) = 0
& lim

y�⇥
u(x, y) = y + A.

anticipating matching

Lower Deck

after dominant balance the equations are 

which are again Prandtl with different scales !



Triple Deck

�A(x)). This deflexion of the stream lines is transmitted to the ideal fluid
layer : the ”Upper Deck”.

(STEWARTSON K. & WILLIAMS P.G.1969 "Self induced separation", Proc Roy. Soc A

312, 181- 206.)
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La synthèse se fait en partant de la solution de Blasius et en la perturbant à l'échelle !3

dégagée. Comme on est à une échelle plus courte que celle du développement de la couche

limite, le profil de Blasius (noté U0) ne varie pas en x à l'échelle considérée.

On a pour le frottement pariétal (en y=0):

 dU0/dy=# !-4. et #=.3321

on écrit le développement suivant:

 u=U0+!u1+...; v=!2v1+... p = !2p1

En substituant dans les ENS: on en déduit que la solution est une perturbation non visqueuse

des équations, et qu'il n'y a pas de variation transverse de pression:

u1=  A(x)U0
', et v1= -  

d$

dx
 U0 et  

% 

%y
p1=0

-dA/dx (x en !3.....) Retenons que la solution dans le "pont principal" ("Main Deck") est une

perturbation non visqueuse de la solution de Blasius.

1.2.2. pont inférieur

Près de la paroi on constate que la développement de la solution de pont principale donne:

u=#y + ! A(x)#

 12 novembre 2004 "3DEATC" 3

Figure 1: Left, the triple deck scales. Right, ”triple decker ship of the line” from
HMS victory brochure Porthmouth (”vaisseau de ligne à trois ponts”). In german
”Dreierdeck-Theorie”, a french translation of Triple Deck Theorie may be ”Triple
Pont” instead of ”Triple Couche”.

2.2 Scales

2.2.1 Main Deck

The classical way to look at Triple Deck is to consider perturbations of the
Boundary Layer. The first idea to introduce is the existence of a perturba-
tion of small length compared to the boundary layer development itself.

We have the basic non dimensional Blasius profile UB(ỹ) in the boundary
layer, where ỹ is the transverse variable scaled by L/

⇤
Re. Now suppose that

at longitudinal scale say x3 there is a perturbation of this basic profile. We
will call ”Main Deck” the region considered which is of relative scale x3 but
which is of boundary layer scale in the transverse direction. As this scale
is small, the boundary layer as not evolved, and at first order VB = 0. So,
suppose that at longitudinal scale say x3 there is a perturbation of this basic
profile of magnitude �, then:

ũ = UB(ỹ) + �ũ1

In order to retain all the terms in the incompressibility and in the total
derivative equation,

ũ = UB(ỹ) + �ũ1, ṽ =
�
⇤

Re

x3
ṽ1
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Main Deck

Triple Deck

longitudinal equation of momentum (UB
�ũ1
�x + ṽ1U �

B), is of order �/x3. The
previous analysis show that the relevant pressure term is in �2/x3 which is
larger negligible as are the viscous terms. This small value of pressure may
be considered here as a first hypothesis that we will verify after. The system
to solve is then

⇧ũ1

⇧x
+

⇧ṽ1

⇧ỹ
= 0, (UB

⇧ũ1

⇧x
+ ṽ1U

�
p) = 0.

By elimination we find: U2
B

�
�ỹ ( ṽ1

Up
) = 0, the classical notation is then to

introduce a function of x say A(x), such as

ũ1 = A(x)U �
B(ỹ) and ṽ1 = �A�(x)UB(ỹ)

is solution of the system.
With this description, the velocity is not zero but �A(x)U �

B(0) on the
wall so we have to introduce a new layer to full fit the no slip condition.

2.2.2 Lower DeckL'équilibre diffusif/ convectif doit être respecté pour assurer l'adhérence à la paroi:

u
!u

!x
 ~ R-1 

!2 

!y2
 u.

 près de la paroi: "u ~ u ~ #3/#.

Ce qui s'écrit avec les ordres de grandeur  précédents et  compte tenu du fait que l'accident se

produit sur une échelle rapide x3,

"u"u/x3~"u/(#3/#)2.

Cette expression fournit l'ordre de grandeur de l'échelle rapide en fonction du rapport des

couches:

x3~(#3/#)3=$3.

On constate facilement ensuite que la pression est en $2, on admet (dans cette analyse rapide

mais on peut le montrer) qu'elle ne varie pas en y et quelle est encore inchangée au travers du

"Pont Principal" Main Deck. Cette perturbation de #3 de la couche limite produit une

déflexion des lignes de courant  #3=$#. L'angle de déflexion correspondant est donc:

$#/$3.

Cette perturbation est alors ressentie par le fluide parfait comme une bosse de longueur $3 et

d'épaisseur $#. Le fluide parfait linéarisé rétroagit donc avec  $3 comme échelles transverses

et longitudinales ("Pont Supérieur" Upper Deck) à cette bosse d'angle $#/$3. La perturbation

de pression de fluide parfait est donc proportionnelle à l'angle de la bosse en $#/$3. Or l'ordre

de grandeur de la pression compatible dans le Pont Inférieur est $2, donc pour qu'il y ait

rétroaction, il faut que ces deux pression soient égales:

$2=$#/$3

Ce qui donne le paramètre magique:

 $=#-1/4=R-1/8.

1.2. synthèse: développements asymptotiques

1.2.1. pont principal

Il s'agit de la formulation de Stewartson 1969.

 17 mai 2006    "3DEATC" 2

Figure 2: Near the wall the velocity profile is linear, the order of magnitude of
the variation of velocity must be the same than the basic flow in order to obtain
separation.

The purpose of the lower deck is to introduce a layer in which this per-
turbation of velocity will be annihilated. So the scale of velocity is �, then
as the velocity of the boundary layer is linear near the wall it is natural to
guess that the lower deck will by of size �L/

⇤
Re.

The behavior of the velocity in the Main Deck near the wall is

ũ = UB(ỹ) + �ũ1.

For ỹ ⇥ 0 the Blasius profile is linear near the wall UB(ỹ) ⇥ Ũ �
B(0)ỹ and

then the velocity is U �
B(0)ỹ + �A(x)U �

B(0), written in the inner variables of
the lower deck this is (as ỹ = �y)

�(y + A(x))U �
B(0)
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Triple Deck

�A(x)). This deflexion of the stream lines is transmitted to the ideal fluid
layer : the ”Upper Deck”.

(STEWARTSON K. & WILLIAMS P.G.1969 "Self induced separation", Proc Roy. Soc A

312, 181- 206.)
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La synthèse se fait en partant de la solution de Blasius et en la perturbant à l'échelle !3

dégagée. Comme on est à une échelle plus courte que celle du développement de la couche

limite, le profil de Blasius (noté U0) ne varie pas en x à l'échelle considérée.

On a pour le frottement pariétal (en y=0):

 dU0/dy=# !-4. et #=.3321

on écrit le développement suivant:

 u=U0+!u1+...; v=!2v1+... p = !2p1

En substituant dans les ENS: on en déduit que la solution est une perturbation non visqueuse

des équations, et qu'il n'y a pas de variation transverse de pression:

u1=  A(x)U0
', et v1= -  

d$

dx
 U0 et  

% 

%y
p1=0

-dA/dx (x en !3.....) Retenons que la solution dans le "pont principal" ("Main Deck") est une

perturbation non visqueuse de la solution de Blasius.

1.2.2. pont inférieur

Près de la paroi on constate que la développement de la solution de pont principale donne:

u=#y + ! A(x)#
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Figure 1: Left, the triple deck scales. Right, ”triple decker ship of the line” from
HMS victory brochure Porthmouth (”vaisseau de ligne à trois ponts”). In german
”Dreierdeck-Theorie”, a french translation of Triple Deck Theorie may be ”Triple
Pont” instead of ”Triple Couche”.

2.2 Scales

2.2.1 Main Deck

The classical way to look at Triple Deck is to consider perturbations of the
Boundary Layer. The first idea to introduce is the existence of a perturba-
tion of small length compared to the boundary layer development itself.

We have the basic non dimensional Blasius profile UB(ỹ) in the boundary
layer, where ỹ is the transverse variable scaled by L/

⇤
Re. Now suppose that

at longitudinal scale say x3 there is a perturbation of this basic profile. We
will call ”Main Deck” the region considered which is of relative scale x3 but
which is of boundary layer scale in the transverse direction. As this scale
is small, the boundary layer as not evolved, and at first order VB = 0. So,
suppose that at longitudinal scale say x3 there is a perturbation of this basic
profile of magnitude �, then:

ũ = UB(ỹ) + �ũ1

In order to retain all the terms in the incompressibility and in the total
derivative equation,

ũ = UB(ỹ) + �ũ1, ṽ =
�
⇤

Re

x3
ṽ1
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Main Deck

Triple Deck

longitudinal equation of momentum (UB
�ũ1
�x + ṽ1U �

B), is of order �/x3. The
previous analysis show that the relevant pressure term is in �2/x3 which is
larger negligible as are the viscous terms. This small value of pressure may
be considered here as a first hypothesis that we will verify after. The system
to solve is then

⇧ũ1

⇧x
+

⇧ṽ1

⇧ỹ
= 0, (UB

⇧ũ1

⇧x
+ ṽ1U

�
p) = 0.

By elimination we find: U2
B

�
�ỹ ( ṽ1

Up
) = 0, the classical notation is then to

introduce a function of x say A(x), such as

ũ1 = A(x)U �
B(ỹ) and ṽ1 = �A�(x)UB(ỹ)

is solution of the system.
With this description, the velocity is not zero but �A(x)U �

B(0) on the
wall so we have to introduce a new layer to full fit the no slip condition.

2.2.2 Lower DeckL'équilibre diffusif/ convectif doit être respecté pour assurer l'adhérence à la paroi:

u
!u

!x
 ~ R-1 

!2 

!y2
 u.

 près de la paroi: "u ~ u ~ #3/#.

Ce qui s'écrit avec les ordres de grandeur  précédents et  compte tenu du fait que l'accident se

produit sur une échelle rapide x3,

"u"u/x3~"u/(#3/#)2.

Cette expression fournit l'ordre de grandeur de l'échelle rapide en fonction du rapport des

couches:

x3~(#3/#)3=$3.

On constate facilement ensuite que la pression est en $2, on admet (dans cette analyse rapide

mais on peut le montrer) qu'elle ne varie pas en y et quelle est encore inchangée au travers du

"Pont Principal" Main Deck. Cette perturbation de #3 de la couche limite produit une

déflexion des lignes de courant  #3=$#. L'angle de déflexion correspondant est donc:

$#/$3.

Cette perturbation est alors ressentie par le fluide parfait comme une bosse de longueur $3 et

d'épaisseur $#. Le fluide parfait linéarisé rétroagit donc avec  $3 comme échelles transverses

et longitudinales ("Pont Supérieur" Upper Deck) à cette bosse d'angle $#/$3. La perturbation

de pression de fluide parfait est donc proportionnelle à l'angle de la bosse en $#/$3. Or l'ordre

de grandeur de la pression compatible dans le Pont Inférieur est $2, donc pour qu'il y ait

rétroaction, il faut que ces deux pression soient égales:

$2=$#/$3

Ce qui donne le paramètre magique:

 $=#-1/4=R-1/8.

1.2. synthèse: développements asymptotiques

1.2.1. pont principal

Il s'agit de la formulation de Stewartson 1969.
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Figure 2: Near the wall the velocity profile is linear, the order of magnitude of
the variation of velocity must be the same than the basic flow in order to obtain
separation.

The purpose of the lower deck is to introduce a layer in which this per-
turbation of velocity will be annihilated. So the scale of velocity is �, then
as the velocity of the boundary layer is linear near the wall it is natural to
guess that the lower deck will by of size �L/

⇤
Re.

The behavior of the velocity in the Main Deck near the wall is

ũ = UB(ỹ) + �ũ1.

For ỹ ⇥ 0 the Blasius profile is linear near the wall UB(ỹ) ⇥ Ũ �
B(0)ỹ and

then the velocity is U �
B(0)ỹ + �A(x)U �

B(0), written in the inner variables of
the lower deck this is (as ỹ = �y)

�(y + A(x))U �
B(0)
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Triple Deck

longitudinal equation of momentum (UB
�ũ1
�x + ṽ1U �

B), is of order �/x3. The
previous analysis show that the relevant pressure term is in �2/x3 which is
larger negligible as are the viscous terms. This small value of pressure may
be considered here as a first hypothesis that we will verify after. The system
to solve is then

⇧ũ1

⇧x
+

⇧ṽ1

⇧ỹ
= 0, (UB

⇧ũ1

⇧x
+ ṽ1U

�
p) = 0.

By elimination we find: U2
B

�
�ỹ ( ṽ1

Up
) = 0, the classical notation is then to

introduce a function of x say A(x), such as

ũ1 = A(x)U �
B(ỹ) and ṽ1 = �A�(x)UB(ỹ)

is solution of the system.
With this description, the velocity is not zero but �A(x)U �

B(0) on the
wall so we have to introduce a new layer to full fit the no slip condition.

2.2.2 Lower DeckL'équilibre diffusif/ convectif doit être respecté pour assurer l'adhérence à la paroi:

u
!u

!x
 ~ R-1 

!2 

!y2
 u.

 près de la paroi: "u ~ u ~ #3/#.

Ce qui s'écrit avec les ordres de grandeur  précédents et  compte tenu du fait que l'accident se

produit sur une échelle rapide x3,

"u"u/x3~"u/(#3/#)2.

Cette expression fournit l'ordre de grandeur de l'échelle rapide en fonction du rapport des

couches:

x3~(#3/#)3=$3.

On constate facilement ensuite que la pression est en $2, on admet (dans cette analyse rapide

mais on peut le montrer) qu'elle ne varie pas en y et quelle est encore inchangée au travers du

"Pont Principal" Main Deck. Cette perturbation de #3 de la couche limite produit une

déflexion des lignes de courant  #3=$#. L'angle de déflexion correspondant est donc:

$#/$3.

Cette perturbation est alors ressentie par le fluide parfait comme une bosse de longueur $3 et

d'épaisseur $#. Le fluide parfait linéarisé rétroagit donc avec  $3 comme échelles transverses

et longitudinales ("Pont Supérieur" Upper Deck) à cette bosse d'angle $#/$3. La perturbation

de pression de fluide parfait est donc proportionnelle à l'angle de la bosse en $#/$3. Or l'ordre

de grandeur de la pression compatible dans le Pont Inférieur est $2, donc pour qu'il y ait

rétroaction, il faut que ces deux pression soient égales:

$2=$#/$3

Ce qui donne le paramètre magique:

 $=#-1/4=R-1/8.

1.2. synthèse: développements asymptotiques

1.2.1. pont principal

Il s'agit de la formulation de Stewartson 1969.
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Figure 2: Near the wall the velocity profile is linear, the order of magnitude of
the variation of velocity must be the same than the basic flow in order to obtain
separation.

The purpose of the lower deck is to introduce a layer in which this per-
turbation of velocity will be annihilated. So the scale of velocity is �, then
as the velocity of the boundary layer is linear near the wall it is natural to
guess that the lower deck will by of size �L/

⇤
Re.

The behavior of the velocity in the Main Deck near the wall is

ũ = UB(ỹ) + �ũ1.

For ỹ ⇥ 0 the Blasius profile is linear near the wall UB(ỹ) ⇥ Ũ �
B(0)ỹ and

then the velocity is U �
B(0)ỹ + �A(x)U �

B(0), written in the inner variables of
the lower deck this is (as ỹ = �y)

�(y + A(x))U �
B(0)
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no pressure

�1

The displacement function appears as a perturbation  
of the boundary layer at a small scale: the Main Deck 



Triple Deck

�A(x)). This deflexion of the stream lines is transmitted to the ideal fluid
layer : the ”Upper Deck”.

(STEWARTSON K. & WILLIAMS P.G.1969 "Self induced separation", Proc Roy. Soc A

312, 181- 206.)
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La synthèse se fait en partant de la solution de Blasius et en la perturbant à l'échelle !3

dégagée. Comme on est à une échelle plus courte que celle du développement de la couche

limite, le profil de Blasius (noté U0) ne varie pas en x à l'échelle considérée.

On a pour le frottement pariétal (en y=0):

 dU0/dy=# !-4. et #=.3321

on écrit le développement suivant:

 u=U0+!u1+...; v=!2v1+... p = !2p1

En substituant dans les ENS: on en déduit que la solution est une perturbation non visqueuse

des équations, et qu'il n'y a pas de variation transverse de pression:

u1=  A(x)U0
', et v1= -  

d$

dx
 U0 et  

% 

%y
p1=0

-dA/dx (x en !3.....) Retenons que la solution dans le "pont principal" ("Main Deck") est une

perturbation non visqueuse de la solution de Blasius.

1.2.2. pont inférieur

Près de la paroi on constate que la développement de la solution de pont principale donne:

u=#y + ! A(x)#
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Figure 1: Left, the triple deck scales. Right, ”triple decker ship of the line” from
HMS victory brochure Porthmouth (”vaisseau de ligne à trois ponts”). In german
”Dreierdeck-Theorie”, a french translation of Triple Deck Theorie may be ”Triple
Pont” instead of ”Triple Couche”.

2.2 Scales

2.2.1 Main Deck

The classical way to look at Triple Deck is to consider perturbations of the
Boundary Layer. The first idea to introduce is the existence of a perturba-
tion of small length compared to the boundary layer development itself.

We have the basic non dimensional Blasius profile UB(ỹ) in the boundary
layer, where ỹ is the transverse variable scaled by L/

⇤
Re. Now suppose that

at longitudinal scale say x3 there is a perturbation of this basic profile. We
will call ”Main Deck” the region considered which is of relative scale x3 but
which is of boundary layer scale in the transverse direction. As this scale
is small, the boundary layer as not evolved, and at first order VB = 0. So,
suppose that at longitudinal scale say x3 there is a perturbation of this basic
profile of magnitude �, then:

ũ = UB(ỹ) + �ũ1

In order to retain all the terms in the incompressibility and in the total
derivative equation,

ũ = UB(ỹ) + �ũ1, ṽ =
�
⇤

Re

x3
ṽ1
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Main Deck

Triple Deck

longitudinal equation of momentum (UB
�ũ1
�x + ṽ1U �

B), is of order �/x3. The
previous analysis show that the relevant pressure term is in �2/x3 which is
larger negligible as are the viscous terms. This small value of pressure may
be considered here as a first hypothesis that we will verify after. The system
to solve is then

⇧ũ1

⇧x
+

⇧ṽ1

⇧ỹ
= 0, (UB

⇧ũ1

⇧x
+ ṽ1U

�
p) = 0.

By elimination we find: U2
B

�
�ỹ ( ṽ1

Up
) = 0, the classical notation is then to

introduce a function of x say A(x), such as

ũ1 = A(x)U �
B(ỹ) and ṽ1 = �A�(x)UB(ỹ)

is solution of the system.
With this description, the velocity is not zero but �A(x)U �

B(0) on the
wall so we have to introduce a new layer to full fit the no slip condition.

2.2.2 Lower DeckL'équilibre diffusif/ convectif doit être respecté pour assurer l'adhérence à la paroi:

u
!u

!x
 ~ R-1 

!2 

!y2
 u.

 près de la paroi: "u ~ u ~ #3/#.

Ce qui s'écrit avec les ordres de grandeur  précédents et  compte tenu du fait que l'accident se

produit sur une échelle rapide x3,

"u"u/x3~"u/(#3/#)2.

Cette expression fournit l'ordre de grandeur de l'échelle rapide en fonction du rapport des

couches:

x3~(#3/#)3=$3.

On constate facilement ensuite que la pression est en $2, on admet (dans cette analyse rapide

mais on peut le montrer) qu'elle ne varie pas en y et quelle est encore inchangée au travers du

"Pont Principal" Main Deck. Cette perturbation de #3 de la couche limite produit une

déflexion des lignes de courant  #3=$#. L'angle de déflexion correspondant est donc:

$#/$3.

Cette perturbation est alors ressentie par le fluide parfait comme une bosse de longueur $3 et

d'épaisseur $#. Le fluide parfait linéarisé rétroagit donc avec  $3 comme échelles transverses

et longitudinales ("Pont Supérieur" Upper Deck) à cette bosse d'angle $#/$3. La perturbation

de pression de fluide parfait est donc proportionnelle à l'angle de la bosse en $#/$3. Or l'ordre

de grandeur de la pression compatible dans le Pont Inférieur est $2, donc pour qu'il y ait

rétroaction, il faut que ces deux pression soient égales:

$2=$#/$3

Ce qui donne le paramètre magique:

 $=#-1/4=R-1/8.

1.2. synthèse: développements asymptotiques

1.2.1. pont principal

Il s'agit de la formulation de Stewartson 1969.
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Figure 2: Near the wall the velocity profile is linear, the order of magnitude of
the variation of velocity must be the same than the basic flow in order to obtain
separation.

The purpose of the lower deck is to introduce a layer in which this per-
turbation of velocity will be annihilated. So the scale of velocity is �, then
as the velocity of the boundary layer is linear near the wall it is natural to
guess that the lower deck will by of size �L/

⇤
Re.

The behavior of the velocity in the Main Deck near the wall is

ũ = UB(ỹ) + �ũ1.

For ỹ ⇥ 0 the Blasius profile is linear near the wall UB(ỹ) ⇥ Ũ �
B(0)ỹ and

then the velocity is U �
B(0)ỹ + �A(x)U �

B(0), written in the inner variables of
the lower deck this is (as ỹ = �y)

�(y + A(x))U �
B(0)
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Triple Deck

longitudinal equation of momentum (UB
�ũ1
�x + ṽ1U �

B), is of order �/x3. The
previous analysis show that the relevant pressure term is in �2/x3 which is
larger negligible as are the viscous terms. This small value of pressure may
be considered here as a first hypothesis that we will verify after. The system
to solve is then

⇧ũ1

⇧x
+

⇧ṽ1

⇧ỹ
= 0, (UB

⇧ũ1

⇧x
+ ṽ1U

�
p) = 0.

By elimination we find: U2
B

�
�ỹ ( ṽ1

Up
) = 0, the classical notation is then to

introduce a function of x say A(x), such as

ũ1 = A(x)U �
B(ỹ) and ṽ1 = �A�(x)UB(ỹ)

is solution of the system.
With this description, the velocity is not zero but �A(x)U �

B(0) on the
wall so we have to introduce a new layer to full fit the no slip condition.

2.2.2 Lower DeckL'équilibre diffusif/ convectif doit être respecté pour assurer l'adhérence à la paroi:

u
!u

!x
 ~ R-1 

!2 

!y2
 u.

 près de la paroi: "u ~ u ~ #3/#.

Ce qui s'écrit avec les ordres de grandeur  précédents et  compte tenu du fait que l'accident se

produit sur une échelle rapide x3,

"u"u/x3~"u/(#3/#)2.

Cette expression fournit l'ordre de grandeur de l'échelle rapide en fonction du rapport des

couches:

x3~(#3/#)3=$3.

On constate facilement ensuite que la pression est en $2, on admet (dans cette analyse rapide

mais on peut le montrer) qu'elle ne varie pas en y et quelle est encore inchangée au travers du

"Pont Principal" Main Deck. Cette perturbation de #3 de la couche limite produit une

déflexion des lignes de courant  #3=$#. L'angle de déflexion correspondant est donc:

$#/$3.

Cette perturbation est alors ressentie par le fluide parfait comme une bosse de longueur $3 et
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de pression de fluide parfait est donc proportionnelle à l'angle de la bosse en $#/$3. Or l'ordre

de grandeur de la pression compatible dans le Pont Inférieur est $2, donc pour qu'il y ait

rétroaction, il faut que ces deux pression soient égales:

$2=$#/$3

Ce qui donne le paramètre magique:
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1.2. synthèse: développements asymptotiques

1.2.1. pont principal

Il s'agit de la formulation de Stewartson 1969.
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Figure 2: Near the wall the velocity profile is linear, the order of magnitude of
the variation of velocity must be the same than the basic flow in order to obtain
separation.

The purpose of the lower deck is to introduce a layer in which this per-
turbation of velocity will be annihilated. So the scale of velocity is �, then
as the velocity of the boundary layer is linear near the wall it is natural to
guess that the lower deck will by of size �L/

⇤
Re.

The behavior of the velocity in the Main Deck near the wall is

ũ = UB(ỹ) + �ũ1.

For ỹ ⇥ 0 the Blasius profile is linear near the wall UB(ỹ) ⇥ Ũ �
B(0)ỹ and

then the velocity is U �
B(0)ỹ + �A(x)U �

B(0), written in the inner variables of
the lower deck this is (as ỹ = �y)

�(y + A(x))U �
B(0)

- IV . 3-

Brown Stewartson Williams 69

no pressure

matching

�1

The displacement function appears as a perturbation  
of the boundary layer at a small scale: the Main Deck 



�3

�u � � �

�u � �

�v �
⇥

Re

�2

�1

Upper Deck

Main Deck

Lower Deck

�3



�3

�u � � �

�u � �

�p � �2

�p � �2

�p � �2

�v �
⇥

Re

�2

�1

Upper Deck

�3

Upper Deck

Main Deck

Lower Deck



�3

�u � � �

�u � �

�p � �2

�p � �2

�p � �2

�p � �v

�v �
⇥

Re

�2

�1

Upper Deck

�3

Upper Deck

Main Deck

Lower Deck



�3

�u � � �

�u � �

�p � �2

�p � �2

�p � �2

�p � �v � = Re�1/8

�v �
⇥

Re

�2

�1

Upper Deck

�3

Upper Deck

Main Deck

Lower Deck



triple deck scales
� = Re�1/8

Upper Deck

Main Deck

Lower Deck



matching

�3

Triple Deck

longitudinal equation of momentum (UB
�ũ1
�x + ṽ1U �

B), is of order �/x3. The
previous analysis show that the relevant pressure term is in �2/x3 which is
larger negligible as are the viscous terms. This small value of pressure may
be considered here as a first hypothesis that we will verify after. The system
to solve is then

⇧ũ1

⇧x
+

⇧ṽ1

⇧ỹ
= 0, (UB

⇧ũ1

⇧x
+ ṽ1U

�
p) = 0.

By elimination we find: U2
B

�
�ỹ ( ṽ1

Up
) = 0, the classical notation is then to

introduce a function of x say A(x), such as

ũ1 = A(x)U �
B(ỹ) and ṽ1 = �A�(x)UB(ỹ)

is solution of the system.
With this description, the velocity is not zero but �A(x)U �

B(0) on the
wall so we have to introduce a new layer to full fit the no slip condition.

2.2.2 Lower DeckL'équilibre diffusif/ convectif doit être respecté pour assurer l'adhérence à la paroi:

u
!u

!x
 ~ R-1 

!2 

!y2
 u.

 près de la paroi: "u ~ u ~ #3/#.

Ce qui s'écrit avec les ordres de grandeur  précédents et  compte tenu du fait que l'accident se

produit sur une échelle rapide x3,

"u"u/x3~"u/(#3/#)2.

Cette expression fournit l'ordre de grandeur de l'échelle rapide en fonction du rapport des

couches:

x3~(#3/#)3=$3.

On constate facilement ensuite que la pression est en $2, on admet (dans cette analyse rapide

mais on peut le montrer) qu'elle ne varie pas en y et quelle est encore inchangée au travers du

"Pont Principal" Main Deck. Cette perturbation de #3 de la couche limite produit une

déflexion des lignes de courant  #3=$#. L'angle de déflexion correspondant est donc:

$#/$3.

Cette perturbation est alors ressentie par le fluide parfait comme une bosse de longueur $3 et

d'épaisseur $#. Le fluide parfait linéarisé rétroagit donc avec  $3 comme échelles transverses

et longitudinales ("Pont Supérieur" Upper Deck) à cette bosse d'angle $#/$3. La perturbation

de pression de fluide parfait est donc proportionnelle à l'angle de la bosse en $#/$3. Or l'ordre

de grandeur de la pression compatible dans le Pont Inférieur est $2, donc pour qu'il y ait

rétroaction, il faut que ces deux pression soient égales:

$2=$#/$3

Ce qui donne le paramètre magique:

 $=#-1/4=R-1/8.

1.2. synthèse: développements asymptotiques

1.2.1. pont principal

Il s'agit de la formulation de Stewartson 1969.
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Figure 2: Near the wall the velocity profile is linear, the order of magnitude of
the variation of velocity must be the same than the basic flow in order to obtain
separation.

The purpose of the lower deck is to introduce a layer in which this per-
turbation of velocity will be annihilated. So the scale of velocity is �, then
as the velocity of the boundary layer is linear near the wall it is natural to
guess that the lower deck will by of size �L/

⇤
Re.

The behavior of the velocity in the Main Deck is

ũ = UB(ỹ) + �A(x)U �
B(ỹ).

We look at it near the wall. For ỹ ⇥ 0 the Blasius profile is linear near
the wall UB(ỹ) ⇥ Ũ �

B(0)ỹ and then the velocity is U �
B(0)ỹ + �A(x)U �

B(0),
written in the inner variables of the lower deck this is (as ỹ = �y)

�(y + A(x))U �
B(0)
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So we deduce that in the lower deck the velocity should match to this
quantity

lim
y⇥+⌅

u = (y + A(x))U ⇤B(0)

The convective di�usive equilibrium of the Navier Stokes equations

u
⇧

⇧x
⌅ Re�1 ⇧2

⇧y2

written with the scales:

�

x3
⇥ Re�1 1

(�Re�1/2)2

so that :
x3 = �3.

The pressure is of order �2, and the transverse equations of momentum
gives as in the classical boundary layer:

⇧p

⇧y
= 0

so, the pressure does not depend on y and is constant across the lower deck.
The final system is then:

⇧u

⇧x
+

⇧v

⇧y
= 0, u

⇧u

⇧x
+ v

⇧u

⇧y
= �dp

dx
+

⇧2u

⇧y2
.

With no slip condition at the wall (u = v = 0), the entrance velocity profile
u(x⇤ �⇧, y) = U ⇤B(0)y, and the matching condition with the Main Deck:
u(x, y ⇤⇧) = (y + A)U ⇤B(0).

2.3 Upper Deck

The disturbed velocity in the Main Deck is :

ũ = UB(ỹ) + �A(x)U ⇤B(ỹ); ṽ =
�
⌃

Re

x3
A⇤(x)UB(ỹ)

and for the pressure
⇧p̃

⇧ỹ
= 0

Now let us see what happens at the top of the Main Deck, for ỹ ⇤⇧:

ũ = 1; ṽ =
�
⌃

Re

x3
A⇤(x),
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⇧ỹ
= 0, (UB

⇧ũ1
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Figure 2: Near the wall the velocity profile is linear, the order of magnitude of
the variation of velocity must be the same than the basic flow in order to obtain
separation.

The purpose of the lower deck is to introduce a layer in which this per-
turbation of velocity will be annihilated. So the scale of velocity is �, then
as the velocity of the boundary layer is linear near the wall it is natural to
guess that the lower deck will by of size �L/

⇤
Re.

The behavior of the velocity in the Main Deck is

ũ = UB(ỹ) + �A(x)U �
B(ỹ).

We look at it near the wall. For ỹ ⇥ 0 the Blasius profile is linear near
the wall UB(ỹ) ⇥ Ũ �

B(0)ỹ and then the velocity is U �
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With no slip condition at the wall (u = v = 0), the entrance velocity profile
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�
⌃

Re

x3
A⇤(x)UB(ỹ)
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has the following rescaling:

(Y 2)p = (Y �2)
�1
⇤

⇥
� A⇥

x� ⇥
d⇥ + (HY �3)

�1
⇤

⇥
� �f ⇥

x� ⇥
d⇥

• If now Y is large (this is a large bump X = Y 3), and if H is large,
the displacement contribution decreases. for Y 2 = HY �3 i.e. H = Y 5 or
H = X5/3.

The largest size of the bump is the boundary layer itself, so it gives a
maximum size of Re�3/10.
• If now Y is small (small bump X = Y 3), and if H is large, the displacement
contribution decreases.

(Y 4)p =
�1
⇤

⇥
� A⇥

x� ⇥
d⇥ + (HY �1)

�1
⇤

⇥
� �f ⇥

x� ⇥
d⇥

so H = Y and we have A⇥ + f ⇥ = 0. this is the no displacement case.

• there is a more subtle case, as the matching relation is u(x,⌅) = y+A+f ,
then if H is large, we may imagine that A is large (change A⇤ HA) and as
y ⇤ Y y (with Y << H), the lower Deck is broken in two parts one where u
goes from 0 to A and another one where u = A + f (u is of order H >> Y )
so if we change A ⇤ HA, x ⇤ Xx,u ⇤ Hu and p ⇤ H2p. The ideal fluid
relation (using Prandtl transform):

p =
�1
⇤

⇥
�A⇥ � f ⇥

x� ⇥
d⇥

has the following rescaling:

(H2)p = (H/X)
�1
⇤

⇥
� A⇥

x� ⇥
d⇥ + (H/X)

�1
⇤

⇥
� �f ⇥

x� ⇥
d⇥

so that H = 1/X.
We then have to solve:

A
⌦A

⌦x
=

1
⇤

⌦

⌦x

⇥
�A⇥ � f ⇥

x� ⇥
d⇥

4 Link with IBL

The IBL formulation emphasizes on the displacement thickness,

�1 = (Re�1/2)
⇥ ⇤

0
(1� u(x, ỹ))dỹ

we have to decompose it into two parts as we cross the lower and the main
decks. Let introduce Ỹ

�1 = (Re�1/2)(
⇥ Ỹ

0
(1� ũ(x̄, ỹ))dỹ +

⇥ ⇤

Ỹ
(1� ũ(x̄, ỹ))dỹ)
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the first integral is estimated near the wall, so the Lower Deck description
(ỹ = ⇥y) is valid there, but a good idea is to write the velocity u(x, y) =
U ⇥

B(0)(y + A) + uc where uc is a correction:

(
⇥ Ỹ

0
(1� ũ(x̄, ỹ))dỹ) = ⇥(

⇥ Ỹ /�

0
(1� ⇥(U ⇥

B(0)(y + A)))dy �
⇥ Ỹ /�

0
⇥ucdy)

the second one is in the Main Deck
⇥ ⇤

Ỹ
(1� u(x, ỹ))dỹ =

⇥ ⇤

Ỹ
(1� UB(ỹ)� ⇥A(x)U ⇥

B(ỹ))dỹ.

Re summing the two integrals and changing the order of the terms allows
then write:

�1 = (Re�1/2){[⇥(
⇥ Ỹ /�

0
(1� ⇥(U ⇥

B(0)(y)))dy +
⇥ ⇤

Ỹ
(1� UB(ỹ))dỹ]+

+[⇥(
⇥ Ỹ /�

0
(�⇥(U ⇥

B(0)(A)))dy +
⇥ ⇤

Ỹ
(�⇥A(x)U ⇥

B(ỹ))dỹ]� ⇥2
⇥ Ỹ /�

0
ucdy)}

so that we recognise :

�1 = (Re�1/2){
⇥ ⇤

0
(1�UB(ỹ))dỹ+

⇥ ⇤

0
(�⇥A(x)U ⇥

B(ỹ))dỹ�⇥2
⇥ Ỹ /�

0
ucdy)}.

or
�1 = (Re�1/2){

⇥ ⇤

0
(1� UB(ỹ))dỹ � ⇥A(x)�O(⇥2)}.

the �⇥A contribution of the triple deck is the perturbation of the displace-
ment thickness

�⇤
0 (1 � UB(ỹ))dỹ. So the IBL technique based on �1 is

justified by the triple deck analysis.

5 Conclusion

In this chapter we presented the Triple Deck scales. The pressure deviation
relation p�A allows a large variety of various coupled problems...
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⇧ṽ1

⇧ỹ
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Figure 2: Near the wall the velocity profile is linear, the order of magnitude of
the variation of velocity must be the same than the basic flow in order to obtain
separation.

The purpose of the lower deck is to introduce a layer in which this per-
turbation of velocity will be annihilated. So the scale of velocity is �, then
as the velocity of the boundary layer is linear near the wall it is natural to
guess that the lower deck will by of size �L/

⇤
Re.

The behavior of the velocity in the Main Deck is

ũ = UB(ỹ) + �A(x)U �
B(ỹ).

We look at it near the wall. For ỹ ⇥ 0 the Blasius profile is linear near
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the velocity is:

ṽ(ỹ)� ṽ(0) = � �

�x̄

⇧ ỹ

0
(ũ� ūe)dỹ � ỹ

�ūe

�x̄

so, if ỹ is large enough and as ṽ(0) = 0 we obtain the behavior for large
enough ỹ:

ṽ(ỹ) ⇥ �

�x̄
(ūe⇥̃1)� ỹ

�ūe

�x̄

This velocity must be multiplied by Re�1/2; and ȳ = Re�1/2ỹ. Now, we
write the velocity in the ideal fluid as a Taylor expansion near the wall for
small ȳ:

v̄ = v̄(x̄, 0) + ȳ
�v̄

�ȳ
+ ... = v̄(x̄, 0)� ȳ

�ūe

�x̄
+ ...

matching this velocity and the boundary layer velocity show that:

v̄(x̄, 0) = Re�1/2 �

�x̄
(ūe⇥̃1)

So that the boundary layer disturbates the ideal fluid at order Re�1/2. It
is called the ”blowing velocity”. So the velocity in the ideal fluid (called
transpiration boundary condition as well):

ū = ū1 + Re�1/2ū2, v̄ = v̄1 + Re�1/2v̄2 p̄ = p̄1 + Re�1/2p̄2....

with ū1(x, 0) = ūe(x).

7.3 Flat plane case

We substitute this in Euler equation and have to find what is the flow created
by a flat plate with a given blowing velocity which is in �

⇤
x̄/2 with � = 1.7.

�
⌅⌅⇤

⌅⌅⇥

�ū2

�ȳ
� �v̄2

�x̄
= 0,

�ū2

�x̄
+

�v̄2

�ȳ
= 0.

(12)

We easily see that an irotationnal solution in r̄, ⇤ like ⌅̄ = ��
⇤

r̄cos( �
2):

ū2 = � �

2
⇤

r̄
sin(

⇤

2
), v̄2 =

�

2
⇤

r̄
cos(

⇤

2
),

allows to fit the boundary conditions, the two velocity are plotted on figure
22. We observe that the ideal fluid longitudinal velocity is zero at the wall,
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ṽ = �Re�1/4A⇥(x)

definition of displacement thickness

shape of perturbation in Main Deck

by substitution

the -A function is the perturbation of the displacement thickness



Link with IBL

Triple Deck

the first integral is estimated near the wall, so the Lower Deck description
(ỹ = ⇥y) is valid there, but a good idea is to write the velocity u(x, y) =
U ⇥

B(0)(y + A) + uc where uc is a correction:

(
⇥ Ỹ

0
(1� ũ(x̄, ỹ))dỹ) = ⇥(

⇥ Ỹ /�

0
(1� ⇥(U ⇥

B(0)(y + A)))dy �
⇥ Ỹ /�

0
⇥ucdy)

the second one is in the Main Deck
⇥ ⇤

Ỹ
(1� u(x, ỹ))dỹ =

⇥ ⇤

Ỹ
(1� UB(ỹ)� ⇥A(x)U ⇥

B(ỹ))dỹ.

Re summing the two integrals and changing the order of the terms allows
then write:

�1 = (Re�1/2){[⇥(
⇥ Ỹ /�

0
(1� ⇥(U ⇥

B(0)(y)))dy +
⇥ ⇤

Ỹ
(1� UB(ỹ))dỹ]+

+[⇥(
⇥ Ỹ /�

0
(�⇥(U ⇥

B(0)(A)))dy +
⇥ ⇤

Ỹ
(�⇥A(x)U ⇥

B(ỹ))dỹ]� ⇥2
⇥ Ỹ /�

0
ucdy)}

so that we recognise :

�1 = (Re�1/2){
⇥ ⇤

0
(1�UB(ỹ))dỹ+

⇥ ⇤

0
(�⇥A(x)U ⇥

B(ỹ))dỹ�⇥2
⇥ Ỹ /�

0
ucdy)}.

or
�1 = (Re�1/2){

⇥ ⇤

0
(1� UB(ỹ))dỹ � ⇥A(x)�O(⇥2)}.

the �⇥A contribution of the triple deck is the perturbation of the displace-
ment thickness

�⇤
0 (1 � UB(ỹ))dỹ. So the IBL technique based on �1 is

justified by the triple deck analysis.

5 Conclusion

In this chapter we presented the Triple Deck scales. The pressure deviation
relation p�A allows a large variety of various coupled problems...

- IV . 13-

the -A function is the perturbation of the displacement thickness

IBL IVI

ber that for large ỹ the transverse velocity behaves as:

ṽ ⇥ d(�̃1ūe)
dx̄

� ỹ
⌅ũ

⌅x̄

which gives the ”blowing velocity”.

v̄e = Re�1/2 d(�̃1ūe)
dx̄

Hence, the outer flow is no more only given by the wall f̄(x̄) but, the wall
is ”thickened” by the boundary layer thickness (or ”blowing velocity”, or
”transpiration boundary condition”), so that for a subsonic flow:

ūe = 1 +
1
⇤

�
f̄(x̄) + Re�1/2 d(�̃1ūe)

dx̄

x� ⇥
d⇥

or in a supersonic flow

ūe = 1� M2

⇤
M2 � 1

[
d

dx̄
f̄(x̄) + Re�1/2 d(�̃1ūe)

dx̄
]

Instead of the usual weak coupling with the hierarchy (figure 6 left), the
boundary layer retroacts on the ideal fluid (figure 6 right). The boundary
layer thickness �1 acts as a fictive wall (cf figure 21 of chapter second or-
der), it disturbs the ideal fluid, the pressure (pressure and velocity ūe(x̄) are
linked) develops the boundary layer itself. It is a strong interaction. The
two layers are coupled. It explains the term ”Interactive Boundary Layer”,
or ”Viscous Inviscid Interaction”.

Most of the separation problems are then solved...

1 1

22

Figure 6: Interactive Boundary Layer
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0

p =
1

⇡

Z dA(⇠)
dx

x� ⇠
d⇠

remember the coupling with velocity in IBL

this is exactly the same than the Triple Deck  
(variation of velocity are the opposite of variation of pressure)



exemple: incompressible
p=

1
π

Z dA(ξ)
dx

x�ξdξ

⇤

⇤x
u +

⇤

⇤y
v = 0,

u
⇤

⇤x
u + v

⇤

⇤y
u = � d

dx
p +

⇤2

⇤y2
u.

u(x, y = f(x)) = 0, v(x, y = f(x)) = 0
& lim

y�⇥
u(x, y) = y + A.

p =
1

⇡

Z dA(⇠)
dx

x� ⇠
d⇠

pressure displacement 
 in incompressible

coupled to lower deck

non linear simulation, note the 
shear max before the summit, the 
recirculation after the bump, the 
pressure drop



linear solution

�
⌅⌅⇤

⌅⌅⇥

�ikû1 +
⇥v̂1

⇥y
= 0,

�ikyû1 + v̂1 = ikp̂1 +
⇥2û1

⇥y2
,

�iky�̂1 =
⇥2�̂1

⇥y2 Ai((�ik)1/3y)



�⇥ = (3Ai⇤(0))�1(�ik)1/3

�pf = 1/ |k| , 0, 1,�1, ik

FT [⇥ ] =
(�ik)2/3

Ai⇤(0)
Ai(0)

FT [f ]
�⇥ � �pf

linear solution



Triple Deck

3.10 Plots of linearised solutions
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Figure 3: Friction distribution and pressure over a bump in 6 cases, linear
solution. Top left the Hilbert case, just to compare. Top right the subsonic

case p = �1
⇡

R
�

dA
dx
x�⇠d⇠. Middle left, the supersonic p = �A0 case. Middle

right, p = �A case. Bottom left, the A = 0 case. Bottom right, the p = A
case.
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incompressible
p =

1
⇥

fp

� ⇤

�⇤

A⇥

x� �
d�

linear



pipe/ subcritical p= A

p = A

linear



supercritical p=�A
p = �A

linear



supersonic p=
�dA
dxp = �A�

linear



A= 0shear flow
A = 0

linear



Exemples with Boundary 
layer separation

small separation bubble



incompressible p=
1
π

Z dA(ξ)
dx

x�ξdξ

non linear



supersonic p=
�dA
dx

non linear



A= 0shear flow

non linear



subcritical p= A

non linear



subcritical p= A

non linear



[141] F. T. Smith: IMA J. of App. Math. 28, 207 (1982).

38 T. Cebeci, K. Stewartson, and J. H. Whitelaw 

breakdown if the separated region is too large. Triple-deck theory confirms 
this [146] fixing the permitted extent as - Re -l/5c, where c is the chord. 
Further support comes from a related problem in which the external 
velocity is first linearly adverse and then constant [147] and here comparison 
with a solution of the full Navier-Stokes equations [148] is favorable and 
encourages the view that once the interactive theory goes sour, as it were, 
dramatic changes can occur in the flowfield as a result of relatively small 
changes in parameters. If this is so, there may be far-reaching consequences 
in computational fluid dynamics. 

Finally, we return to trailing-edge flows. For symmetric flows past a flat 
plate at moderate Reynolds number, the trailing-edge region makes a 
significant contribution to the drag; its computation by triple-deck theory 
[149] leads to good agreement with experiment. The theory has been 
extended to include asymmetric flows past airfoils with sharp trailing edges 
but without separation [150], and with wedge-shaped trailing edges, includ-
ing separation [144]. One of the solutions found in the latter study is 
displayed in Fig. 12 and we see that, although the flow is assumed to be 
laminar, the structure of the eddy has some of the qualititative features of 
those found for turbulent flow in the region just upstream of the trailing 
edge reported in [3]. The structure of the turbulent eddy has been well-pre-
dicted using a sophisticated turbulence model and the Reynolds-averaged 
Navier-Stokes equations (Adair, Thompson and Whitelaw) but this com-
parison raises the possibility that similar results can be obtained using 
simpler models of the turbulence and an interactive theory of the boundary 
layer . 

. . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . .. . . . . . . . . . .. . . ... 
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Figure 12. Triple-deck solutions for subsonic/incompressible fluid flowing past 
nonaligned trailing edges with separation [141]. 
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Why Triple Deck?







?





• unsteady triple deck is the lower branch of 
the Tollmien-Schlichting branch in the theory 
of stability of the boundary layer (linearly 
unstable) 

• through the coupling of the Lower Deck and 
Main Deck perturbation appear far upstream. 
Coupling a supersonic hyperbolic equation 
and a parabolic Lower Deck gives a    
solution to the “upstream                        
influence paradox” 

• and lot more

Mach cone

parabolic

hyperbolic
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Remarks



Case with no displacement A=0    “Double Deck”

In the case of pipe flow for a bump length of scale h 
and height                 we are with no displacement A=0 
it is the “Double Deck” (Smith 77)

this reason needs to be validated through comparison with existing solutions or reference codes. Therefore, in a third part
Section 4, we present numerical comparisons of those approaches. Furthermore, we confront simulations with the simplified
model equations (RNS/P, DD) to simulations with the full Navier–Stokes equations. In Section 5, we finally draw conclusions
about the numerical experiments and discuss the interest of both these models and methods. Concerning the skin friction
and the pressure distribution at the wall, we will show that the results are similar, validating the models and the methods.

2. Mathematical flow models

2.1. Geometry and hypotheses

We want to compute the velocity and pressure field in a geometry like those of Fig. 1. It consists in two parallel plates
with a symmetrical indentation. Note that the axi-symmetrical case is exactly the same in principle. The flow is supposed
newtonian, laminar, incompressible and steady. It mainly goes from the inlet to the outlet. The base flow in the case of
no indentation is the Poiseuille flow. We use the height h as scale and the velocity scale U0 is such that the non dimensional
Poiseuille flow reads

uð0; yÞ ¼ ð1 $ yÞy; v ¼ 0:

The Reynolds number is defined with h; U0 and m the constant viscosity: Re ¼ U0h
m . It is supposed very large, but the flow is

supposed to remain laminar.
The asymptotic models issued from high Reynolds number Navier–Stokes (NS) are the Reduced Navier–Stokes/Prandtl

(RNS/P) equations and the Double Deck (DD) equations.

2.2. Navier–Stokes equations

The problem is to solve the Navier–Stokes equations written without dimensions:

u
@u
@x
þ v @u

@y
¼ $ @p

@x
þ 1

Re

 
@2u
@x2 þ

@2u
@y2

!
;

u
@v
@x
þ v @v

@y
¼ $ @p

@y
þ 1

Re

 
@2v
@x2 þ

@2v
@y2

!
;

@u
@x
þ
@v
@y
¼ 0:

8
>>>>>>>>>><

>>>>>>>>>>:

ð1Þ

The boundary conditions are no-slip condition on the walls, a condition of symmetry, the initial velocity profile and the value
of the pressure at the outlet:

u ¼ v ¼ 0 on y ¼ ywðxÞ;
@u
@y
¼ 0; v ¼ 0 on y ¼ 1

2
; uð0; yÞ ¼ ð1 $ yÞy and pðxout; yÞ ¼ 0: ð2Þ

2.3. RNS/P

Looking at long bumps of scale Lb, with Lb & h, we may expand Navier–Stokes using this longitudinal scale and keeping
transversally the h scale. So, using x' ¼ Lbx; y' ¼ hy; u' ¼ U0u; v' ¼ V0v and p' ¼ p0 þ qU2

0p, we obtain a specific case when
Lb ¼ hRe and V0 ¼ U0=Re. With those scales, we obtain in fact the Prandtl equations. It means that the second order derivative
term in x in the equations disappears because it is of order Re$ 2 and the pressure remains constant across the section because
the transverse pressure gradient is of order Re$ 2. We now formally write back in the scales x' ¼ hx; y' ¼ hy; u' ¼ U0u,
v' ¼ U0v this system and we obtain:

h 2
yw x

Fig. 1. The incompressible 2D flow between two plates, the lower plate is in y ¼ 0, the upper in y ¼ h. A symmetrical indentation is given at the lower wall
as y ¼ ywðxÞ and at the upper wall as y ¼ h $ ywðxÞ. As the problem is symmetrical it is solved between ywðxÞ and h=2.
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@

@x
u+

@

@y
v = 0,

u
@

@x
u+ v

@

@y
u = � d

dx
p+

@2

@y2
u.

u(x, y = f(x)) = 0, v(x, y = f(x)) = 0

& lim
y!1

u(x, y) = y.

hRe�1/3



Case with no displacement A=0    “Double Deck”

In the case of pipe flow for a bump length of scale h 
and height                 we are with no displacement A=0 
it is the “Double Deck” (Smith 77)

this reason needs to be validated through comparison with existing solutions or reference codes. Therefore, in a third part
Section 4, we present numerical comparisons of those approaches. Furthermore, we confront simulations with the simplified
model equations (RNS/P, DD) to simulations with the full Navier–Stokes equations. In Section 5, we finally draw conclusions
about the numerical experiments and discuss the interest of both these models and methods. Concerning the skin friction
and the pressure distribution at the wall, we will show that the results are similar, validating the models and the methods.

2. Mathematical flow models

2.1. Geometry and hypotheses

We want to compute the velocity and pressure field in a geometry like those of Fig. 1. It consists in two parallel plates
with a symmetrical indentation. Note that the axi-symmetrical case is exactly the same in principle. The flow is supposed
newtonian, laminar, incompressible and steady. It mainly goes from the inlet to the outlet. The base flow in the case of
no indentation is the Poiseuille flow. We use the height h as scale and the velocity scale U0 is such that the non dimensional
Poiseuille flow reads

uð0; yÞ ¼ ð1 $ yÞy; v ¼ 0:

The Reynolds number is defined with h; U0 and m the constant viscosity: Re ¼ U0h
m . It is supposed very large, but the flow is

supposed to remain laminar.
The asymptotic models issued from high Reynolds number Navier–Stokes (NS) are the Reduced Navier–Stokes/Prandtl

(RNS/P) equations and the Double Deck (DD) equations.

2.2. Navier–Stokes equations

The problem is to solve the Navier–Stokes equations written without dimensions:

u
@u
@x
þ v @u

@y
¼ $ @p

@x
þ 1

Re

 
@2u
@x2 þ

@2u
@y2

!
;

u
@v
@x
þ v @v

@y
¼ $ @p

@y
þ 1

Re

 
@2v
@x2 þ

@2v
@y2

!
;

@u
@x
þ
@v
@y
¼ 0:

8
>>>>>>>>>><

>>>>>>>>>>:

ð1Þ

The boundary conditions are no-slip condition on the walls, a condition of symmetry, the initial velocity profile and the value
of the pressure at the outlet:

u ¼ v ¼ 0 on y ¼ ywðxÞ;
@u
@y
¼ 0; v ¼ 0 on y ¼ 1

2
; uð0; yÞ ¼ ð1 $ yÞy and pðxout; yÞ ¼ 0: ð2Þ

2.3. RNS/P

Looking at long bumps of scale Lb, with Lb & h, we may expand Navier–Stokes using this longitudinal scale and keeping
transversally the h scale. So, using x' ¼ Lbx; y' ¼ hy; u' ¼ U0u; v' ¼ V0v and p' ¼ p0 þ qU2

0p, we obtain a specific case when
Lb ¼ hRe and V0 ¼ U0=Re. With those scales, we obtain in fact the Prandtl equations. It means that the second order derivative
term in x in the equations disappears because it is of order Re$ 2 and the pressure remains constant across the section because
the transverse pressure gradient is of order Re$ 2. We now formally write back in the scales x' ¼ hx; y' ¼ hy; u' ¼ U0u,
v' ¼ U0v this system and we obtain:

h 2
yw x

Fig. 1. The incompressible 2D flow between two plates, the lower plate is in y ¼ 0, the upper in y ¼ h. A symmetrical indentation is given at the lower wall
as y ¼ ywðxÞ and at the upper wall as y ¼ h $ ywðxÞ. As the problem is symmetrical it is solved between ywðxÞ and h=2.
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hRe�1/3

@u/@y|w � 1



Boundary condition at the wall and at the entrance are simple. In the case of Double Deck (DD), at the top of the domain

the velocity is equal to y so that the third equation of the system (11) becomes 0 ¼ " @ðW
2=2Þ
@x

þ u
@u
@x
" @w
@x

. Its integral

"W2 þ u2 " 2w is then a constant at the top of the domain. This last expression is linearised to obtain the relation in j ¼ J
(at the upper boundary):

JDydunði; JÞ " dwnði; JÞ "Wnði; JÞdWnði; JÞ ¼ 0:

A last important trick is to introduce again the so called FLARE (introduced in [33]) approximation: u
@u
@x

is put to 0 when
u < 0.

3.3. Finite elements

Finally, the system (3) can also be solved with a finite element method, the main features of which are similar to mixed
methods for the incompressible Navier–Stokes equation. The adaptation of such methods is however not straightforward
and requires an appropriate choice of finite element spaces/stabilization terms. The method described here has been pro-
posed and analyzed in [30]. We call X the domain in which the equations are solved; X is supposed to be a polygonal domain
in R2, with boundary @X; Ci & @X is the entry (inlet flow), Cw & @X is the rigid wall with no-slip boundary conditions (case
of the RNS/P equations) and Co & @X is the exit (outlet flow). Let Hh be the finite element discretization space for the velocity
and Ph be the finite element space for the pressure. The discrete variational problem reads: Find ðu;v ; pÞ 2 Hh ' Ph; u ¼ u0

on Ci, u ¼ 0; v ¼ 0 on Cw such that:

R
X

!
u
@u
@x
þ v @u

@y

"
f þ 1

Re

Z

X

@u
@y

@f
@y
þ
Z

X
k
!
@u
@x
þ @v
@y

"!
@f
@x
þ @n
@y

"

"
R

X p
!
@f
@x
þ @n
@y

"
þ
Z

X
q
!
@u
@x
þ @v
@y

"
¼ 0;

8
>>><

>>>:
ð12Þ

for all ðf; n; qÞ 2 H0
h ' Ph.

H0
h is the subspace of Hh with functions of vanishing trace on Ci [ Cw. A continuation strategy which consists in increasing

progressively the inlet velocity is used to solve the problem (12). The non-linearity due to the convection term is treated
thanks to the Newton method. At each step of the Newton loop, a multi-frontal Gauss LU factorization [34], implemented
in the package UMFPACK [35], permits to solve the linearized discrete problem. The numerical method has been imple-
mented in the framework of the open source finite element software FreeFEM++ [36]. Finally, minor changes have been pro-
vided here in comparison to the original method described in [30]. Those are the following:

( As it can be seen in (12), both the symmetrical and antisymmetrical parts of the convection term have been kept, and thus
convection is discretized in a natural way (the symmetrical part of the convection was removed in [30] for the purpose of
the analysis).
( The Taylor–Hood element with a quadratic interpolation of the velocity [24] has been chosen instead of the P2=P1=P0

element suggested in [30], so as to allow a better approximation of the pressure and of the shear stress. Let us emphasize
that for this element, the grad–div stabilization is strictly necessary so that the problem admits a solution [30, Remark (1)
p.60].1 As a result, we put k > 0.
( Mesh refinement may be carried out after the first step of the continuation loop, to enhance the precision of the compu-

tation near the bump. A variable metric/Delaunay meshing algorithm based on the Hessian of the velocity/pressure, with
a constraint of mesh isotropy, has been used for this purpose [36].

In the case of the Double Deck equations, the matching condition at infinity (6) is implemented simply as a Dirichlet bound-
ary condition on the left side (inlet) and upper side of the domain, i.e.

u ¼ v ¼ 0 on y ¼ yw; u ¼ y when x ¼ 0; and u ¼ y when y ¼ YMAX; ð13Þ

where YMAX denotes the height of the computational domain. Note that this is only an approximation of (6). This is valid if
the bump is sufficiently far away from the inlet and if YMAX is sufficiently large. For the examples presented below in Sec-
tion 4, the bump is typically at a distance x ¼ 5 away from the inlet, and the value of YMAX is 40, which should ensure a good
approximation of the exact condition (6).

1 A straightforward adaptation of Lemmas 1 and 3 in [30] also shows that the discrete problem for RNS/P admits a solution with any kind of inf–sup stable
element for Stokes and a grad–div stabilization.
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Barrenechea  Chouly 09elements P2 P1 P0 
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@x
u+

@

@y
v = 0,

u
@

@x
u+ v

@

@y
u = � d

dx
p+

@2

@y2
u.

u(x, y = f(x)) = 0, v(x, y = f(x)) = 0

& lim
y!1

u(x, y) = y.

Double Deck equations

Chouly Lagrée 09 proposed a variational formulation 

remember these equations are solved with marching in space in finite differences

compare with Keller Box, Finite Differences



4.1. Double Deck examples

On Fig. 3 we compare the linearized analytical solution of the Double Deck equations ((7) for s and (8) for p), the finite
differences, the Keller Box and the finite elements numerical solutions for a ¼ 0:2. We draw the perturbation of skin friction
s" U00 and the perturbation of pressure. The fact that the skin friction is extremal before the crest of the bump and decreases
after the crest is a classical observation. A pressure drop is associated, the minimum of pressure is after the crest of the bump.
The pressure is nearly the same for the four methods, except the FE which increases a bit the pressure drop. The Keller
Box method and the finite difference method give superposed results. The FE solution is a bit jagged for the skin friction ob-
tained by derivation of the velocity due to the choice of the elements (continuous interpolation with Lagrange elements). As
a ¼ 0:2 is not so small, there is a small difference between the three numerical non linear resolutions and the linear reso-
lution by Fourier transform.

On Fig. 4 , we increase the height a of the bump and explore the nonlinearities of the Double Deck problem. We even have
separation of the flow (s becomes negative after the bump crest). We compare finite differences, Keller Box and finite ele-
ments. The two first are again very similar, though not exactly the same. The pressure is a bit different for the FE computa-
tion. The differences in this part are maybe due to the FLARE approximation (put u ¼ 0 when u < 0) as the implementation is
slightly different in KB and FD, and as there is no such approximation in FE.

 0
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1.5

 2

2.5

 0  2  4  6  8  10
x

bump
tau RNSP FE

tau NS  FE
tau RNSP FD

DD KB

Fig. 6. Skin friction on the bump of height a ¼ 0:1, comparison of the RNSP (FD and FEM), NS (FEM), and DD (KB) for Reynolds Re ¼ 750. In Double Deck
scales the height of the bump is aRe1=3 ¼ 0:91. The RSNP results are superposed for FD and FE. The Navier–Stokes solution is a little bit different: the RNSP
underestimates the maximum. The Double Deck over estimates the skin friction.
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Fig. 7. Pressure on the bump, comparison of the RNSP (FD and FEM), NS (FEM), and DD (KB), Re ¼ 750. For the latter the basic Poiseuille pressure has been
added so that "2x=Reþ Re"2=3 p is plotted. The zero value of the pressure has been put at the origin. The RNSP solutions and NS solution are superposed. The
Double Deck solution differs a bit in downstream part of the bump.
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Double Deck (and Triple Deck) have a simple analytical  
solution in Fourier space

u
@u
@x
þ v @u

@y
¼ # @p

@x
þ 1

Re
@2u
@y2 ;

0 ¼ # @p
@y
;

@u
@x
þ
@v
@y
¼ 0:
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>>>>>>>:

ð3Þ

The boundary conditions are the no-slip condition on the wall, conditions of symmetry for the velocity field, the initial veloc-
ity profile and the value of the pressure at the inlet:

u ¼ v ¼ 0 on y ¼ ywðxÞ;
@u
@y
¼ 0; v ¼ 0 on y ¼ 1

2
; uð0; yÞ ¼ ð1# yÞy and a given pðxin; yÞ: ð4Þ

Note first that the total pressure drop pðxin; yÞ # pðxout; yÞ is a result of the computation, so thereafter we use the output
pressure as reference of pressure pðxout ; yÞ ¼ 0. This is in general not the case in standard boundary layer theory [15] where
the pressure is a given function. Note also that if we add the missing second order derivative 1

Re
@2u
@x2 in (3)1, the equations we

obtain are the so called primitive equations used in oceanography [31].

2.4. Double Deck

2.4.1. Equations
Looking at small symmetrical bumps of scale e, with e& 1, in a Poiseuille flow, the basic profile is perturbed by the

bumps. The core flow is unchanged, whereas the flow near the wall is dramatically changed leading eventually to flow sep-
aration. We may expand Navier–Stokes using this transversal scale e and using longitudinally any L scale (consistant with the
bump length). So, using x' ¼ Lx; y' ¼ ehy; u' ¼ eU0u; v' ¼ ðe2h=LÞU0v and p' ¼ p0 þ qe2U2

0p, we obtain a specific case
(where transverse viscous effects and nonlinear effects have the same order of magnitude by dominant balance) when
e ¼ ðL=hÞ1=3Re#1=3. With those scales, we obtain in fact the Prandtl equations, but they are at a different scales and with dif-
ferent boundary conditions. They represent the perturbation induced by the bump near the wall in a layer called the ‘‘Lower
Deck’’. The ‘‘Main Deck’’ is the core flow which remains unperturbed. Those equations are thus called the Double Deck equa-
tions [23] (much more asymptotic models linked to Double or Triple Deck may be constructed in pipe flows, see for example
[25]).

In the Lower Deck:

u
@u
@x
þ v @u

@y
¼ # @p

@x
þ @

2u
@y2 ;

0 ¼ # @p
@y
;

@u
@x
þ @v
@y
¼ 0:

8
>>>>>>><

>>>>>>>:

ð5Þ

The boundary conditions are no-slip condition at the wall, the initial linear velocity profile far upstream (which is the Poiseu-
ille initial profile written near the wall) and the matching condition at infinity (which means that the core flow is not affected
by the perturbation caused by the small bump):

u ¼ v ¼ 0 on y ¼ yw; u! y when x! #1; and u! y when y!1: ð6Þ

Exactly the same set of equations may be written near the upper wall. The axis y being upside down. In the core flow (the
Main-Deck) there is no perturbation.

2.4.2. Remark: the linear solution
We note that in this case we have a simple analytical solution in Fourier space obtained by linearisation [23], with TF and

TF#1 the direct and reverse Fourier transforms:

s ¼ U00 þ U00ð3Aið0ÞÞðU00Þ
1=3TF#1½ð#ikÞ1=3TF½yw)) ð7Þ

p ¼ ðU00Þ
2ð3Ai0ð0ÞÞðU00Þ

#1=3TF#1½ð#ikÞ#1=3TF½yw)): ð8Þ

where AiðxÞ is the Airy function, Aið0Þ ¼ 0:355028 and Ai0ð0Þ ¼ #0:258819, with U00 ¼ 1 the value of the slope velocity at the
wall.

2.4.3. Remark: transverse pressure gradient
Just to explain some features of the non symmetrical case, we recall here that in the non symmetrical case there is a trans-

verse pressure gradient in the Main Deck. This is the case for example when no bump is present on the upper wall. This
transverse pressure gradient is due to the displacement of the stream lines and we obtain that the length of the bump must
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Skin friction with a max before the bump,



For the finite element method, the mesh is an unstructured mesh generated automatically by FreeFEM++, with mesh
refinement near the bump. The size of the mesh after refinement can vary slightly from one example to another. To give
an idea, for the computation presented Fig. 3, the mesh, after refinement, is made of 3542 vertices, and 6824 triangles. This
results into 31356 degrees of freedom, since the Taylor–Hood element is used. As a consequence, the finite element approx-
imation needs less degrees of freedom than FD and KB methods to reach approximatively the same precision. This is due in
particular to the nature of the interpolation in the finite element method (piecewise linear and quadratic, as opposed to
punctual values in FD/KB). Despite of this, the FE method is quite time consuming in comparison to FD and KB, since the
methods are of very different nature (see the discussion Section 5). The number of continuation iterations is 5. At each con-
tinuation iteration, Newton loops are carried out until convergence (with a convergence criterion of 10!10 on the norm of the
velocity). The stabilization parameter k is fixed to 1 and its value is motivated by the numerical studies in [30]. See on Fig. 2
examples of pressure and perturbation of skin friction from the basic state with different mesh sizes, which show that the
method converges when the mesh size is reduced. On Table 1, we display the estimated error (using the finer mesh as ref-
erence) for pressure and shear computed as follows:

Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0
/ðxÞ ! /refðxÞð Þ2dx

s

where / stands for p and s:
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τ FD
p FD
τ KB
p KB
τ FE
p FE

Fig. 4. The bump, the skin friction (s) and the pressure as the height of the bump increases (size of the bump from 0.5, 1.0, 1.5, and 2.0) in the Double Deck
case. Comparison of FD, KB and FE. There is a very small difference between FD and KB, and a noticeable between those two and FE. It is likely that we
observe the effect of the FLARE approximation.
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Fig. 5. Reduced skin friction s in the Double Deck case DD for large height of the bump. FEM: a¼ 1; 2; 3; 4; 5; 6; 7 ; 8; 9 ; 10 and KB a¼ 1; 2; 3. Arrow in the
direction of increasing a. KB fails for a> 3:5, for this value, a sharp kink begins to appear and a maximum of the negative skin friction appears as well (note
the small oscillation before the fast increase of shear stress which is a coarse mesh effect).
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Double Deck non linear numerical solution

p(x)

⌧ = @u/@y|w

Skin friction with a max before the bump, decrease of pressure 



For the finite element method, the mesh is an unstructured mesh generated automatically by FreeFEM++, with mesh
refinement near the bump. The size of the mesh after refinement can vary slightly from one example to another. To give
an idea, for the computation presented Fig. 3, the mesh, after refinement, is made of 3542 vertices, and 6824 triangles. This
results into 31356 degrees of freedom, since the Taylor–Hood element is used. As a consequence, the finite element approx-
imation needs less degrees of freedom than FD and KB methods to reach approximatively the same precision. This is due in
particular to the nature of the interpolation in the finite element method (piecewise linear and quadratic, as opposed to
punctual values in FD/KB). Despite of this, the FE method is quite time consuming in comparison to FD and KB, since the
methods are of very different nature (see the discussion Section 5). The number of continuation iterations is 5. At each con-
tinuation iteration, Newton loops are carried out until convergence (with a convergence criterion of 10!10 on the norm of the
velocity). The stabilization parameter k is fixed to 1 and its value is motivated by the numerical studies in [30]. See on Fig. 2
examples of pressure and perturbation of skin friction from the basic state with different mesh sizes, which show that the
method converges when the mesh size is reduced. On Table 1, we display the estimated error (using the finer mesh as ref-
erence) for pressure and shear computed as follows:

Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0
/ðxÞ ! /refðxÞð Þ2dx

s

where / stands for p and s:

-6

-4

-2

 0

 2

 4

 6

 0  2  4  6  8  10
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bump
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p FD
τ KB
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Fig. 4. The bump, the skin friction (s) and the pressure as the height of the bump increases (size of the bump from 0.5, 1.0, 1.5, and 2.0) in the Double Deck
case. Comparison of FD, KB and FE. There is a very small difference between FD and KB, and a noticeable between those two and FE. It is likely that we
observe the effect of the FLARE approximation.
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Fig. 5. Reduced skin friction s in the Double Deck case DD for large height of the bump. FEM: a¼ 1; 2; 3; 4; 5; 6; 7 ; 8; 9 ; 10 and KB a¼ 1; 2; 3. Arrow in the
direction of increasing a. KB fails for a> 3:5, for this value, a sharp kink begins to appear and a maximum of the negative skin friction appears as well (note
the small oscillation before the fast increase of shear stress which is a coarse mesh effect).
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Double Deck non linear numerical solution,  
shear at the wall ⌧ = @u/@y|w

with finite elements we can compute very large recirculations



everything perfect ? 

no!



Boundary Layer

steady case. (see figure 16).

Figure 20: Unsteady separation on a cylinder ūe = sin(x̄) at times t = 1, 1.5, 2 2.5
et 2.8 computed with finite di�erences. Left skin friction evolution, the separation
occurs at time t = 0.65, it creates no Goldstein singularity. Nevertheless, for t � 3,
there is a time singularity. This time singularity is characterized by a pinching in
the displacement thickness plotted on the right part for several time steps.
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some problems: unsteady boundary layer

Boundary Layer

(� ⇥ 1 ) and which is function of � in the Blasius case (2
⇧

1
� � 1.732

⇧
1
⇥ ,

expression valid for � >> 1.

Figure 19: Unsteady numerical solution in finite di�erences of the boundary layer
equation. We observe the transition from Rayleigh infinite flat plate impulsive
solution to the Blasius steady solution.

The analytic study of the problem of the transition between the two
régimes is di⌅cult. Stewartson had to do two papers (51 & 73) to solve it.
The di⌅culty comes because there is an ”essential singularity” in the devel-
opments around � = 1, it means that all the terms of the Taylor expansion
are zero.

6.2 Unsteady boundary layer flow over a cylinder impul-
sively started

An other example is the case of the flow round a impulsively started cylinder:
�
⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

⇧u

⇧x
+

⇧v

⇧y
= 0,

⇧u

⇧t
+ u

⇧u

⇧x
+ v

⇧u

⇧y
= ue

due

dx
+

⇧2u

⇧y2
,

u(x, 0, t) = v(x, 0, t) = 0,

u(x, y > 0, t = 0) = ue(x)
v(x, y > 0, t = 0) = 0

and u(x,⇤, t > 0) = ue(x), with ue(x) = sin(x).

(12)

This case is catastrophic.
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finite time singularity



outline
• the classical Boundary Layer 

• second order Boundary Layer 

• Interactive Boundary Layer 

• some examples of numerical resolution with some 
comparaisons with Navier Stokes 

• the Triple Deck, example of numerical solution 

• the Double Deck, example of numerical solution FD FE 

• summary
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dominant equations are “Prandtl” equations

summary

with no slip conditions 
with various boundary conditions at the top

parabolic 
sometimes coupled with an external ideal fluid  
which makes a global retroaction

with various scales
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d’Alembert is solved by Kutta-Joukowski  
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Conclusion

• Interactive Boundary Layer allows separation 

• Triple Deck is in IBL, this is the rational framework for 
boundary layer separation 

• longitudinal transverse equilibrium 

• Prandtl balance is very strong 

• strong viscous-inviscid interaction  

• allows to “understand” the key feature of the flow



Open problems

• unsteady : finite time singularity (Van Dommeln) 

• Vortex Breakdown 

• better numerics for large separated bulbs 

• adapt this for better modelization in Shallow Water 

• need for numerical help
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