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HOMOGENIZATION IN MECHANICS 
A SURVEY OF SOLVED AND OPEN PROBLEMS 

Abstract. We give an account of recent results and open problems in mechanics of com
posite media from the view point of asymptotic methods. 

1. Introduction 

Generally speaking, homogenization is the study of the relationship 
between the local structure of a non-homogeneous medium and its macrosco
pic behavior. More specifically, homogenization denotes the mathematical 
techniques for the asymptotic study of physical media with a periodic (or 
nearly periodic) micro-structure. It is to be noticed that homogenization was 
one of the first non trivial examples of the so-called G-convergence of solu
tions of Partial Differential Equations. (De Giorgi and Spagnolo [24]). G-con
vergence developped into new concepts (r-convergence) concerning solutions 
of variational inequalities. As for this theory, mainly developped by De Giorgi 
and his co-workers, the reader is refered to the recent book by Attouch [2] 
and perhaps to the papers contained in the E. De Giorgi colloquium (Kree 
[44]). But in any case, very many "homogenization problems" in mechanics 
are not associated with the minimization of a functional and consequently 
they are out of the scope of r-convergence. Such are, for instance problems 
giving "memory effects" (non local operators in time) by homogenization. 

Classificazione per soggetto AMS (MOS, 1980): 35 B 40, 73 C 40 

Conferenza tenuta presso il Seminario Matematico il 4/XII/1985. 
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Another mathematical theory linked with homogenization is the so-called 
"compactness by compensation" for which the reader is refered to Tartar 
[93], Boccardo et Murat [7], Murat [72]. See also in this connection Zhikov, 
Kozlov and Oleinik [98, 99, 100]. 

In this paper we adopt mainly the point of view of asymptotic expansions 
(see Van Dyke [96], Cole [20], Cole and Kevorkian [21] for the corresponding 
theory). We start with a rapid account of symptotic methods (Sect. 2). The 
following sections are devoted to problems (or groups of problems) in me-
chaincs. For most of them we give an account of some results, references and 
open problems. 

General references on homogenization are Bakhvalov and Panasenko [3], 
Bensoussan, Lions and Papanicolaou [6] and Sanchez [84]. This survey paper 
is widely inspired by the works [86, 87] by the author. 

2. Two-scale asymptotic expansions and local periodicity. 

This method is classical in mechanics of vibrations, when a small pertur
bation modify a motion which should be otherwise periodic in time, for in

stance, the motion of a pendulum 
submitted to a small damping is 
such that each "period" is almost 
analogous to the preceeding one, 
but the cumulative effect of the 
damping provokes important dif
ferences (of the amplitude, for 
instance) of the motion of two 
"far located in time" periods. To 
study this one introduces, aside 

Figure 2.1 the ordinary time t, two variables 
(the so-called fast and slow times) 

t* = t and T — et (with e small parameter) and we search for an asymptotic 
expansion of the solution ue(t) under the form 

(2.1) ue{t) = u°(t*(t), T ( 0 ) + eul(t*(t), r(t)) + ... 

and we try describing, the local periodic phenomena by the dependence on 
t through t*, and the slow modulation by the dependence on t through r. 
We of course have 
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(2.2) 
d 

dt dt* 
+ e 

dr ' 

Moreover, as a convention for the sake of simplicity, we drope the star in t*, 
and write 

(2.3) 

(2.4) 

u€(t) = u°(t,r) + eux(t,7) + ... 

_d___d_ _8_ 

t = e£ 

•K 

Figure 2.2 

According to analogous considerations, let 12 
be a body made of a composite material in the 
R3 space of the standard coordinates (#,, 

). Moreover, we assume that its mechan
ical properties are periodic with a small period, 
described with the aid of a small parameter e 
as follows. In the auxiliar space of the variables 

(y\ty-z>y*) w e consider a parallelepipedic period denoted by Y (with edges 
Yi> ^2, Y3) as well as the parallelepipeds 
obtained by translations of an integer 
number of periods in the directions of 
the axes. 

Let e F be the homothetic of Y 
with ratio e. We consider the body 12 
with the eF-periodic structure. Thus, 
some property u6(x) (here u may de
note displacement, stress or some other 
property of the mechanical process 
under consideration) is searched under 
the form of an asymptotic expansion 

Figure 2.3 

(2.5) 
ue(x) = u°(z(x),y(x)) + u1 (z (x)} y(x)) + 

z{x)-x ; y{x) = x/e 

or merely (with the preceeding convention) 

ue(x) = u°(x,y) 4- eul(x,y) + 
(2.6) 

y 
X 

€ 

d 1 
+ — dx; dxj e by 

and moreover, we intend to describe the influence of the periodic structure 
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(resp. of the other non periodic causes of the phenomenon, as the boundary 
312 and so on) by the microscopic variable (resp. the macroscopic variable z 
or merely x) in (2.5), (2.6). To this end, we search for an expansion (2.5) or 
(2.6) with functions ul F-periodic with respect to the variable y and 
smooth with respect to x. Indeed, each ul(x,y) is defined on 12 x Y (or on 
12 x R3, which amounts to the same, as it is F-periodic). 

It is worhtwhile to see that each term ul(x,y) is a locally periodic 
function in the following sense. Let us compare the values of ul(x,y) at two 
points Pl,P2 (Fig. 2.3) homologous by periodicity corresponding to two 
contiguous periods. By periodicity, the dependence on y is the same and the 
dependence on x is "almost the same" because the distance PlP2 is small 
and u% is a smooth function of x. On the other hand, let P3 be a point 
homologous to Pl by periodicity, but located far from P 1 . The dependence 
of ul on y is the same, but the dependence on x is very different because 
Pl ,P3 are not near to each other. Finally we compare the values of u1 at 
two different points P 1 , ? 4 of the same period. The dependence on x is 
almost the same, but dependence on y is very different because P1 and P4 

are not homologous by periodicity (in fact, the distance Pl,P* is "large" 
when measured with the variable y\). 

It is evident that this locally periodic expansion is fit to describe the 
solution in regions of 12 far from its boundary, or from regions where the 
local effects are not eF-periodic, such as discontinuities of the microscopic 
structure. In such regions, the appropriate asymptotic expansions are almost 

periodic in the microscopic variable y only 
with respect to displacements which are 
tangential to the boundary, because the 
medium in fact is not periodic as for dis
placements normal to the boundary, and 
there is no reason for the solution to be 
"almost invariant" with respect to such 
displacements. As a consequence, near the 
boundary of the body (Fig. 2.3) we must 

consider boundary layers where the solution is searched under the form (2.5) 
or (2.6), but now x runs in 312 and y in the strip S (Fig. 2.4), and ul is 
searched to be 5-periodic. (Note, in Fig. 2.4 for instance, that 5 is a semi-
-infinite strip formed by F-periods (plus perhaps "parts" of periods at the 
intersection with 312). This situation is easily described for boundaries pa
rallel to a coordinate plane, for instance x3 = cost (Fig. 2.5). 

^_ 

S 

312 
S 

Figure 2.4 
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In this case, the solution in the boundary layer region takes the form 

# 3 

s 

1 *̂ 2 

^m 
Figure 2.5 

(the superscript BL is for "Boundary Layer"): 

(2.7) ue(x)=u0BL(x,y) + eulBL(x,y) + ... 

with 

(2.8) uiBL(x,y) = uiBL(xl,x2,yl)y2)y3), 

yx and y2 periodic with periods YX,Y2, but not necessarily xlfx2,y3 

periodic. 

REMARK 2.1. As for the expansion (2.6) far from the boundaries, the "bound
ary conditions" for the y variable amounts to the Y-periodicity. But in the 
boundary layer (2.7), the "boundary conditions" for y amounts to period
icity in yx,y2, genuine boundary conditions for y3 = 0 and "matching" 
between (2.7) and (2.6) as 3/3-* + °° and x3 -» 0. This amounts to saying 
that there is a "transition region" of the layer towards the bulk solution 
(2.6) far from the boundary. u 

3. Matched asymptotic expansions. 

We saw in the preceeding section that a function u(x) may have asymp
totic expansions of different nature in different regions, for instance, in the 
boundary layer near 9£2 and the bulk region at the interior of £2. It is clear 
that two such expansions "must agree", i.e. the boundary layer contains a 
transition region between the genuine boundary layer and the "outer" region 
(outer to the boundary layer). As for this relation between the boundary 
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layer and the bulk region, the tangential variables (xl,x2>yify2 in the case 
of (2.6), (2.7)) play the role of parameters, and x3)y3 are the relevant var
iables. We write 

(3.1) u€{x) = u°(x3) + eu\x3) + ... (outer or bulk expansion) 

(3.2) ue(x) = u0BL(y3) + eulBL(y3) + ... (inner or boundary 
layer expansion) 

and we emphasize that the outer (resp. inner) expansion only depends on the 
outer or bulk variable x3 (resp. on the inner or boundary layer variable 

We now give some definitions. The outer (resp. inner) limit of a function 
u(x) is the limit as e-^0 for fixed outer variable x3 (resp. inner variable 
y3). In the same way, the m-term outer (resp. inner) expansion is the asymp
totic expansion of m terms of ue for e-*0 with fixed outer variable x3 

(resp. inner variable y3). For instance, u°(x3) is the outer limit, and 
u0BL(y3)

Jr eu1BL(y3) is the 2-term inner expansion. As sometimes we deal 
with expansions the first term of which are not of order 0(1), we also define 
the outer (resp. inner) representation as the first non-zero term of the outer 
(resp. inner expansion). 

We now give the "matching rules" expressing that the outer and inner 
expansions (3.1), (3.2) agree in some intermediate transition region. Justifi
cation of these rules may be seen in the general references given in sect. 1. 

The matching at order 0(1) is: 

(3.3) Inner limit of (the outer limit) = 
= Outer limit of (the inner limit). 

Of course, the outer limit of ue in (3.1), (3.2) is u°(x3); in order to compute 
its inner limit, we write it in the inner variable y3 = #3/e, and we compute 
the limit as e-+0 for fixed y3; this gives lim u°(ey3) = u°(0) which is 
the left side of (3.3). Analogously, the right hand side is u0BL(+°°). Thus, 
(3.3) amounts to 

(3.4) w°(0) = z/OBL(oo) 

or which amounts to the same, u° at the boundary 3£2 equals the boundary 
layer first term far from the wall (far in the small variable y3). It is easily 
seen that (3.3) or (3.4) amounts to the existence of an "intermediate variable" 
z small (resp. large) with respect to x3 (resp. y3) such that (3.1) and (3.2) 
give at the first order, the same information for z = 0(1). We may take, for 
instance, z = x/e1/2. 
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The general matching rule for m terms inner and outer expansions 
amounts to express that they agree, at the considered order, in the region 
where the intermediate variable z is 0(1). 

Of course, in specific problems it may be useful writting the boundary 
layer terms as sum of their corresponding limits plus a complementary term, 
for instance in (3.4) u0BL(y) = u°(0) 4- u0c(y); matching u0c(y)-+0 . 

y - > o o 

4. Model equation - Elliptic equation of steady diffusion in divergence form. 

We consider the boundary value problem 

3 

dx l L I J 

u 3p 
= 0 

in Q 

on dQ — boundary of Q 

where u is the unknown (the temperature, for instance) / is the given 
source term and a^ are the (in general ^-dependent) coefficients and e is 
a parameter which is irrelevant for the time being. It is useful to write the 
equation: 

dpi du 
/ ; Pi ~ aij (4.1) 

Using the notation 

(4.2) 

the e-problem is: 
Find ue satisfying 

(4.3) 

(4.4) 

dxi dx; 

.€ sM\ _ a{j(x) = aij(x/e) 

dx, 
P du e -i 

1 -J 
/ 

uy 
3Q 

= 0 

We look for the solution in the form (2.6), but in this problem we have 
in fact 

(4.5) u€{x) - u°(x) 4- eul(xty) 4- ... 

The expansion process induces: 
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(4.6) 

d 

IAX J 

due 

bxi + 
i a 
e 3<yf 

+ -r— + e 
d#i \ 3#; B̂ /j / ' ~ V dxj 

pe =pQ(x,y)^-ep1(x>y) + 

bul bu2 \ 
+ _ _ _ ) + tyi 

Pi =aij{ 
bu° bu1 

+ bx tyy 

At the present state, it should be noticed that when considering an ex
pansion of the form (2.6), (under 
appropriate hypotheses) we have 

uQ+eul (4.7) ue(x)-+u°(x) 

in L2 strongly and H1 weakly 
but not in H1 strongly, and of 
course grad ue does not converge 
uniformly to grad u° (it does only 
in L2 weakly). This is the reason 
why the local gradient is very dif

ferent of grad u° •, as in mechanical problems the gradient is usually associated 
with stress and strain, we see that 

Figure 4.1 

(4.8) gradx u° + grady ul 

is the expression of the local gradient up to terms in 0(e). Of course, the 
expression (4.8) is easily writen when u°(x) is known (see (4.19) here after). 
Coming back to our expansion: 

(4.9) 
1 

bXj e byi 

at various orders of e-. 

(4.10) ' -V-
3f? 
bXj 

= 0 

(4.11) e 0 / -
9p° 
bXi 

P1=f 

(bu° bul 

= 0 
"* ty,- r^Abxj + bxj 

= / and so on 

We consider the "mean value on Y" operator: 
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(4.12) dy 

and we observe that by F-periodicity: 

(4.13) X**i" W; rf5 = 0 

Figure 4.2 and moreover, ~ commutes with d/dxi. Then, 
when applied to (4.11): 

(4.14) 

which is a "macroscopic equation" (it does not contain y) of the same form 
as (4.1). 

The question now is if there exists a "constitutive relation" 

(4.15) 
bu°(x) 

bxi 

giving the vector p° as a function of Vx u°. If there exists such a linear 
relation, we shall write: 

bu° 
(4.16) Pi ~a 

%' bXi 

where the superscript stands for "homogenized coefficients". In order to ob
tain (4.16) we use (4.10) 

(4.17) 
3 dul(x,y)' 

<*ij(y) 
tyi - ty; dxi byj 

which is an equation to obtain u1 (y) if u° is supposed to be known; the 
variable x is here a parameter; (4.17) is then an elliptic equation with F-pe
riodicity "boundary conditions". Then, ul exists and is unique up to an 
additive constant (depending on x). In fact, this amounts to find 

ul E VY = {v>, veHloc(R
3) F-periodic} with 

(4.18) 
/ a 

J v 

dul dv du° f dai f da{j 
dy V v G Vv . Y 
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And we may take VY — subspace of VY formed by the functions with 
v = 0 instead of VY in order to have uniqueness. Moreover, by linearity, 

(4.19) ul = 
bu°(x) 

bx; w{(y) 

where wl is the solution of (4.11) for bu 
bX; 6^' 

Consequently, the mean value of p° is easily obtained 

(4.20) 0 / „ „ \ _ 
Pi(*) <*ij(y) + <Zik(y) 

bwj bu° 
bxj 

~a{j 

which gives the law (4.16). The resulting a\- are independent of Vxu° and 
of the additive constant for u1. 

Properties of homogenization. The homogenized coefficients a\- are elliptic 

as the ajj(y). Moreover 

aij(y) = aii(y) =» a\ = af{ . 

On the other hand if the given problem conductivity is isotropic (aij(y) = 
= a(y)8jj), the homogenized coefficients are not necessarily isotropic; this 
is natural; if the medium is layered, the thermic flow flows the different parts 
either "in series" or "in parallel" in different directions: 

series parallel 

Figure 4.3 

5. Examples in mechanics of solids. 

In linear elasticity (Sanchez [84]) we have an analogous study with the 
standard modifications: 
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Model problem Elasticity 

u <. > u — (u1,u2,u3) 

bu 1 / bu{ dUj 

~bx~ < * eij{-) = Y\~dx~ + Jx~ 
(a) 

"* oij=aijkieki{u) 

<*ij(y) < > <*ijki(y) 
Jo . . Jo 

aij < * aijkl 

where a^^i and <j{j are the elastic coefficients and the stress tensor, respecti
vely. 

The equations are: 

defy 
(5. i ) ~ ~ a i ~ = ^ ; °ij=iaiiki(y)eki(u). 

The local equation (e _ 1 term) is: 

3 dajjki(y) 
(5.2) -^—[aijki(y)ekiy(u

1)] - eklx(u°)— 
tyj °yj 

with F-periodicity conditions for w1, x and t being parameters. Here ^ / x , 
ekiy denote expressions analogous to (a)2 with partial derivatives in x or y. 
The equation for the e° term is: 

- ^ - - T - J L = / i =» - a s in (2.10) 
tyj bxj 

do? 
(5.3) ~"^f" =^ and from (5.2) + ofg = 4 * , ^ ^ ° ) . 

The case where the strain-stress law is viscoelastic is more interesting (see 
Sanchez [84], sect. 6.4). If we have a heterogeneous medium with a visco
elastic instantaneous relation.-

/ bu\ 
(5.4) Oij{k) = aijki{y) eki(u) + bijkieki[^J 

the local equation is analogous to (5.2) but also contains terms in bjjki with 
d/dt) the local problem amounts to find u1 (t) with values in VY satisfying 

(5.5) J (^ l (y ) + ^ ) . ^ _ + ^ j — * - 0 vtevY. 
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and t is no more a parameter. We also give the initial value u1 (0) = 0 for 
instance (if not, for large time, the influence of the initial value vanishes). 
Then, the local equation is an evolution equation which we solve by semigroup 
theory: 

" r-
Jik 

bu 

bt 
+ Bu I _ fik 

H H 
bx; 

(5.6) 
bt bxk 

i « 1 (0 = | e-B(t~s) (right hand) (s)ds 

and we arrive at a homogenized integrodifferential strain-stress law of the 
form: 

/bu°\ Cl 

(5.7) o^it) = aijklekl(u°) + pijklekl[~J+ I gki(t~ s)ekl(u°)ds . 
J Q 

We see that the new integro-differential term takes the local integration 
of a differential equation into account. This is in fact a realization of a Theolo
gical device, differential at the local level but integro-differential after inte
gration. 

Other interesting problems appear for fissured media (see Sanchez [84]) 
sect. 6.6 for the case without friction and Leguillon and Sanchez [48] with 
friction. 

In the case without friction, we consider the period Y filled with 
homogeneous (or inhomogeneous, this only introduces an unessential com

plication) but containing a fissure F as shown in 
fig. 4.4. The fissure may be either open or closed 
(or partially open), but the two lips cannot overlap. 
By choosing the unitary normal JV in the same di
rection on both lips, the kinetic condition to be 
satisfied by the displacement vector u (within the 
small displacement approximation) is Figure 4.4 

(5.8) lu-NJ>0 

where the brackets are for the difference of values between the upper and the 
lower lips in fig. 4.4. 

Moreover, the constraint a • N is zero in points where the fissure is open 
(i.e., where we have (5.8) > 0) and a normal, compression vector taken equal 
values on the corresponding points of the upper and lower lips in points 
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where the fissure is closed (i.e., where we have (5.8) = 0). 
The equivalent of the expansion (4.5) is now: 

(5.9) ue(x) = u°(x) 4- eul{x,y) + ... 

and because u°(x) does not depend on y, the asymptotic form of (5.8) is: 

(5.10) fu1'Nl>0. 

In order to study the local problem, we define the set KYF formed by 
the vector valued F-periodic function ul of class H1 satisfying the kine
matic condition (5.10). This is a convex, closed subset of the Hilbert space 
VYF defined in the same way but without condition (5.10) (i.e., u'N may 
take any value on each lip of the fissure). Then, the local problem (analogous 
to (4.18)) is the variational inequality: 

u1€zKYF such that, VwGKYF , 

(5.11) \ f 
\ ^ijki[ekix(M0)^ekly(u

1)]eij(w-u1)dy>0 
JYF 

where ekix(u°) a r e given. This amounts to minimizing the elastic energy 
under the kinematic constraints given by (5.10) and the F-periodicity. The 
first term of the expansion of the stress tensor o is: 

(5-12) a?- =aijkl[eklx{u°) + ekly{u1)} 

and, as a consequence of the nonlinear inequality (5.11), the homogenized 
strain-stress law 

(5.13) eijx(M°) + $ 

is nonlinear. Moreover, it is a hyperelastic law associated with a convex 
function W(e) such that 

bW 
(5.14) 6T 

~o 

in fact, W is the value of the energy stored in the period (per unit volume), 
i.e. forgiven eijx(u°), W is 

= Y\Y\ I aijkdekix(u°) + ekly(u
1)][eijx(u°) + eily{ul)\dy (5.15) W = 

Y 
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where u1 is the corresponding solution of (5.11). This function W is convex, 
of class C1 (but not C2 in general: the elastic moduli are in general dif
ferent in traction or compression). 

The case with friction is much more difficult and is only solved in the 
two-dimensional case under the hypothesis that the fissure is a straight seg
ment (as in fig. 4.4). Under this hypothesis it is possible to study processes 
where the fissure is either open at all its points or closed at all its points. The 
principal difficulty in this problem is that friction problems have not unique 
solutions in the case independent of time, and consequently the analogous 
of the local problem (5.11) do not determine u1 when u° is given. Instead 
of this, it is possible to find ul at any time tx if the "history" of u0 is 
known, that is to say if uQ(x,t) is known for t<tx. The values of ul and 
thus of a0 are then obtained by formal integration of small increments 
starting from an initial state in a somewhat complicated form (the details of 
which may be seen in Leguillon and Sanchez [48]) involving a "hidden var
iable" s measuring the eventual sliding of the upper lip with respect to the 
lower. 

There is very much work to do in this direction. The non-elastic be
havior is in connection with rheological properties of matter, plasticity and 
so on (see Suquet [91, 92]). In fact, homogenization is a powerful tool to 
investigate properties of matter and the relationship between local and ma
croscopic phenomena. It furnishes an explanation to some unexpected phe
nomena. For instance, the failure of some samples of composites may be ex
plained by thermal effects in the history of the material. Indeed, in thermo-
elasticity the displacement u and temperature 6 satisfy the equations (for 
steady processes) 

( 3 T 

and o(u) is the standard elastic stress tensor, oT being for the "total stress 
tensor". It is easily seen that when heating a composite body with free surface, 
in general there is no solution with constant temperature and vanishing stress 
(but of course it exists for a homogeneous body). For a sufficiently strong 
heating the plasticity or fracture threshold may be reached at some points, 
and this causes irreversible damage. If the temperature is then brought back 
to zero, the material is in a deteriorated state. The homogenization of the 
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thermoelasticity equations is in Francfort [34], but much work is to be done 
about local properties and non linearities. 

The preceeding problem is in connection with the interesting problem 
of initial stress. Even for materials with elastic behavior, if a composite is 
made after stretching some parts (think about pre-constraint concrete), the 
initial stress is to be added to the deformation one, and this may have an 
important influence on the reaching of the fracture threshold. In all these 
problems, the local behavior of stress and strain is to be used, of course 
(see (4.8)). 

6. Fluid flow in porous media. 

Let us give an account of the simplest problem in this field. In the R3 

space x we consider a periodic structure where each period is hollowed by 
three tubes forming the region Yf (the complementary region Ys being the 
rigid solid). If e Yf denotes the e-homothetic of Yf prolongated by e F-pe-
riodicity, we considered as "fluid region" Qe = Q C\ eYf. 

Figure 6.1 

In fact, in this.problem the domain depends on e, and it is filled with a 
(homogeneous) viscous fluid. The equation and boundary conditions are: 

(6.1) 0 = ~gradpe 4- Ave 4 - / ; divve = 0 

It is evident that as eVO, any point in the fluid is "near the boundary" 
where the velocity vector is zero (6.2) as a consequence of the no-slip con
dition for a viscous fluid. Consequently, we have some sort of "boundary 
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layer effect" and the velocity vector is asymptotically zero (there are other 
cases if the viscosity coefficient is small). The appropriate asymptotic ex
pansion is 

(6.3) ve(x) ~ e2y°(x,y) + e3v1(x,y) + ... 

p€(x)^p°(x) + epl(x,y) + ... 

(6.4) 
d 3 1 d 

+ — 
1 1 

dx{ dxj € dyi e* y e 

and we obtain from (6.1), (6.2) at orders e° and e"1 

(6.5) < tyi 
0 = . + A , * ? + ( / ; • -

bxi vy 
bY, 

= 0 

divy v° = 0 

with F-periodicity, which constitute the local system. From (6.1)2 at order 
e° and applying the average operator ~ of (4.12), we have: 

(6.6) divy v1 + div* v° = 0 =* div* v° = 0 

which is the global equation. The local equation (6.5) is easily studied by 
using standard modifications of the classical theory of the Stokes problem. 

We consider the space: 

VY = {u ; UiGHloc(R*)t F-periodic, u = 0, div u = 0} 

with the scalar product associated with the viscous dissipation in a period: 

Yf 

Then, (6.5) amounts to find v° E VY such that 

fc°»»Vy = ( ^ - ^~)fUi dy v*e ^Y 
(6.7) 

7 
where x is a parameter. By linearity, we have the local behaviour of the 
velocity 

(6.8) 
/ 3p°(*)\ . 

v°(x,y) = yfk (x) ——J w* (y) 
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where wk is the solution of (6.7) for the parenthesis in the right hand side 
equal to 5^ . It is to be noticed that the p1 term in (6.8) desappears in the 
variational formulation (6.7); this is classical because the pressure gives a zero 
virtual power for the virtual velocities w E VY; in fact: 

i, 
dp1 ( dw{ \ r a 

Widy = as ~r— = 0 = -— (p1wi)dy = 

riiplWids = 0 

(as Wj = 0 on the solid boundary T and 
by F-periodicity on the rest of dYf). 

Finally, by taking the mean value of 
(6.8) we have: 

(6.9) v{ -[fk ^~)Kik ; Kik-wt 
Figure 6.2 

where Kik is the (symmetric and positive 
definite) permeability which only depends on the geometric structure of Yf. 
(6.7) is "Darcy's law", which, with (6.6) gives the homogenized behaviour. 

The theory described in this section only constitutes a first introduction 
to the very wide domain of fluid flow in porous media, where there are very 
many unsolved questions. Let us mention acoustic phenomena in porous 
media (Levy [64], Fleury [32], problems of flow between two neighbouring 
plates (the so-called Hele Shaw analogy) Bayada [5] and Dridi [27] where 
integro-differential homogenized equations appear, as in viscoelasticity. 

Numerical computations of the local flow (i.e. of the vector w) should 
be useful to understand the influence of the form and tortuosity of the pores 
on the coefficients of the Darcy's law. Of course, non linear terms appear in 
the local flow for sufficiently fast flows (see Sanchez [84], sect. 7.4. Com
putations on such flows may contribute to the understanding of the non
linear Darcy's law, arising of turbulence at the local level and eventual failure 
of Darcy's law as a deterministic law. Problems of two fluid phases in a porous 
medium are important in the oil recovering industry, but the physics and 
thermodynamics of the problem, including surface tension and interfaces is 
not sufficiently comprised for the time being. 

Interesting nonlinear phenomena appear when dealing with the flow of 
a visco-plastic Bingham fluid in a porous solid (see Lions et Sanchez [68] and 
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Lions [67]). As the deformation of the fluid arises only for sufficiently large 
stress tensor (the fluid behaves as a rigid solid for small stresses), the corre
sponding Darcy's law exhibites a threshold: the average fluid flow is zero for 
sufficiently small grad p> and regions where the fluid is at rest appear. 

7. Small vibrations of a solid fluid mixture. Influence of the parameters. 

We know that homogenization is an asymptotic method describing the 
limit behavior as the parameter e associated with the local structure tends 
to zero. It is clear that in problems containing other small parameters the 
limit process may be somewhat complicated. We note that the above men
tioned problems of boundary layer appear for points near the boundary of 
the domain. There are very many examples of problems exhibiting very dif
ferent behaviors according to the relative values of the parameters. 

We consider here an elastic body containing pores filled with a compres
sible viscous fluid. As in Fig. 6.1 we assume that both the fluid and solid 
regions are connected. Many different situations appear according to the 
values of the viscosity coefficient r\. The equations for the small (linearized) 
vibrations with the interface conditions of continuity of the displacement and 
stress are equivalent to the following variational formulation: 

Find ue(t) with values in i/J(S2) such that 

a2af 
/ Pe(x] 

Jo 
;) 2 Vjdx + ae(ue,v) + rjb(ue, v) = 

of r12 r 

= \ fiVidx VyGHliSl) 

where the left hand side is the virtual power of the inertia forces, and ae, be 

denote the forms associated with the elastic power (including the compres
sibility of the fluid) and the dissipation by viscosity; respectively: 

ae(u, v)= I dijim —— —— dx 4- 7 / div u div v dx 
Jtf m { Jtof 

be(u>2) = 2v I ^ij{y:)eij{v)dx 
Jaf 

and £le
s, £2? denote the domains occuped by the solid and the fluid. 
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If T? is 0(1), i.e. asymptotically independent of e, the appropriate 
asymptotic expansion is analogous to that of the elasticity or viscoelasticity: 

ue(t,x) ^u°(t,x) 4- eul(t,x, u) 4- ... 

where the first term of the right handside is independent of y, i.e. the two 
phases of the mixture have the same global motion at the first order. The 
homogenized behavior is viscoelastic, analogous to (5.6) with one phase. 

On the other hand, if the viscosity is small, r? = 0(e2), i.e. r) = ve2, 
v = cost., the appropriate expansion is 

ue(t, x) — u°(t,x,y) 4- eul(t, x,y)+ ...-

where u° does depend on y. More exactly, u° may be writen 

(7.1) u° =us(t,x) + uxc\t,x,y) 

where us is independent of y and corresponds to the first term of the ex
pansion in the solid, and the term « r e l , which vanishes in the solid part and 
in particular on the interface in order to satisfy the no-slip condition, re
presents the relative displacement of the fluid with respect to the solid. We 
then have a two-phases medium. The relative motion satisfies some Darcy's 
like integro-differential law with respect to the pressure p in the fluid. The 
limit behavior is described by us, p and wrel which satisfy equations of the 
form 

„ a2K? a2af *°l . 
P dt2 +P dt2 dxj fi 

°T =*'!jkiekix(M')-<Xijp 

dp 4- div^ urel 4- otij e{jx(u
s) = 0 

d£ r e l C* ( ?>P f a2«H , 

~^J/kiit~s)\ft'^~p^rJds 

which are analogous to the system proposed by Biot, but the Darcy's law is 
of integro-differential type. 

The explanation of these phenomena is as follows. For fixed T?, the 
viscosity drives the fluid with the solid and asymptotically there is only one 
phase. If the viscosity is small, the stress tensor in the fluid reduces to a pres
sure; the local equation of the type (4.14) becomes 

a 
— (5y-p) = 0 =*p=p(x) 
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i.e., for small 77 the stress in the fluid reduces to a pressure which is asymp
totically constant in each period. Then, gradxp drives a Darcy's like flow 
with respect to the solid which is of order e2/r? (see (6.3) on account of the 
fact that the velocity is proportional to 77"1). It is then clear that, if 77 = 
= 0(e2), the relative velocity will be of order 0(1), in agreement with (7.1). 
At last, if 77 is small with respect to 1 but large with respect to e2 , we shall 
have a stress tensor of the type pressure in the fluid and a negligibly small 
relative motion; the limit behavior will be elastic. We then have 

77 = 0(1) => one phase, viscoelastic 

1 » 7 7 » e2 => one phase, elastic 

77 < 0(e2) =* two phases . 

We then have a two-parameter problem, and the preceeding scheme may be 
considered in the framework of matched asymptotic expansions. If we take 
77 as a space-like variable and e as a small parameter, the expansions e -> 0, 
77 = cost, and e -> 0, 77 = ^ e2 , v = cost, are analogous to an outer and an 
inner expansions. The matching is given by the motion of elastic type. We 
may perform the change of variables (e, 77), (a, j3): 

e2 1 
a = 77 ; B = — = — 

' y 77 v 

and the outer and inner limits become a = cost, and 0 = cost. 

Figure 7.1 

In practice, for small values of e and 77, we shall compute a and j3; 
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if the corresponding point is near the axis a (resp. j(3) we shall use the one 
phase (resp. two-phases) scheme; near the origin, the two schemes agree. 

0 

uv 

inner 

(v = V0) 
1 rt 

outer limit 

1 1 

r i < 

u* 

C > 
- ^ 

u* (r?= a) a; 

Figure 7,2 

The references for these problems are Sanchez [84, chap. 8], Levy [57], 
Fleury [33], Sanchez-Hubert [80, 81 , 82], Nguetseng [73, 74] and Nguetseng 
et Sanchez [75]. 

As open problems in this direction we may point out the general motion 
(large deformations) of a mixture, boundary layers in the preceeding prob
lems for several boundary conditions: clamped body, free surface body, and 
so on... In this last case the free boundary problem of the seepage of the fluid 
out of the porous body is completely open. 

8. Fluid flow pas an array of small fixed obstacles, Darcy's and Brinkman 
flows. 

The situation of sect. 5 depends strongly on the asymptotic dimensions 
of the obstacles. 

We shall give the asymptotic structure of the solution for the fluid 
Stokes (linear) flow of a viscous fluid past an array of fixed obstacles (note 
that the obstacles are supposed to be fixed; this is unrealistic in R3; the cor
responding problem in R2 , flow past an array of bars will be given later) see 
Levy [59], [61] Sanchez-Palencia [85] and Geymonat et Sanchez-Palencia [36] 
for these problems. 

We consider in the geometric framework of sect. 6, obstacles 77$ in the 
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y variables (i.e. er?# obstacles in the standard x variables), the dimension 
of the period being of order e as usual. An important parameter for the 
description of the asymptotic behaviour is: 

(8.1) m = lim 
ri 

(In fact, we have a problem with two small parameters 6,77, but the asymp
totic behaviour depends on m; one may consider one of the parameters as 
a function of the other. 

If e\ 0 and 17 is fixed (77 = 0(1)), we have the classical homogenization 
problem of sect. 4 the asymptotic of velocity is: 

(8.2) v? = e*vp{y)lfk bxh 

and p° is defined by diy* y^ = 0 i.e.: 

(8.3) 
dx l L 

fk~ bxk J _ 
= 0 ; 

Figure 8.1 

(8.4) 

where K.k is the permeability tensor. 

Now for the case 97 <̂  1, the flow 
without interaction between different ob
stacles gives a good approximation. This 
flow is defined in the following way. In R3 

we define the velocity and pressure fields 
associated with a unit flow at infinity in 
the k direction: 

div2 F* = 0 

V* 
d& 

0 V* Ik 

and we consider the associated force on the obstacle, T defined by: 

I(V*) = &/ oijnj ds 

where 
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dzj b%i J 

and the "translation tensor" H of components 

(8.5) Hij = Ti{V!) 

which is symmetric and positive definite. The asymptotic structure of the 
flow is given by: 

(8.6) v(x)^f(e)Uk(x)Vk(z) 
t 

(centered at the obstacles) 

where 

S e27?-1 if m — 0 

1 if m infinite or finite =£ 0 

and U(x) is given by the solution of: 

gradxp° +H-U = f 
(8.8) if m = 0 

divx C/ = 0 ; t / * » L = 0 

(8.9) if ra finite 
^ ° ' divx t / = 0 ; l /L = 0 

* — — 13p 

m AxU + gradxp°=f 
(8.10) if m =°o 

" divx t / = 0 ; C/L = 0 

In fact, the asymptotic behaviour (8.6) contains an order function / (e) , 
a uniform (i.e. independent of y, z) flow U(x) given by (8.8)-(8.10) and the 
asymptotic structure V near the obstacles. Moreover, for m — °° (i.e. (8.10), 
obstacles very small) there is no action of the obstacles on the U flow, 
which is the same as in the absence of obstacles. For m — 0(1), (i.e. (8.9)) we 
have the Brinkman's flow: the global movement U takes into account the 
"force of the obstacles on the fluid". Last, for m = 0 (i.e. (8.8)) we have the 
same as in (8.9) but the global flow is negligibly small with respect to that of 
the preceeding case, and is given by the order function / (e ) . 

In the two dimensional case, the analogous of the flow (8.4) does not 
exist (Stokes' paradox). In this case (8.4)3 must be replaced by: 
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(8.11) Vk^ek\og\z\ ( j2 | ->oo). 

Moreover, /(e) in (6.7) must be replaced by: 

(8.12) f(e) = 
e2 if m = 0 

[log??"1]-1 if m is infinite or finite =̂  0 

and the asymptotic behaviour (8.6) becomes: 

(8.13) v ~ [/(e) log 7T1] Uk (x) Vk(z) . 

9. Suspensions of solid particles in a fluid. 

We pointed on that the periodicity of the microstructure is an important 
hypothesis in homogenization. In fact, local periodicity is sufficient, i.e. each 
cell is almost the same as the neighbouring ones, but it may be very different 
from the far located cells. Now, if we have in a fluid medium particles in sus
pension, the geometric structure, even if it was periodic at the initial time, 
undertakes large deformations, i.e. the structure depends on the motion itself. 
Of course, a periodic structure is not a very realistic scheme for a suspension, 
but the theoretical results may be used as a model for other problems. On the 
other hand, it may be seen that the local periodicity of a structure is preserved 
by large deformations. 

x2 

O X\ 

Figure 9.1 

We consider (Levy and Sanchez [65], Levy [55], Sanchez [89]) the 
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equations of the fluid motion 

div ve = 0 

/ a*? a*,- \ aag 

a ? . = - p e 5 f > + 2 / x ^ ( 2 c ) 

as well as the resultant and moment equations for each particle, and an 
asymptotic expansion 

!

ve(t, x) = v°(t, x) 4- ev} (t, x,y) + ... v 

pe(t, x) = p0(t, x) + epl (t, x,y) + ... 

with terms which are F-periodic functions of y, the period Y depending 
on t and the large scale variable x, in a fashion to be defined later. The 
asymptotic process leads to homogenized equations of the form 

/bv° bv°\ do0. „ 

(9.2) i ~pK^+v^r^v'e'^^^+F' 
0 _ div v° = 0 

where the average stress tensor o° is associated with an anisotropic viscosity 
which depends on the form of the period at the considered time. On the 
other hand, we see that the inertia terms contain an extra term with the coef
ficients j3 which depend on the microstructure. This correction of the inertia 
terms is due to the local structure of the velocity field, and even appears in 
inviscid flows. 

As for the microstructure, it depends on a finite number of parameters 
for each cell (i.e. depending on the large scale variable x). For instance, we 
may take the vectors which are edges of the period, and the six parameters 
defining the position of the particle. It may be shown (the fact that y° is 
independent of y and that v1 is F-periodic plays an essential role here) 
that the geometric structure evolves in time keeping its locally periodic 
character. The equations giving the variation in time of the set £f of para
meters take the form 

—r- = ot(£f): Vv° 
at 

which are of the form given by Hinch and Leal [39] on the basis of a phe-
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nomenological study of the problem. 
In the preceeding study we did not find any evolution of the concen

tration of solid particles or global motion of particles under the action of 
the given forces F. In fact, sedimentation phenomena are very slow and the 
terms v° + evl are more important than them. Sedimentation phenomena 
may only be apparent if the terms v° are zero. This may happen if the 
initial and boundary values for v° are zero; in addition, if the boundary 
values for y° are zero, but not the initial values, the viscous dissipation gives 
(see Sanchez [89]) a decay of the velocity to zero as £->• + <». In fact this 
decay is in certain cases exponential and the corresponding motion may be 
considered to be zero after some time. In any case, if y° = 0, lower order 
terms may be studied, and sedimentation appears. This sedimentation implies 
a gravity driven motion in each period which implies relative velocity of havy 
portions with respect to light portions in the direction of the applied gravity. 
On the other hand, this motion implies in general rotation of the particles 
and not only translational motion through the fluid. 

It is then seen (see Sanchez [89] for details) that the appropriate ex
pansion takes the form 

I ve = eyl(t,x) + e2y2{t,x) 4- ... 

( pe = p°(x) + epl (t, x,y) + e2p2 (t, x,y) + ... 

which is analogous to (9.1) but for "slow motions", with factor e, and of 
course a term p°(x) which is associated with the fluid at rest. The term y2 

writes 

v2 = v2 deI + v2g 

where y2dei is associated with the deformation v1, and v2g with the 
gravity forces. This second term is responsible for sedimentation i.e. migration 
of particles with respect to the fluid; but it should be noticed that this term 
may be masked by v2 del if the later is sufficiently large. 

There are very many open problems in this direction. The evolution of 
the microstructure, which is necessary to compute the macroscopic flow is 
not sufficiently known: much work is necessary (working out examples, 
computing coefficients of functions of the microstructure and so on) to 
understand the influence of the micro-location of particles and the location 
of the applied forces (see Levy [55] for problems with couples). See Nunan 
[77] for some numerical results on homogenized viscosity coefficients. The 
problem of the boundary layers near a solid wall deserves attention: there is 
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very much work in this direction and of course also on the influence of the 
boundary layers on the general flow. On the other hand, our knowledge ot 
the evolution of the microstructure is far from complete, in particular the 
question of the eventual shocks of particles seems open. Compressibility 
effects would also be interesting to deal with. It is to be noticed that very 
many features of suspension theory also appear in mixture theory of fluids; 
in this case some equations are simpler because the complicated questions of 
the rigid-body velocity field are not present, but the deformation of the 
microstructure is more complicated because deformations of drops may in
volve infinitely many parameters. 

10. Composite plate theory. 

We only give some indications about the difficult and interesting prob
lem of heterogeneous plates; the reader is refered to Caillerie [13, 14, 15] for 
an explicit treatment. We mention that in a heterogeneous elastic plate clas
sical homogenization must be modified on account of the fact that there is 
no periodicity of the microstructure in the direction normal to the plate. 
Thus, periodicity conditions must be replaced by other conditions (Neumann, 
for instance, if the plate is free) on the surfaces. But the main difficulty in 
heterogeneous plate theory come from the fact that, if the plate is not sym
metric, the traction forces in its plane induce flexural deformation of the 
plate. 

hard 
/ p hard 

\ soft \ soft 

Figure 10.1 

As a matter of fact flexion and traction are coupled and the "homoge
nized" behavior is not that of the classical theory of plates. In fact, the 
asymptotic behavior is given by the displacements: 

bv3 dv-x 
Ul=€V1—X3— ; U2 = €V2~X-i— 

OXj OX2 

where vlfv2, v3 are functions of the coordinates x 1, x2 in the plane of the 
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plate and x3 is normal to it. The equilibrium equations are 

bNap _ d2Ma$ 

dxa ' dxa dxn 

where the stretching stresses N and the bending moments M are defined by 
the relations 

AT , 1 1 / ^ , 1 2 
W - Aaty8 e76 fe) " ^a/J 7.5 ^ T ^ 

a2 
*>3 

ftXy 3*5 

a2 
*>3 

which involve the "homogenized coefficients" A depending on the micro-
structure. 

Very many problems are open in plate theory, in particular layers near 
the boundary of the plate for various support conditions, and the singular
ities of the stress associated with them. Some (far from complete!) results 
may be seen in Sanchez [87]; we give some indications about them here 
after. 

11. Boundary layers in elasticity problems. 

Let us consider a free boundary 3/3 = 0 of a composite elastic solid 
such that a boundary of the period Y may be taken to be also y3 = 0. The 
asymptotic expansion far from the boundary is classically: 

(11.1) u€(x) = u°(x) + eu1(x,y) + ... 

y = x/e 

The corresponding expansions for strain and stress are 

(11.2) e\{x) = e\{x,y) + ee\{x,y) + ... 
(11.3) a\{x) = aiJlm ee

lm = afj(xty) + eo-j(x,y) + ... 

where 

(11.4) 

with 

*ij(x,y) = eijx (M°) + eijy (M1) 

°l = aijlm eimte0) 
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(11.5) u 
,0\„„kr ekrx(u )m (y) + c o s t 

where wkr are the F-periodic solutions of the local problems 

.krw\ -(11.6) - — {aijim(y)(bklbmr +eimy(w"'))} = 0 

and the homogenized coefficients are 

(11.7) aijkr = {aijim(8kidmr + elmy(wkr))} 

where the tilde ~ denote average on F. 
Then u° is the solution of the homogenized Figure 11.1 
equation (11.8) and the boundary condition 
(which we write in (11.9) for the free boundary of Fig. 11.1. 

y\yi 

(11.8) 

(11.9) 

das 
a v . ft » °ij aijlm elmx\U ) 

on d£l . s°3i = o 

REMARK 11.1. In (11.9), ~ denotes the mean value on F; in fact it is also the 
mean value on the face T of the period (see Fig. 11.2) or on any section of 

the period y3 = c which is independent of 
c. Indeed, the local equation for ul is 

tyj 
0 

yiyi 

r 
Figure 11.2 

and integrating by parts in the region of F 
between y3 = 0 and y3 — c (Fig. 11.2) 
we have 

(11.10) / o°3dy1dy2 = l a^dy1dy2 

(nothe that the integrals on the lateral faces cancel by F-periodicity). 

Now we study of the boundary layer. 
We introduce the complementary term ulc: 

(11.11) ue{x) = u°(x) + e(ul{x,y) + ulc(x,y)) + 0(e2) 
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which satisfies (11.12)-(11.15): 

d 
(11.12) - — (aijim(y)elmy(u

lc)) = 0 in 5 

(11.13) ulc{x,y) is 5-periodic in y 

(11.14) gradv u
lc • 0 

(11.15) a3tlmelmy\.U ) = ~ °3i — ~ a3ilm \elmx \U ) ' elmy\l4 )) • 

The existence and uniqueness of ulc defined up to a constant (i.e. 
only depending on x^ vector of R3 follows from the Lax-Milgram theorem 
by noticing that it is equivalent to find ulc C-V such that 

(11.16) / aijlmelmy(u
lc)eijy(v)dy = I o°3jvjdyldy2 VvEV 

Js Jr 

where V denote the Hilbert space of the S periodic vectors (defined up 
to a constant additive vector) with finite 

)eijy(v)dy 

We note, in particular that, by virtue of (11.9) and Remark 11.1, the 
right side of (11.16) takes the same value for v or v 4- constant. 

We note that the preceeding study only shows that grady u
lc GL2(5); 

this amounts to saying that in some generalized sense it tends to zero as 
y3 -> o°; in fact this is true exponentially as was proved by Tartar (see Lions 
[67] sect. 1.10.4) and Dumontet [28]. 

12. Singularities in elliptic non smooth problems. 

Singularity theory, i.e. lack of regularity of the solutions is a mathe
matical theory which is independent of homogenization. Nevertheless, in 
composite media there are very many situations where singularities appear at 
the microscopic level, i.e. the local gradient, given by (4.8) or analogous ex
pressions take infinite values at some points. This is a widely open research 
domain; the references for the mathematical theory are given here after; some 
physical or computational results may be seen in Anquez [1], Bogy [8, 9], 
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Davet and Destuynder [23], Dempsey and Synclair [25, 26], Raju and Crews 
[78], Wang [97], Zwiers [101]. 

Most of the solutions of problems in mathematical physics are given by 
variational problems in spaces of the kind H1 of Sobolev, i.e. they exist and 
are unique in spaces of functions having square integrable first order deriva
tives. This is a very poor regularity, and such solutions may be singular at 
some points; more precisely, grad u (where u 
is the considered solution) may tend to infinity 
at some points. 

Physically speaking, such solutions are l\^u = 0 

meaningless at the vicinity of such singularities: 
in fact, the smallness hypotheses for lineariza
tion are not fulfilled. Then, such singularities 
show that new phenomena (non linearities, groun 
qualitative modification of the medium, qua- Figure 12.1 
litative modification of the medium, etc.) may 
appear. An example is the lightning rod. The singularities of grad u (u is a 
harmonic function, the electric potential) at the point 0 provokes ionization 
of the air, which becomes conducting near 0. 

In elasticity theory, infinite values of grad u i.e. singularities of strain 
and stress provoke modifications of the elastic behavior-, depending on the 
nature of the material, it may become plastic or a fracture may appear. 

The study of singularities is well developped for second order elliptic 
equations in R2 but there is much to do concerning problems in R3 and 
elliptic systems, in particular the elasticity system. Fortunately, some prob
lems in boundary layers are in fact in R2, and we have at our disposal some 
(but not all) tools to study them. The principal references on these problems 
are Grisvard [37, 38], Lemrabet [51, 52], Kondratiev [41,42], Sanchez [87], 
Sovin [90], and for numerical computation, Lelievre [49, 50], and Leguillon 
et Sanchez-Palencia [47]. 

Let us consider an elliptic problem of the form 

in a domain £2 of R2 with appropriate boundary conditions. Under suitable 
smoothness hypotheses about the coefficients and 3£2, classical regularity 
theory holds. In particular, if / belongs locally to the H™ space (m real 
> 0) and the boundary conditions are homogeneous, the solution belongs to 
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fjm+2 

an 

1+2 in any subdomain D' included in D. Moreover, if 12 is bounded, 
inequality of the type 

(12.2) " ^"«-«<o)^ c("/«^<0) + "^"««<n)) 

holds for m ^ 0, with a constant C which depends only on 12, m and the 
coefficients of the equation. 

An analogous situation holds if the coefficients of (1.1) are piecewise 
smooth, having a discontinuity line r where (1.1) is considered in the dis

tribution sense (here the brackets denote "jump"): 

(12.3) [U]=0 , a, bxi n; = 0 on T 

Figure 12.2 

then, if fEH™, the solution U belongs to 
Hm+2 on each side of T (Fig. 12.2) (of course 
on T itself the solution is not of class H", 
n ^ 2 as the first derivatives are not continuous 
across T) (see Ladyzhenskaya et Ouralceva [45] 

sect. III. 16) in regions where T is smooth, buth not (as we shall see later) 
at points as A,B in Fig. 12.2. For instance, in problems with layers, singular
ities may appear at the intersection of layers 
with the boundary 912. 

A different situation appears if the coef
ficients are smooth (constant, say) but the 
boundary 912 does not, in particular if it has 
angular points. In such a case, the local regular
ity depends on the angle 0 of the domain. 

For instance, let consider the Laplace 
equation with Neumann condition: 

(12.4) 

Figure 12.3 

-AU=0 
dn 

= 0 

Searching for solutions of the form (r, 6 = polar coordinates): 

(12.5) U(xlfx2) = r0Lu(d) 

we obtain 

IT 2TT 
(12.6) u — A cos a6 for a = 0 , ± 0 ' 0 
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Of course, grad U behaves as ra~i; we are interested by solutions 
exhibiting a singularity as r ->• 0, i.e. grad U-+ °° as r -> 0 and this amounts 
to Re a - 1 < 0. On the other hand, if the solution exists according to a 
variational problem in H1 (£2), grad u E L2 (12) and this implies Re a > 0. 
We see from (1.7) that such singular solutions exist if 0 E (iry2ir), i.e. if the 
domain is not convex, but they do not exist if 0 E (0,7r), i.e. if 12 zs convex. 
A picture of the flux lines (i.e. lines tangent to grad U) furnishes some 
insight on the physical phenomenon: for a convex (resp. non-convex) domain 
the flux lines spread out (resp. push to each other) as shown in Fig. 12.4, 
12.5. 

non singular singular 

niiiDiiiimiiiiiini 
Figure 12.4 Figure 12.5 

We now consider the singularities at the boundary for transmission 
problems. 

We now consider the case where 
the interface T in the transmission 
problem (12.1), (12.3) touches 912. 
We shall see that the convexity crite
rion for the Laplace equation (Fig. 
12.6) becomes now a convexity with 
respect to the refracted fluxes. 

Let us consider to fix ideas, the 
transmission problem (12.1) with piece-
wise constant coefficients, the interface 
conditions across a line T of discon
tinuity of the coefficients being of 
course (12.3). Moreover, we consider Neumann boundary conditions 

Figure 12.6 

(12.7) 
W 

on 912 

We are studying the vicinity of a point 0 where V intersects 812 
(Fig. 12.6). Let 12l and 122 be (in the vicinity of 0) the two subdomains 
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where the coefficients are constant. It will prove useful writing the equation 
and boundary conditions in terms of the vectors gradient g and the flux q, 
defined by: 

bU bU _ 
( 1 2 '8 ) gi = ~bx~ ; ^'"^ItoT^yft' 

then (12.1), (12.7) become: 

div q = 0 , (q = ag) in 12 

(jj\n{ = 0 on 312 

and of course the transmission conditions (12.3) become (the first is obtained 
by differentiation of the first (12.3) along T): 

(12.10) [gt] = 0 ; •.[a„] = 0 

where the indexes t, n denote "tangential" and "normal" components 
to T. 

Solutions with constant gradient on each of the regions 12*,122 are 
associated with g and q taking constant values g\ ql in £2*, f = 1,2. We 
shall say that g2, q2 are the "refracted" of g*', q1. To construct such 
solutions, we give arbitrarily either g1 or q1 (the other is then obtained by 

(12.11) Oi=aijgj 

with the values of ay on 121)- Then, the two relations (12.10) and the two 
(12.11) with the values of a^ on 12 2 furnish uniquely the refracted vectors 

g2,Q2> 

Now, coming back to Fig. 12.6, let us suppose that ql and the re
fracted q2 are respectively parallel to the portions of 312 in contact with 
121,122 (denoted by S 1 , S 2 ) . In this case, the Neumann boundary condition 
(i.e. the second of (2.9)) is satisfied. We then have the analogous, for equa
tion (1.1), of the solution of constant gradient parallel to a straight boundary 
for the Laplace equation. We may gess (and this is proved in Sanchez [87]) 
that the presence of singularities is associated with non-convexity with respect 
to the line formed by q1, q2 . Precisely: 

PROPOSITION 12.1. In the framework of this section (in particular Fig. 12.6), 
the Neumann problem (12.1), (12.7) has (resp. has not) a singularity at the 
point 0 of Fig. 12.6 (i.e. there exists a solution of the form (12.5) with 
0 < Re a < 1) if when constructing a flux vector q1 parallel to the portion 

(12.9) 
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of d£2 adjacent to £ll} pointing to 0 (see Fig. 12.7 a) and b)), the refracted 
vector o2 is inside (respectively out of) SI. 

a) 

non singular 
Figure 12.7 

singular 

b) 

Analogous rules hold for Dirichlet or mixed (Neumann and Dirichlet on 
two adjacent segments) problems (see Sanchez [87]). On the other hand, 
the corresponding problem for the elasticity system seems to be much more 
involved, and simple criteria as the preceeding one are not available. But the 
numerical method of the following section works in somewhat general prob
lems. 

We now give a general method for computing singularities. 

When singularities appear, the general form (roughly speaking) of the 
solution is 

(12.12) U(xux2) = crau(d) 4- [/resular(*,, x2) 

where a and u(6) depend on the local geometry and coefficients of the 
problem, and the coefficient c and the regular part Uregular(xl,x2) depend 
on the other data of the problem. The knowledge of a for a given problem 
shows if wether or not a singularity exists. Moreover, if u{6) is known, the 
solution (12.12) may be computed in an accurate way by using a standard 
finite element discretization plus a special finite element in the vicinity of 
0. This finite element is constructed to describe the singularity with not very 
important perturbation of the voids of the discretized matrix (see Lelievre 
[49], [50]. 

The problem of finding a and u(d) may be reduced to some implicit 
eigenvalue problem, and may be solved by numerical methods (at least theo
retically, for the real singular values a). 
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We now explain the method for an elliptic equation, but it is useful 
for general systems (with two independent variables x1}x2 of course). To 
fix ideas, we consider the problem of Fig. 12.6, where the domain £2 is an 
angle to = 0j 4- 02

 m t n e vicinity of 0. Moreover, the boundary conditions 
are of the Neumann type and the coefficients depend only on 0 in the 
vicinity of 0. The sesquilinear form associated with the problem is 

U bV 
(12-13) l f l «3^"a^ r f * 

a t 

f bU 

we take as £2 the angle 

(12.14) a = {r,e ; re(o,°°); ee(o,co)}. 

In order to search for solutions of the form rau(0) which do not 
belong to H1 (£2) we take 

( U(xltx2) = rau(0) ; B G H H O . W ) 

(12.15) ] 
(V{xl,x2) = (j)(r)v{d) ; vGHl(0,oo) ; 0G^(O,°°) 

and the homogeneous equation with Neumann boundary conditions become 

C fw b(rau) 3(0z>) 
(12.16) 0 = rdrl a{j-\—- , dd 

J J J OXj OXj 

which after the change 

3 3 sin 0 9 
COS0 

bxt dr r 36 

b d cos 0 b 
= sin 0 —- + bx2 br r bd 

and after integrating with respect to 0, becomes: 

0 = 1 (F(a, z/,z?)ra0' + 4>(o;, u,v)r0L~l (^)dr , V0e^ (O , °o ) 

or integrating by parts in r: 

0 = 1 (-OLF + ^)ra-l(j)dr 
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which amounts to 

(12.17) 0 = -aF(oi, u,v) 4- ^(ce, u, v) = b(a, u, v) 

which defines a sesquilinear form b (depending on a) for u, v GH'fO, co). 
The problem reduces to find the values of a such that a non zero u E 
E H1 (0, co) exists satisfying 

(12.18) bipi, u,v) = 0 VvGH1^,^). 

This is an implicite eigenvalue problem as it amounts to find the values 
of a for which zero is an eigenvalue of the operator B (a) associated with 
the form b. 

In order to compute the singular values a, we discretize (by finite ele
ments for instance) and use a finite dimensional basis v1,...,vm of the 
discretized space H1(0,co). The searched values a are those for which the 
matrix with coefficients 

(12.19) * s , = f c ( a , «*,«') 

is singular. For real a, as 0 < a < 1, it suffices to compute the determinant 
of the matrix for several a and to obtain by interpolation the values for 
which it vanishes. When the value a. is known, the corresponding (discretized) 
u(6) is the corresponding eigenvector which may be obtained by the inverse 
iteration method, for instance. 

13. Other references and open problems. 

Problems about non homogeneous media with holes or cracks are con
sidered in Krasucki [43], Lene and Leguillon [5 3, 54], Lions [66], Sanchez 
[84], sect. 6.6, 6.7, 6.8. Problem with inclusions located near a surface, 
undulated boundaries, flow past a grid, and associated questions may be seen 
in Conca [22], Nguetseng et Sanchez [76], Sanchez [83]. Spectral and scat
tering problems are considered in Codegone [17, 18], Kesevan [40]. Problems 
in electromagnetism where dealt with in Codegone and Negro [19]. 

There are very many problems involving several small parameters. In 
addition to the above mentioned in sect. 7 and 8, we mention problems with 
small concentration inclusions; this problem is related with the Einstein ap
proximation of the viscosity of suspensions: see Cioranescu et Murat [16], 
Levy [56], Sanchez [88]. Problems with narrow but elongated inclusions are 
dealt in Caillerie [10, 11, 12], Marchenko and Khruslov [70]. Acoustic vibra-
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tions in the suspensions may be seen in Fleury [31], Levy [58, 62] and Levy 
and Sanchez [63]. 

Exact bounds for the homogenized elasticity coefficients are consid
ered in Francfort and Murat [35]. 

Stochastic distribution of inclusions are dealt with in Bensoussan [6], 
chap. 2 and Attouch [2]. 

Nonlinear problems and bifurcations may be seen in Duvaut [29, 30], 
Luborski and Telega [69], Mignot [71]. 

To conclude this survey, we mention two widely open problems. 
The first one is the buckling of periodic structures made of elastic bars. 

Local buckling may appear for deformations with a local period different 
from that of the structure (Fig. 13.1). 

Figure 13.1 

The second one is an asymptotic description of the stress field for 
elastic bodies with "round corners" for instance with boundaries formed by 
two segments joined by a small radius arch. 
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