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Abstract

In this chapter we present some other examples of IBL, not only in an
aerodynamical context.

1 Introduction

In this chapter we focus on some examples which are not only from the
aerodynamical field and which may lead to interacting boundary layer.

It means that we have a kind of Prandtl problem, the external boundary
of it being linked with the variations of velocity or pressure by an exter-
nal coupling. To a certain extent the interaction be explained through a
retroactive process involving integral concepts as follows: as the variation
of pressure is more or less proportional to the variation of the boundary
layer thickness, then the increase of boundary layer thickness promotes a
rise of pressure, which decreases the velocity, the result is an increase of the
boundary layer thickness: the process is self promoting.

First there is the hypersonic problem, this interacting boundary layer
flows process was described in Stewartson (1964) [19] with a self induced
mechanism involving variations of boundary layer thickness and pressure.
The key mechanism in supersonic and hypersonic flows was introduced by
Neiland (1969) [14] and Stewartson & Williams (1969) [20]: it is the "triple
deck” theory which clarifies the scales and the equations involved in the
interaction. rown, Brown Stewartson & Williams (1975) [5] successfully
explained the branching solutions calculated in strong hypersonic flows by


http://www.lmm.jussieu.fr/~lagree

examples IBL

Werle et al (1973) [22] and the link with Neiland (1970) [15].

Next there is the mixed convection problem. It presented exactly the
same features, and Steinriick (1994) [33]) proposed a kind of branching so-
lution and Lagrée [31] showed that this may be reformulated in a triple Deck
framework.

We present as well equations for the viscous hydraulic jump. The equa-
tions for artery flows are of the same vein.
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2 Hypersonic flows

2.1 Self similar flows

Supersonic and hypersonic flows were developed in the 50°, there was then
over the next 50 years a continuous and sporadic interest linked to the
ICBML (Intercontinental Ballistic Missiles) and the space conquest from
Moon to Mars via the Space Shuttle. At this early time it was observed
that those flows presented some self similar solutions. In case of negligible
boundary layer thickness, people were looking to power shock laws. In this
case the body may be a power law shape. This came from the observation
that if we define from the Mach Number M., and from the local angle of
the shock o and from the slope of the body 7 the parameters:

K, =Myo, K= My

they define self similar parameters in the Hypersonic Small Disturbance
Theory (Chernyi [8]). The oblique shock wave relation gives for small angles

0 and o :
M +1 +1 1
0 _ Y + (7 )2 + —
Moot 4 4 (MOOT)
the pressure is then
2 —1
R A ¢ - (1)
Poo v+ 1 v+ 1
+1 +1
— 1+ WTKQ K (VTK)2 +1. 2)

then for moderate Mach number, we recover that the angle of the shock is
a Mach Wave (1/M) and the pressure is:
P — Do
PocU%

~ 1+ K

and for a large Mach number the body and the shock are proportional:

Myo ~v+1
Myor 27

and the pressure

P~ Po 2
~ K
pcU3,
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273. Hypersonic flow past power-law bodies. Shadow- The exponents are %, %2 (a paraboloid of revolution), 3,
graphs show the bow wave in air at M=8.8 for bodies of and . Freeman, Cash & Bedder 1964, courtesy of Aero-
revolution whose radius varies as a power of axial distance. dynamics Division, National Physical Laboratory

Figure 1:  Self similar Hypersonic flows from Van Dyke ”An Album of Fluid

Motion”.
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As only powers appear, self similar solutions are straightforward. See
figure [1] for an example extracted from Van Dyke [21].

Those power law were not relevant for all the bodies. One of the self
similar solution corresponds to the very special case. This is the blunt body
case corresponding to a flat plate with a very small nose.

p—p 2/3 -
2 = FO)C w)d) 8
pOO o0
1/3
Tshock = G(’Y)Cd/ (x/d)2/3
see Guiraud Vallée & Zolver [9], Chernyi [8] and Sedov [I8] for details.

2.2 Viscous interaction

For compressible boundary layers, the simple order of magnitude gives:

uwL

pPUso

taking into account that the viscosity follows in first approximation the

Chapman law p = MOOC% and the ideal gaz law: p/ps = (PT)/(PocT),
then:

6% =

0.9 T op

($)? ~ Ol P2
L T’ p Rso

e In the so called "weak hypersonic interaction” pressure remains of

order ps, and the temperature ratio is of order of order M2 so that:

0 12, T 1 Xoo
(f)"’ /(T7>W:M7
o0 1% [oe)

2
were Yoo = C 1/2 }]‘%EZ"Q is the hypersonic parameter. The pressure is then:
P — P
~1+4+x
pocU2, >

e In the so called ”strong hypersonic interaction” pressure is now deter-
mined bay the equivalent body which is the displacement thickness due to
the strong viscous effects.

R
Poo
so wee obtain the displacement thickness as:

o 1 P2
I MOOXoo, poo—Xoo

this represents a shock and a boundary layer in z3/4.

~ K? with K = M, (5/L).
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Figure 2: Weak and strong interaction results from Hayes & Probstein [10],
pressure as a function of the hypersonic interaction parameter.

2.3 interactive system
Finally the Boundary Layer equations in the case of strong interaction read:

opi  Opy _ 0 Dd,  y -1 1dp 0 00

- OU ouy Y- lig -2 o ou
or Ty~ O Mgy Tigp) = — 5 (- @) 50n + Chae(55s)

With boundary conditions %(%,0) = 0, 4(Z,00) = 1. The Energy equation
reads with the total enthalpy S :

505 595y _ 050 (95
Pz "85’ ~ “Pa5 505

P
Uoo
-
= ppo KoL,
=
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Figure 3: Weak and strong interaction basic solutions Lagrée [11] .
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The boundary layer displacement thickness gives the velocity at the edge of
the boundary layer as

- d v—1 Eappe ~ON ~~
o ¢y—1 J_
Te(T) = 5 ), w”)py]
and the coupling relation is:
~ v+ 1 )
p=—1"0.

This interactive system was believed to be solved with a marching scheme.
But, unfortunately it raised difficulties, one observed branching solution
when solving numerically for increasing z (see Neiland [I5] and figure [6]
right thereafter, see Werle et al. [22]... and figure [4).

WEAK
INTERACTION M ° 1901
03

[ S

Figure 4: Branching solutions [22]: changing a bit one parameter may cause
different solutions while solving the equations with a marching scheme.

2.4 Hypersonic Triple Deck Stewartson

From this system Stewartson [5] obtained the p = — A relation, this comes
from the solution of the total enthalpy in the main deck which is obtained
from S = S(Y) +cA(2)S'(Y) and @ = Up(Y) 4 cA(x)U,(Y). It is substi-
tuted in the coupling relation for a short disturbance in longitudinal scale:

. oy+1ly-1 [
p=—F(5—1/ (

S —a*)py)>.
TR A u”)py)
which gives —A contribution in the integral and the development of % gives
—p so that the RHS is (—p — A)" with the ad hoc scales. The case of very

cold walls s,, << 1 or "Newtonian flow” (v close to 1) gives then p = —A.
The moderate case is then:

pp=—p — A, with p~ (y—1)%s5,
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See Lagrée [12] and Brown et al. [6], Neiland [16] and Lipatov and Neiland
for various forms of this interaction.

Then, linearisation of the problem p = —A allows to obtain the exponential
solution (Gajjar Smith [49]) eX® with K = (—344'(0))® = 0.47

Figure 5: Linearized eigen solution ("exp.” is exp((—3Ai’(0))3)Z)), and non linear
solution of the self induced (p = —A) problem solved with Keller Box and ”semi
inverse” coupling: pressure (p), displacement (-A) and skin friction (tau).

2.5 Hypersonic Triple Deck Neiland

A generalization of the FS equation may be obtained when the flow is non
similar. If f° is a short hand for Jdzf, we may write the Prandtl equations
in introducing n = ﬁ%% then

f///+ff//_l8<s_fl2) :2:1:(']['/.][-10_fOf//)7 S//+fS/:2$(f/SO—fOS/)

with § = LA%. Neiland [I5] obtained the branching solutions of this
v pdz
system in writting:

f(zym) = fo(n) + ¢(x) fr(n) + ...

by substitution, one obtains F'(fy, f1)¢ = xd¢/dx whose natural solution is
an exponent solution for ¢. Then Neiland used

f(@,n) = foln) + 2z () + ...

treating 22! f1(n) as a small perturbation of the basic self similar flow fo(7)
he obtained an eigen value problem and the value of a. The value was large

- VI. 8-



examples IBL

12—t

08—

L -

Fig. 1

®ur. 2

Figure 6: Left: Pressure at separation point far from the cause, showing com-
parisons with experiments supersonic case Neiland (1969) [14]. Right branching
solution for the hypersonic solution by Neiland (1970) [15]

49.6 for s, = 1. Latter Brown and Williams [7] looked at this same problem
with the same point of view but do not restrict to s, = 1.

We have already mentioned that supersonic flows presented ”upstream
influence”. It meant that disturbances have an influence far upstream which
was a paradox due to the hyperbolic nature of the Euler equations and to
the parabolic nature of the boundary layer equations.

2.5.1 Hypersonic Triple Deck Neiland-Stewartson

What is strange is that two points of view gave different results for the same
set of equations. Stewartson made a local analysis at a small scale and ob-
tained eigen solution in exponential. Neiland did not change the longitudinal
scale, he obtained power law solution with a large value of the exponent.

Stewartson (Brown Stewartson & Williams [5]) reconciled the two points
of view in noting the link between the two results (algebraic and exponen-
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tial). He observed that far upstream near a given Xy, one can do a local
study at scale x3 so that
T =x9+ T3T

the power law behaviour is :

(x)n _ enLog(m0(1+m3:E/mg)) ~ enLog(xo) 3% /0

(&

so in the local variables algebraic behaviour looks like an exponential.
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3 Heat Flows

Flow with temperature are good candidates to coupling in the case of mixed
convection. It means that there is a basic stream which imposes forced con-
vection but it means that there is some natural convection as well creating
a retroaction. We will see what happens for plumes en jets and in the case
of mixed convection.

3.1 The mixed convection problem

Here we consider first the mixed convection problem of an incompressible
buoyant (following the Boussinesq approximation) fluid flowing over a semi
infinite horizontal flat plate at a constant temperature lower than the in-
coming flow temperature (see figure E] for a definition sketch). Obviously,
for a given z location, the fluid temperature, by diffusion, increases from
the wall value towards that of the free stream. But for a fixed y location the
convection induces a longitudinal decrease of the temperature. The outcome
is a buoyancy induced stream wise adverse pressure gradient. This gradient
brakes the flow, and this creates an interaction between the thermics and the
dynamics. This mechanism of mixed convection breakdown has been stated
by Schneider & Wasel (1985) [32] (other examples of re-computation with
different numerical methods are reviewed by Steinrtick (1994) [33]); they
showed that this interaction promotes a breakdown of the mixed boundary
layer equation: at a relatively small abscissa, the equations are abruptly
singular. Instead of a buoyant boundary layer a buoyant wall jet may be
studied, the case of adiabatic wall was studied by Daniels (1992) [25] and
Daniels & Gargaro (1993) [26], they found the same conclusions. The wall
jet problem is solved numerically and asymptotically by Higuera (1997) [51]
who notes that the equations are not parabolic as he noted before in the
case of the hydraulic jump which is very similar in its behaviour.

3.2 Governing equations of the mixed convection

3.2.1 Equations

We consider an incompressible two dimensional flow past a semi-infinite
(heated or cooled) horizontal flat plate (figure [7). The boundary layer
equations are obtained from the Navier Stokes counter parts subject to
Boussinesq approximation for a large Reynolds number. A re-scaling of
the dimensional quantities is carried out with the dynamical boundary layer
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Figure 7: Sketch of the mixed convection boundary layer flow, the temperature
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of the plate is different from the temperature of the flow. If the plate is cooled, the
buoyancy induces an adverse pressure gradient.

scales (with § = Re™ /2 with Re = pooUso L/ 11):

u* = Uyu, v* = 0Uxv,
¥ = Lz, y* = 5Ly7
P* = Poo + pocUZp, T =T, + (To — To)0,

the result is the classical system of thermal mixed convection (Schnei-
der & Wasel (1985) [32]), Prandtl number is assumed to be of order unity
and hence set, (without to much loss of generality), to one while the Eckert
number is assumed sufficiently small to obtain the energy equation as (7))).
The remaining parameter is the Richardson number or buoyancy parameter:

ag(Ty — Two) LRe™1/?
J = o : (3)

it depends on « the thermal coefficient of expansion of the density in the
Boussinesq approximation. The transverse pressure term @ contains the
gravity term, as equation @ holds for terms greater than O(é), we have
|J| >> Re!:

%U+ 87y’l) = 0, (4)
0 0 2
0
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0 0 0?
—0 —0=—10 7
Yoz ey T B @
Boundary conditions are:
u(z,y =0) =0,v(x,y =0) =0, (8)

O(z,y = 0) = 0, with 6, = 1, u(z,y — o) = 1,0(x,y — o0) =
0,p(z,y — o0) = 0.

3.2.2 Marching breakdown

The length scale L and the parameter J are independent, it contrasts with
the situation in Schneider & Wasel (1985) [32] or in Daniels & Gargaro
(1993) [26]. In the "real mixed convection problem with stable stratification
flow”, the "natural” longitudinal scale is effectively built with Richardson
number. It is the length that gives unit Richardson number

(}ag(To - TOO)LTUO_OQ(UOOLTV_l)_l/Q‘ =1), so:

U. Uz
[ = —2 o0 2
T v (—ag(To - TOO))

Note that J2Ly = L. Schneider & Wasel (1985) [32] (scaled with L7) showed
that this system leads to a singularity when solved with a marching (in
increasing x) resolution. They showed that the breakdown occurs for a
rather small abscissa. This is the reason why Steinriick (1994) [33] (scaled
with Lp) has investigated how the system behaves when x tends
to 0. In figure [§] are displayed, with symbols, the reduced skin friction
from previous works compiled by Steinriick. The curves with numbers show
solution of the marching problem with slightly perturbed initial conditions
and come from his analysis near x = 0. Asymptotic analysis suggests,
however, that it is better to consider an intermediate scale L (with L << L)
leading to Blasius boundary layer (with this scales x tends to 0 is the nose
effect) with a small thermal perturbation gauged by |J| << 1, this means
that the Richardson number built with this abscissa is smaller than one. So,
we will introduce the triple deck analysis.
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f7(£,0)

Figure 8: the reduced skin friction f”(&,0) = %(m,O)\/E function of £ = |J| Vx:
compiled and computed by marching computations by Steinriick (JFM 94), the
numbered curves show solution of the marching problem with slightly perturbed
initial conditions (left). Numerical resolution showing the reverse flow, each curve
is associated with different domain length x,,; (right) by Lagrée [31].
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P

Figure 9: the kind of "mixed thermal convection” hydraulic jump. The observed
singular solutions which branch out may then be revisited in the framework of
the “triple deck” theory: two salient structures emerge, one in double deck, if
|J| << 1, and another in single deck, if |J| = O(1). Those two structures are a
reinterpretation of Steinriick (94) results. This proves that the marching procedure
is not relevant and that an output boundary condition has to be imposed. A
numerical simulation of the unsteady version of (1)- (2) is carried out whith the
ad hoc output boundary conditions: 9, f(x = Zout,y) = 0, (where f = wu,v,6,p)
Depending of the size of the computational domain x,,; (right fig.), the preceding
(left fig.) branching solutions are reobtained, some of them correspond to the
separation of the boundary layer (as predicted by the triple deck theory).
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4 Asymptotic analysis: the triple deck tool

4.1 Small J, with displacement
4.1.1 Main Deck

Here we look for eigen solutions in a boundary layer slightly perturbed by
the thermal effect in order to show that system is not parabolic in x
when the plate is cooled. We use the word ”parabolic” for a system of P.D.E.
in the sense of a system that can be integrated in marching in = direction
from upstream to downstream (with no separation). The basic flow, driven
by the free stream uniform velocity, is a classical Blasius boundary layer
(thermal and dynamical effects are not coupled). We study how a localized
disturbance evolves at the distance L downstream from the leading edge. At
this point, the boundary layer thickness is Re~*/2L. Pure thermal convec-
tion is relevant as long as the transverse gradient from equation @ is small
which implies 1 >> |J|. So, in this framework, the forced thermal boundary
layer is of the same thickness as the dynamic one, and the velocity at station
x =1 is the basic Blasius velocity profile (say Up(y), the transverse variable
is then the same as the self similar one) and 6 is simply 0y(y) = 1 — Up(y).
The choice of L smaller than Ly suggests expanding in powers of a small
parameter ¢ linked to J.

Having defined the ”basic state”, we follow the classical ”triple deck”
analysis (Neiland (1969) [14] ), Stewartson & Williams (1969) [20], and more
precisely Lagrée (1995) [30]): system is re-investigated with a smaller
longitudinal scale, say x3L (with 3 < 1 and * = 1 + x3%), this scale is
sufficiently small so that the preceding profiles may be considered as frozen.
The reason for this new scale is the fact that near the breakdown point the
gradient of the skin friction is infinite at scale 1, so we hope to render it
O(1) at this smaller scale. This layer with height §L and length z3L is in
fact the ”main deck”. Next we suppose that the perturbation of longitudinal
speed in the "main deck” is of the order of € and the pressure of the order
of €2, where ¢ is unknown (but depends on §, J and x3), so we recover that
at these scales the inviscid problem with no longitudinal pressure gradient.
The perturbations are then linked by an up to now unknown displacement
function of the boundary layer called —A(z) by Stewartson. In the "main
deck”, the adimensionalized velocities and temperature up to the order of €
are:

—eA'(Z)Uo(y)

u=Us(y) +cA@)Uy(y); v = o

& 0 = Oo(y) + eA(Z)05(y)
(9)
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For the temperature, as for the speed, there is a matching between the outer
limit of the main deck and the inner limit of the upper deck, and likewise
for the bottom of the main deck and the top of the lower deck (those decks
are defined latter). We see that the temperature behaves as the Stewartson
S function (total enthalpy) in hypersonic flows (Brown et al. (1975) [5],
Brown & Stewartson (1975) [7], Neiland (1986) [16] ). This perturbation of
temperature gives rise to a transverse change of pressure through the "main
deck”; we develop @ in powers of € as follows:

;gpo + 6(%1)1 + 62(%192 +0(e%) = J(Bo(y) + €A(Z)00(y)) +0()  (10)
At this stage, for |J| << 1 by minor degeneration (i. e. to retain the
maximum of terms), we put J = eJ, because J is small with J being a
reduced Richardson number of the order of 0(1). Looking at each power of
e, we see that the first term is zero (as we supposed in the Blasius Boundary
layer); the second one shows that there is a pressure stratification coming
from basic temperature profile ([ 6o(y)dy), it does not depend on Z at the
short scale x3, and it will appear that such a term can be ignored in the
following analysis; the third one integrates (using 6(oco) = 0;6p(0) = 1 by
definition) as:

p2(Z,y — 00) — p2(Z,y — 0) = jA(E)(HO(oo) —0p(0)) = —jA(a_c),

where p2(Z,y — o0) splices with upper deck and p2(Z,y — 0) with lower
deck hitherto both being not defined. The case J of the order of one will is
discussed in Lagrée [31].

4.1.2 Lower deck

From the solution @D we see that the no slip condition is violated: u —
Uy(0)(y+¢eA), and 6 — 6,(0)(y+cA) as y — 0. So we introduce a new layer
of thickness € (in boundary layer scales), and scale y by ey, so the scale of
u is et and, by least degeneracy of equation (2), we have p = £2p (which
is consistent with the matching e2ps(z,y — 0) = *p(Z,y — 00) ) and v is
of the order of €/x3 . The convective diffusive equilibrium gives the relation
between z3 and €: x3 = 3. The problem of mixed convection near the wall
is then:

0 0

— U+ —7 = 11

5t oy 0, (11)
0 0 d 0?
=10 + Vi = ——P + —— i 12
u(%u%—vagu da‘cp+0ﬂ2u’ (12)
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8. 8. 0%
uU— v —— = — 1
i570+05-0 = 550 (13)

Boundary conditions are no slip at the wall §(z,0) = 1, A(—o00) = 0, and
for § — oo, the matchings: © — Uj(0)(y + A), p — p2(Z,y — 0) and
0 — 1 — U}(0)(y + A). This set of non linear equations is relevant in the
"lower deck” of length z3L = €L and of height 5L placed at station 1;
here, the thermal and the dynamical problem are uncoupled. In this thin
layer of small extent, the pressure coming from the main deck is the most
dangerous for the velocity and may lead to separation.

4.1.3 The upper deck

Possibility of retroaction with the external flow The perturbations
of transverse velocity and pressure at the edge of the main deck introduce a
perturbation in the inviscid flow: the upper deck is of size €3 in both direc-
tions. This perturbation is solved by the standard technique of linearized
subsonic perfect fluid, this gives the Hilbert integral (the new pressure dis-
placement relation):

1 —A _ =
— [ ——d§ —pa(z,y — 0) = —JA(2)
) x—=¢

and the usual gauge (Smith (1982) [4]): ¢ = 6Vt = Re /8 (s0 J =
Re~1/8] ) and this gives the lower limit for z3 = Re~3/8 in the preceding
§. The effect of the temperature is to add a new term proportional to the
displacement function A, it may be interpreted as a hydrostatic pressure
variation.

Retroaction only in the boundary layer Consideration of @ shows
that another (but equivalent) choice of ¢ could have been made: ¢ = |J|.
With this choice, z3 = |J |3 , and the preceding relation reads:

|J|~* Re~!/? / —A'

T—§
This choice implies that we concentrate on thermal effects rather than on
perfect fluid effects, if |J| ~ Re~1/® (note that Re~'/® >> Re~1/2), the

three terms are of the same magnitude (as seen in the preceding paragraph).
Now, if |.J| >> Re~'/® (or J bigger than one) there is no interaction of the

d§ —pa(Z,y — 0) = =(|J] /) A(Z).

™
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boundary layer with the external perfect fluid, the thermal effect is dominant
and the pressure displacement relation degenerates in the form:

p2(Z,y — 0) = p(z) = —A(), (14)
for a cold wall (J < 0), and in the form:
pQ(E'a Yy — 0) = ﬁ(j) = A(j)a (15)

for a hot one (J > 0), where in both cases Re~'/® < |J| < 1. This shows
that the upper deck is not necessary for the interaction to take place, the
same phenomenon exists in free convection hypersonic flows (Brown et al.
(1975) [5] or Neiland (1986) [16] and Brown Cheng & Lee (1990) [6]) for
cold wall.

4.1.4 The fundamental problem of mixed convection on ”double
deck” scales with displacement

Finally, the mechanism relevant for the problem of infinitely small mixed
convection is without external perfect fluid retroaction, the whole process of
interaction takes place in the ”main deck”. This is a double deck interaction.
We write here the final re-scaled problem (in order to avoid Uj(0)). With
scales:

v =L+ P (L/U0)E, y= 17| (U§(0)>L/ReV/?)j

t= I (LU

w= 17| (U4(0) " Us)ii, v = (17" (U3(0))2UseRe™ /),
p = J2(U§(0)2pU2)p

(and Re~'/® « |J| < 1), the final ”canonical problem of infinitely small
mixed convection” is:

0 0

—U — 0 = 1

8ju+ agv 0, (16)
0 0 0 d 0?
L4 e+ Vel = — =P+ s 1
ot TVt T Vet T TaE e (7

Boundary conditions are: no slip at the wall (& = 9 = 0 in § = 0), no
displacement far upstream (4 =0 in & — —oo), the matching § — oo, o —
7+ A and the coupling relation (hot wall, sign(J) = 1, cold wall sign(J) =
—1):

p = sign(J)A. (18)
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Figure 10: the two final layers involved: the boundary layer itself and a thin wall
layer.

The introduction of time changes only the ”lower deck” by the adjunction
of the 91/t term (Smith (1979)[3]). Figure [10] displays a rough sketch of
the double deck structure.

4.1.5 Resolution

The eigen value solution System (16418 admits the Blasius solution
u = g as the basic one. Invariance by translation in space and time suggests
linearized solutions of the form:

u=g+ aei(kifwf)f/(g)’ b= _,L-kaei(kifwf)f(g), & b= aei(kjfwf)’

were a << 1. After substitution, f verifies an Airy differential equation
with the variable n = (ik)Y/37 , so classically we find:

ik)"/ >
— f(c0) (k)7 / Ai(Q)dC. (19)

- Ai'(—i1/3w/k2/3) —il/gw/k2/3

Cold wall, eigen value and comparison with Steinriick In the case of
cold wall, the coupling ( p = —A) gives 1 = —f’(c0), and a stationary expo-
nentially growing solution may be obtained: w = 0, ik = A = (—=344'(0))3 ~
0.47. We recover the same behavior as in hypersonic flows (Brown et al.
(1975) [5] and Gajjar & Smith (1983) [49]), in the birth of hydraulic jumps
(Bowles & Smith (1992) [48]) and in supersonic pipe flows (Ruban & Timo-
shin (1986) [I7]). A is called the Lighthill eigenvalue, it shows that there is
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upstream influence, for example the preceding solution is the linearization
of what happens far upstream of the separating point. The occurrence of
eigen functions states that system is not parabolic.

We have proved that the perturbation grows like e(=347(0))°% T may be
compared with Steinriick’s result: he showed that the system scaled
longitudinally by Lp admits near the origin eigen function growing like

+
exp(/‘\é—ﬁf) where A\d = 2U{(0) (— 344'(0))3, (formula 2.29 from [33] or A.15
0
from [34], with Pr = 1, Uj(0) = f”(0) = 0.3321 and [;~ Ai(¢)d¢ =1/3)
where £ = (z/Lr)Y? and where & is the place where the flow is perturbed.
If we substitute )\(')F , € and & in the exponential, bearing in mind L/Ly = J?,
and |J| < 1, and & is (L/L7)"/? i.e. |J|), we rewrite it with our variables,
and develop with the first power of |.J|:
AT

¢
0

4
et = exp(L%(lJrlJ\?’ (1/U5(0)F)!2) ~ exp(|]7° Ag+A7 (1/U(0))2/2))

7]

so, factorizing exp(|.J] ™ AJ) and substituting the value of A\J, we recover
the exponential growth with Z:

exp((—344'(0))°)7).

So the conclusion is that the triple deck theory (which is a theory in the
limit of small J at z = 1) is equivalent to Steinriick’s result (with only a
different choice of scales: L instead of L so J =1 and z is small).
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4.2 Thermal Jets

Case of vertical plate El Hafi [27] , Exner Kluwick [2§]...

4.3 Jet and Plumes

In this case the system is:

a}”"‘;yi) = 0,
9ol = o O
Us U Uayu 52 "

2

uge%—vgﬂ— 0 0,

(20)

(21)

(22)

Boundary conditions are far away : u(x,y — o0) = 0,0(x,y — o0) =0
8%9(1‘, y=0)=0 %u(:c, y = 0) = 0 with a given first profile, here Poiseuille.
In the case of J > 0 the solution is very simple and one goes from the
Poiseuille profile to the jet profile, and then to a jet profile to a plume

profile.

1

calcul J=0.01
pente -1/3
pente 1/5

100

1000

Figure 11: Velocity at the center of the Jet. Left the centerline velocity decreases
from Poiseuille to the Bickley jet profile in #~/3 and then increases again. Right,

the new increase corresponds to the plume solution with a centerline velocity in

xt/o,
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5 Shallow water equations

5.1 Saint Venant Equations
5.2 Hydraulic jump in a viscous laminar flow

Exactly the same kind of interaction may be observed with a liquid layer
(Higuera [50] and [51] ). In this case the 2p is constant, it is the inverse of
the Froude number (say S), the pressure is then hydrostatic:

0 0
0 0 d 0?

with boundary conditions : u =v =0at y =0, and (%u =0,v= u% at the
interface h. Plus a given first profile solution. But if of course this problem
seems to be parabolic it is not so that an output boundary condition has to
be included.

The hydraulic jump in a viscous laminar flow 71 The hydraulic jump in a viscous laminar flow 7

. iti ! iti i W s soluti P N N ;e
FiGuRs 1. Definition sketch, scaled velociics according to Watson's solution, and streamlines of - gy, 5. skin friction and liquid depth for several values of S with the boundary conditions

(1. a,8=05b85=1;¢,8=2;d,S=4:¢,5=7;1,5=10.

Figure 12: The hydraulic jump as an interacting problem.
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6 Blood Flows

6.1 Equations

Same long wave or thin layer approximation may be done for the viscous
flow in arteries. The flow is supposed axi symmetrical v = u(x,r),v(z,t)
and the radius of the vessel is written R(x,t). then

ou 0
e + E(rv) 0, (25)

and as again the pressure is constant in every section p(z,t):

8u+u87u+ ou _p_18p+ 0 , Ou Op

ot ' or ' or or Voo o= (20

with v(x, R, t) = %}f et u(x, R,t) = 0 at the wall.

6.2 Classical Integral equations

By integration of the incompressibility equation , taking into account
the velocity of the wall v(z, R,t) = OR/0t, and defining the flux

R
Q:/ 2nurdr S = TR (27)
0
so that 9S00
. 2
o T or 7Y (28)
The conservative formulation
oru  Oru®  Orww 1, ap 0 Ou_ Op
ot o T T Ta e e o (29)
gives:
2Q o, (B 9 _10p ou
2 9 - _ 19 -
5t + 83@(/0 wurdr) Sp o + wy[rar] (30)

To go on, one has to do some other hypothesis to link @ and Q3 =
( fOR 2mu?rdr) and the skin friction v[r g“] r- We have to close the equations
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6.3 Integral equations with displacement

Here we adapt Von Kdrmén integral methods (from aerodynamics Schlicht-
ing (1987) [2]) to the system (??-?7). The key is to integrate the equa-
tions with respect to the variable i from the centre of the pipe to the wall
(0 <7 <1 with n =7r/R). So, we introduce Uy, the velocity along the axis
of symmetry, a kind of loss of flux ¢, and I as follows:

1 1
Uo(7,1) = u(z,7=0,1), §= Rz((_fo—z/ andi) & T = RQ(U§—2/ u*qdn).
0 0 (31)

We note that ¢ is like the flux difference between a perfect fluid profile and
the real one; it is analogous to the displacement thickness d; well known in
aerodynamics. I is nearly analogous to the energy displacement thickness
d2. In aerodynamics the shape factor H links d; and ds. Our new unknown
functions are ¢, R and Uy, and we now establish their P.D.E. of evolution.
Once again in establishing the fluid motion equation, we suppose that e
is not necessarily too small and @ = O(1). The transverse integration of
the incompressibility relation (?7) with the help of the boundary conditions
(?7?) gives: .

a({i_—i-aggm(RzUo—q) =0, R=1+esh. (32)
If we integrate (?7), with the help of the boundary conditions (?7), we
obtain the equation for ¢(x,t):

0q o - -~ 0 27 o 0%u

— — I - Up——q) = 22— = (=—=)ls=1 — (== )|r=0- (33

+ 62( 8.@' 0 5@(]) 0[2 T, T (877)|n_1 (6772 )|77—0 ( )
From the same equation (??) (and from (?7?)), evaluated on the axis of
symmetry (in 7 = 0), we obtain an equation for the velocity along the axis
Ug (l’, t):

8[70 — an op 2T T 9%u

o telgs =g am =Gl (Y

The two previous relations introduced the values of the friction in n = 0,
el

the axis of symmetry: ((‘371;)|,7:0) and the skin friction in 77 = 1, at the wall:

((g—%)\ﬁzl). Information has been lost here, so we need a closure relation

between (T, 7,79) and (g, R,Up). As there are so far no ambiguities, we
remove the bars over the adimensionnalized symbols.
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6.4 The wall

Mostly used is a kind of elastic wall as:

9’R OR
MW‘FHE‘FFJ(H—RO)—Z?—Z?O (35)

this is a set of viscoelastic strings. But often only a string like behavior is
considered:

p—po = k(R — Ro) (36)
6.4.1 Womersley

There exist an exact solution of (29) without non linear term and with a
given oscillating wave pressure: p = pe™t~*% with k = w /e

ou ikp 0 , ou

o=t T Tar) (37
so with :
p JO(iS/QaT/R) iwt—ikx
_ P Sl ar/R) 38
Y pc( Jo(i3/2ar) Je ’ (38)
_ iwp 1/R /2], (3% ar | R) iwt—ika
- pc2( ; WAL Je : (39)

Defining the Womersley number:

Figure 13: Womersley Profiles during one half period.

Those profiles are used to close the system.
This allows to build an integral method for the flow.
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6.4.2 Closure

As in aerodynamics, the previous system of equations is not closed: we have
lost details of the velocity profile in the integration process. Therefore, we
have to imagine a velocity profile and deduce from it relations linking I, 7
and 79 and ¢q, Uy et R. These relations are found from the radial dependence
of u. Pohlhausen’s idea, explained in Schlichting (1987) [2] or Le Balleur
(1982) [1I], consists in postulating an ad hoc velocity distribution in 7 which
fits the boundary conditions and ”looks like” observed profiles. Here the
most simple idea is to use the profiles from the analytical linearized solution
given by Womersley (1955) [43] for the case with no transverse pressure
variation that we have already seen. This solution in complex form (i2 = —1)
is rewritten as:

UWomersley = (FW(x7 t) + ZGW(:Ba t))(]r(m?) + Zjl(an))a (41)
where Fyy, Gy, j; and j,. are real functions defined as follows:

1 Jo(i3/2cm)

. kp 1 i2n(t—z/c R T Jo(i32a
(Fw (z, ) +iGw (z,1)) = 7(1—m)6 m=wfe) - (Gtig;) = 1_0%
0 Jo(i3/2ar)

Thus, we will assume that the velocity distribution in the following has the
same dependence on 7. It means that we suppose that the fundamental
mode imposes the radial structure of the flow. The real velocity is:

u=1/2((F +iG)(jr + iji) + cc) = (Fjr — Gji), (42)

where F(z,t) and G(z,t) are now real unknown functions that we want to
find and cc is the conjugate complex. We immediately see that Uy(z,t) =
F(z,t) (because j,(0) = 1 and j,(0) = 0) and that if we compute ¢ with
we obtain G(x,t) as:

_ q/R* — Uy + Up2 fol Jrndn
2f01 jindn

The two functions F' and G are only functions of (Up, R, ¢) and we keep the
Womersley radial dependence.

G(z,t)

(43)

6.4.3 The coefficients of closure

The velocity at any radius n and may be written with the value of
the velocity at the centre Uy ,the radius R, and the loss of flux g. Next, by
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integration, we obtain I' as a function of (Uy, R, q) and, by derivation, we
obtain 7 and 7y as functions of (Up, R, q):
¢ 2772 q q

I'= ’quﬁ + ’YqquO + Yuull UOa T = Tqﬁ +7.Uo 10= 7—Oqﬁ + 10uUo-
(44)

This closes the problem. The coefficients ((vqq, You, Yuu), (Tgs Tu), (Togs Tou))

are only functions of «. They involve combinations of integrals and deriva-

tives of the Bessel function. For example we have (if [ f is a shorthand for

Jo £(n)dn and 8, fy— an other for 5L(0)):
v = 1= [E a7 @ [aay [a- [
s [ [ iz +e [ i) -
(2 fan [

ow = Ot + 0o/ [ 3= (Gneo [ 3] [ 3

These coefficients are nearly constant for a < 5. For « small we obtain from
the preceding computations:

-6 11 -2

— —,—), (24, -12),(-12,4 45

((575715)7< ? )7< 7))7 ( )

so, we recover the values for the Poiseuille profile at small frequency. The
fact that those coefficients are nearly constant makes the model robust. For
a — oo (in practice, a > 12 is enough) we find from asymptotic behaviour of
Bessel functions and from the preceding computations the asymptotic form

Of the CoeﬁiCientSI
—— 2. — 23 (a?/2, —aV/2),(0,0)).
((4\67 " 2a )’( / ) \[)v( ) ))

One can easily show that this is coherent with Wormesley’s solution in the
limit of large . We note that for &« — oo and €2 = 0, the wave solution for
q is

—« V2

q= @(1 —q)eZint=e/z) o = \/’;(1 — @(1 — i)+ 0(a2).

aT o

Now equations (?7), , and ) with the closure define a set

of four monodimensional equations linking the pressure p, the velocity along
the axis Uy, the loss of flux ¢ and the variation of the radius h.
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6.4.4 Remarks

1- The main difference from other integral methods ([40] , [41], [42], [46],
[45], or [44] ...) in our approach is the introduction of an auxillary partial
differential relation obtained from an aeronautical analogy. Instead of
q, I and Uy authors mainly use @), Q2 and Up:

R
Q= / o2rurdr  Q/m = UgR* — ¢
0

R
Qs = / 2rru’dr Q2/m = USR2 —
0

If we substract from we obtain the classical system of two equa-
tions:

OR 0
QWRE + 5287(62) = 0,
0Q 0 Op 27, Ou
o T 5. (Q) = —mR*=- Wag( )n=1

Often, the relation for )9 is written as Qo = WQT;? (in this case the radial vari-

ation of the profile is neglected: flat profile) or Q2 = % (parabolic profile:
see equation ) Note, that we have instead a third differential equation
to link @1 and Q2. The effect of the skin friction (73 = i—’;(%ﬂn:l) is often

estimated by 7= —2—757%3, true for a Poiseuille flow only ( again). It
may be replaced by an unsteady relation (deduced from unsteady Poiseuille

flow) such as:
67' 1 8@
s +71 = (Q+TQ 5 +...)

See Yama et al (1995) [44] for the derlvatlons and values of coefficients T’
and Tqy. We do not claim that our description is better, but for a sinusoidal
input we find again (at any frequency) the Womersley linear solution. Our
profiles are realistic in the sense that they present overshoots in the core
and back flow near the wall. This is not the case when the closure is simply
= —2—7;7%3 or in the case of very peculiar profiles chosen by Belardinelli &

Cavalcanti (1992) [36].

T,

2- We noted that the coefficients vary little with «, this shows that our
model is very robust: it is easy to see that equations and are
invariant under the rescaling t — t/Q, / VQ, and ¢ — ¢, if 7 is taken con-
stant (independant of «). This explains why methods based on Poiseuille
coefficients are robust too.
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6.5 Interactive problem

The interactive problem is mainly solved in an 1D description ([40], [45]). As
people solved linearised systems at first, it was clear that those equations
reduce to wave equations and need two boundary conditions one at the
entrance, the other at the output. Some solutions of the full interacting
problem have been done by [38] and [37]

7 Conclusion on Interactive problems

No definite conclusion will be given, we insist on the fact that some thin
layer flows must be solved with the good set of boundary conditions. The
supersonic paradox of the ”free interaction” is in fact present in a lot of
flows (hypersonic, mixed convection, artery, supercritical...).
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