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Abstract

In this chapter first we recall simple solutions of slightly disturbed Euler equations (small disturbance
theory). As an illustration we consider the flow over a bump placed on a flat plate. This flow is generic
and can explain many interesting configurations... The main thing is that we will write the perturbation
of the flow proportional to the small angle of this bump placed on a flat plate. The influence of Mach
number is discussed. Then classical Boundary Layer Theory ([23], [22]) is presented. We introduce the
fundamental L/ Vv Re scaling. We introduce the Von Kérmén integral method and define the boundary
layer displacement thickness. The problem of boundary layer separation is quickly presented (Goldstein
1948 problem). The ful problem will be seen in other chapter. Finally we present briefly the second order
boundary layer theory. The unsteady boundary layer is introduced as well.

1 Incompressible Navier Stokes equations

The problem that we have to solve is the problem of the solution of Navier Stokes equations around a given
body at large Reynolds number. The Reynolds number Re is constructed with a velocity (Up) and a typical
length (L). We use very restrictive hypothesis: we suppose that we are always in a laminar flow even if the
Reynolds number is very very large. The flow is supposed to remain laminar. In fact, this is not an issue,
the ideas developed may be applied, to some extend, in the turbulent case. We will describe 2D or axi flows.
The flow is supposed steady and incompressible (even we present some compressible results).
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Figure 1: A typical problem a body of length L in a uniform velocity Up; the Reynolds number is large Re =
UopL/v >> 1. The body of this image is 3D, or may be approximated by a axi geometry, but all the chapter deals
with 2D equations z,y and u,v.

1.1 Small Reynolds flows

We first non-dimensionalise the equations with L (the typical length of the body) and Uy (the typical
velocity) in all directions of space and velocity (with ”bars” over the variables i.e. = = z/L, §y = y/L,
u=u/Uy, v =v/Uy and p = p/(pUZ/Re), the reference pressure is here taken to be 0. The pressure scales
by dominant balance with pUg/Re which is ulUp/L. Small Reynolds flows will be presented in a special
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chapter dedicated to these flows, see:
http://www.lmm. jussieu.fr/~lagree/COURS/M2MHP/petitRe.pdf so that the Stokes problem is obtained in
taking the limit of the following problem for Re — O:
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some results like the drag force may be scaled in 3D were the drag is scaled by (uUy/L)L? = uUyL, so
that for a sphere with L = R the radius of a sphere

D = 6ruRUp.

The ”prefactor” 6w is not so easy to compute, but it is tractable.
The drag force may be scaled in 2 D by (uUy/L)L = pUy, for example, on a cylinder of radius L:

_ 4m Uy or D— FerUg
1/2 =y — log(%L) log(gg) + 5 — 7 +2log2

v

with v ~ 0.5772

the ”prefactor” is here far more complicated, it involves the logarithm of the Reynolds. As says Keith
Moffat in the ”cours des Houches” 1973 ”The complexity of the formula is indicative of the complexity of
the underlying analysis” that we will see in the above mentioned chapter.

1.2 Large Reynolds flows

So, come back to large Reynolds flows, Re is large. We first non-dimensionalise the equations with L (the
typical length of the body) and Uy (the typical velocity) in all directions of space and velocity (with ”bars”
over the variables i.e. Z = x/L, §j = y/L, i = u/Uy, v = v/Uy and p = p/(pUg), the reference pressure is
here taken to be 0, this must be changed in compressible flows. We can anyway say that there is a reference
pressure pg, and then p = (p — pg)/(pUg). Incompressible steady adimensionalised Navier Stokes equations
are:
( Ju O0v
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Boundary conditions are no slip at the wall (defined by a function g, (z) for simplicity as in practice it is
an implicit surface) :

=0,

(3)

(Z,9w(Z)) = 0 and w = 1 far away from the body.

1

if § = §u(Z) the wall: 4(,uw(Z)) =0,
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Note that those boundary conditions are vague, see annex for an example with freefem and Gerris, in
practice for sure, we impose © = 0, v = 0 on the body, w = 1, v = 0 at the entrance, and p = 0 at the
output. Then, dp/0n = 0 at the entrance, the algorithms impose the hidden BC: it is 9p/dn = 0 on the
body, Far from the body, Neumann B.C.

We can stop the story here. The problem is just to solve those equations. Our point of view is to
examine those equations as a singular perturbation problem, as we saw in the chapter devoted on matched
asymptotic expansions: http://www.lmm. jussieu.fr/~lagree/COURS/M2MHP/MAE. pdf.

Hence we identify the Navier Stokes equations to be a singular problem. When the small parameter Re ™!
is small, we look at the Fuler equations. This will be done in the generic cas of a bump on an horizontal
plate. For fun, we look at several regimes (incompressible, compressible, low Mach...). Then we do a change
of scale and look at the boundary layer problem. We will follow the Friedrichs problem procedure presented
in that chapter, find the ”outer solution”, see that the problem is singular as there are too many boundary
conditions. Then find by change of scale and ”dominant balance” the new scale of the ”inner problem”, and
find the solution by ”asymptotic matching”.
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2 Some Euler simple solutions on a nearly flat plate: ”small disturbance
theory”

2.1 Flow over a bump

In the following sections, we will look at the flow over let say a "bump”, or a "hump”... This is the most
simple model for a flow over a mountain, or over a hill or over a dune. The body will be enough smooth,
and will have some properties concerning small parameters that we will present after...
—_—
_)

Us
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Figure 2: Schematic inviscid flow over a bump: an archetypal situation of a flow with an obstacle. This obstacle may
be a car, a hull, a wing, a dune, an hill, a mountain... Our question is: how behaves the flow, what is the response in
pressure and velocity if we suppose that the size of the bump is a small parameter

2.2 Euler equations (regular expansion)

As the Reynolds number is large, a first idea is to put 1/Re = 0. We obtain Euler equations (with ”bars”
over the variables i.e. T =z /L, u = u/Uy etc for y and v):
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Boundary conditions are now slip at the wall: if § = 4,,(Z) the wall:
—U(Z, Y (T)) 2§ (T) + 0(Z, u(Z)) = 0 : normal velocity equals to zero
and u = 1 far away from the body.

From now, we prefer to restrain to the simple case of a nearly flat plate in an uniform stream. Our
aim is to compute the slip velocity, i.e. the tangential ideal fluid velocity on the wall

The most simple case is the flat plate case, g,,(Z) = 0. In this simple case the velocity remains everywhere
1; (u,v) = (1,0). So the velocity at the wall, ”slip velocity” is . = 1. All this chapter we use this hypothesis.

We will show that this problem is a regular perturbation of the flat plate case.

2.3 Historical note

Computing solution is the system is a great task since Euler first attempts “Principes généraux du mou-
vement des fluides” 1757 published in Mémoires de 1’Académie des Sciences de Berlin. Do note that in
"Essail d’une nouvelle théorie de la résistance des fluides”, 9’Alembert in 1752 wrote equations more close
to the decomposition in stream-function and potential as the main feature of the flow are incompressibility
and irrotational flow. In 2D incompressibility gives U = ? X (@D?Z) and irrotational flow ?2111 = 0. Or
irrotational flow gives U = ?d) and incompressibility gives ?%ﬁ = 0. We prefer not to use so much ¢ and
1), nevertheless for transonic flows, the expansion with ¢ is the most simple.

-1I. 4-



Boundary Layer

2.4 Linearized Euler boundary conditions

We then put a small bump or relative height «,

Uw(Z) = af(z) with a < 1

then we investigate a disturbance field as an asymptotic approximation (of course we hope it is a regular
problem)
=1+ at + iy + ...

=04 av; + a?v9 + ...
p=0+ap +a’ps + ...

This is called ”small disturbance theory”, as the wall disturbance is very small o < 1. Depending of the
various régimes various sets of equations may be obtained.
At first, the boundary condition of no slip velocity reads:

W@
FERE)

so that after taking the Taylor expansion of the velocity i.e.:
O(Z, §u(Z) = av1(Z, §u(Z) + O(?) = a(51(Z,0) + af(51(Z,0) /07 + ...
at leading order we obtain the value of the transverse velocity in § = 0 as:

01(Z,0) + ... 5
: 1+ .. = /(@)

This boundary condition justifies the development for the transverse velocity.

The boundary boundary condition for the velocity is imposed at the flat wall, no more on the bump, it
is called the ”transpiration velocity”. This change in boundary conditions is called ” Transfer of Boundary
Condition” (see Van Dyke [29]).

Now, we will write the linearized Euler equation, the gam consists in finding @1, v1 and p; in a lot of
flows. We will try to evaluate these quantities as a function of f in incompressible flow, in compressible
flow, in shallow water flow...

These evaluation will be useful for the boundary layer theory.

s s _—
s s s
_ _ _
s s _—
s s s
_ _— _—
r=0 gw(f)zo

Figure 3: The basic flow is the constant flow over a semi infinite flat plate, (@, ?) = (1,0), valid in any régime. We
will consider next a regular perturbation of this uniform free stream
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Figure 4: We deal with the most simple problem, a flat plate in a stream with a small bump of typical size o < 1.
We construct the solution as a regular perturbation of the uniform free stream

A

— o1 (%, 0)*= 7(z)
v

Juw(T) = af(T)
Figure 5: Left slip on a bump: it means that the slope of bump is v/u. Right: by ” Transfer of Boundary Condition”

the boundary boundary condition for the velocity is imposed at the flat wall, no more on the bump, it is called the
”transpiration velocity”.
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Figure 6: A plane plate with a small bump in a subsonic or incompressible flow

2.5 Linearized Euler incompressible flow

e We can imagine a non flat plate in a incompressible flow, we linearize the Euler equations as (this is a
regular expansion) :

(o, o0 _

or 0y ’
o _ (5)
oz oz’
duy  Op
9z 9y’

Eliminating the velocity gives a Laplace equation for the pressure:
;o p_
0x2 0 ’

with p; = 0 far away from the plate and the no slip condition is rewritten with the transpiration velocity as

P iy g =
o7 = f"(z) iny=0.

The pressure at the wall is obtained by classical Hilbert formula:

i
Pr(@0) = f T

e Demonstration 1: tc2) find this, we use Fourier Transform, so the wall is a superposition of modes e?*?, the
Laplacian is —k2 + 88—?2 = 0 and obtain the pressure as

A_eikar—|k|y + A+eikx+\k\y,

with Ay = 0 as disturbances are zero far away, and the condition at the wall is |k|A_ = ik(( f’)) , or
A_ = zszgn(k:)((f’)) , where (f’) is the Fourier transform of f’ and as the function ”sign”, which is sign(k) =
|k|/k. The Heaviside or unit step distribution is H, with H(z < 0) = 0 and H(x > 0) = 1. They are
linked by sign(z)/2 + 1/2 = H(xz). The derivative of H is § the Dirac distribution. In Fourier space
ikTF(sign) = 2T F(0), so TF(sign(x)) = 2/(ik) so that (27 from inverse transform and -1 due to 9, and
k)

1 1
TF|sign(k)] = +—vp(—).
[sign(k)) = +—vp(-)
”Principal value”, means that there is no problem in 0, This comes from the derivation in Fourier, and
from the integration 1/(ik) sign(k) has the same derivative than Heaviside function. So, the pressure is the

convolution of f’ and 1:
1 1
p1=——up(=)* f.
T x
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This is _
1 af
p=—F - d¢

T r—£

We have by the definition of an integral in principal value:

—& [ee]
Fods =tim ([ s+ [ oe)ie)
—0oQ €
We find that the solution is a convolution of 1/z and f’ as proposed.

e Demonstration 2: to find this an alternate technique is the use of the Green function of the Laplacian
which is a logarithm. the solution of Laplacian with a Dirac in source:

627G+627G _5(1- )
ox? = oy Y

written in r, 0, § is function of r:

r Orr or r2 062

0o 2w
//5(:E,y)dxdy =1, or / / §(r,0)rdddr = 1.
o Jo

Furthermore, by invariance by rotation, we look at

with the Dirac

1,0 0G
5 o) =0

oG _ 1

integrating this last equation up to r and around 27 the radial function G(r) (by symmetry): 2G>

so the Green function is
In(r)

2
This is a well known result in electrostatics, magnetostatics, fluid mechanics...

Consider now a problem with diracs only on y = 0 of weight say o(x), we have to solve with as a source
a distribution o(x)d(y), such as
PR+ 020 = o(x)d(y)

the dirac changes a lot across y = 0, hence we guess that 83@ balances it, the problem changes less along
r, hence we guess that 92® is smaller. By integration across y = 0 from y = 0~ to y = 07, the first term is
almost 0, the second is the change of slope, the third integrates the dirac. This gives

0y ®(z,0%) — 9,®(x,0”) = o(z), sothat o(z)=20,P(x,0")
because by symmetry 9,®(z,0”) = —9,P(x,0").
Note that 9,®(z,0") — 9,®(x,07) = o(x) is reminiscent to Electrostatics Fy — Ey = o/eo.

We can now write ® at position 7,6 or x,y as a function of the localisation & of strength o () such that
(the distance from z,y to &0 is \/(x — §)? + y?), hence

@:/0(§)ln( (z ;:)2+y2)d§ 50 @:/ 23y¢>(§,0)1n( (x ;f)2+y2)d§.
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Figure 7: The bump f and the perturbed velocitywith the Hilbert integral subsonic flow. Note that the
flow is perturbed before the bump (the Laplacian acts every were in the flow).

Hence the pressure in the plane is obtained (® is our pressure and 9,®(¢,0) is f”):

p— L / (—£"(€)) In(v/@ — €2 + P)de

™

integrating by parts (at infinity, 0)

/f ) +y)d§’

The pressure at the wall is then obtained with § = 0. But the value on the wall is a problem (it involves
V(T — £)2, so we cut the previous integral at the position Z (i.e. T > € and T < &)

_ 1 17 — 1 T 1 — 1 o 1 =

= — [ (=f(&))In(|z —¢[)ds = — (=f7(8) In(z — £)d¢ + — (=€) In(=z + §)d¢

™ T J -0 +e

we integrate it by parts
_ 1 e, —1 n(lz — glyF—
==/ f(&)(x e+ [-7/©) (e — D7+
o [ IO+ O e -

but as

[(=f" () In(|z — ENITE + [(=f'(©) In(|z — DI = —F'(@ — &) In(e]) + f'(Z + ) In([e])

if we suppose that f’ is enough small at infinity, this is zero for small € and we have by the definition of an
integral in principal value:

pm i (L [ g T[T g 1 O

e=0" T J_ (x—f) _:,_5(-75—5) T .f—f

e Final value of the pressure at the wall

1 /!
n(z,0)= — f (jf E{é) dg.
The velocity at the wall is then:
@ =1+al T & g4 o)
T oo —&
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this is the ”slip velocity” (it will be the velocity at the ”"edge” of the boundary layer).

The most important thing to have in mind, is that the Laplacian has an action far from the perturbation
(log terms). On the wall, this long range interaction is this integral from —oo to co. So boundary conditions
are important at the boundaries of the problem (for example if ¢ is not zero at the wall, there are extra
terms in YVG).

We will see that other régimes give different behaviors, The next case for example has no influence of
what happens downstream.

Note 0:
This problem is a regular perturbation of the flat plate case.

Note 1:
As an exercise, we should compare with freefem++ (either with a domain with a bump or a flat bottom
with a Neuman BC.

Note 2:
This is called the thickness problem, the curvature problem gives the lift, but this is another story... To
make a long story short, let us consider a wing of length L, inclined by an angle «; compared to the free
stream, the curvature induces a velocity field in terms of vorticies,

_ (3
’U—U()Oéi—Qﬂ_/O $—§d§

as this this flow is tangential to the airfoil,

dy, 1 [ ()
=30 = )y -

The problem is that the distribution v(z) is unknown, we have to reverse the problem. The trick introduced
by Glauert consists in changing the variable: z = ¢(1 — cos())/2 and to decompose it in a Fourier series :

() _ , (1+4cos(f)) :
QU 0 sin(d) + D An sin(nf))

As the following identities may be demonstrated

/ cos ny Cw:_ws'lnné?’ and/ C + cos?v g0 —
o cosf —cosd sin 0 o cosf —cosd

and applying Kutta condition at the trailing edge allows to reconstruct the ~.

Note 3:
There are other methods with complex analysis to do that...

Note 4:
There is no note 4.
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ho fluid

Figure 8: A channel with a small bump (here symmetrical) in a an incompressible flow

2.6 Linearized Euler confined incompressible flow

e We can imagine a flow in a long channel x = Lz using the height as scale thus y = hgy, by mass
conservation 91 5
Ul U1
et s ) 6
oz 0y (6)
we have that the scale associated to v is Uphg/L. It is straightforward to see that the longitudinal velocity
and pressure are linked as previously:

o _ o
ox 0z’
but now, we have for the transverse velocity
001 op1
ho/L)?— = —==.
(ho/ L) 5t = =

so that —%—% = 0 so we deduce that p; is a function T only; and so is u;. The flow will look like a ”plug

flow”.

The slip boundary conditions on the wall are ©1(Z,0) = f’ and v;(Z,1) = —f’ (note the sign!).. Hence,
integrated over the pipe ( fol dy), the mas conservation gives, as @ is not a function of g:

0 _
%7?“72]8/:07

so, as perturbation are zero far upstream
u =2f, p=-2f".

The velocity at the wall is then: B
e = 1 4+ 2af.

Note that in a pipe, the velocity is in phase with the bump shape.
e This solution may be obtained in an alternative way. We may start from a flow like in the previous
sub-section "linearized Euler incompressible flow”. From the previous case

ou;  Opy

ox 01’

the 7 was present as the scales in « and y are L.

on __om

9r 0y

with 91(0) = f{. But now the height is hy = ho/L and thus v1(ho) = —f]. Previously in the sub-section
”linearized Euler incompressible flow”, this velocity was zero as previously hy = oc.
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Tehn, Laplace equation may be obtained for every field

02]51 82131 821_}1 021_}1

— =0, —5 +—=—=0
0x2 0> ooz oy ’

taking into account the boundary condition for the upper plate allows to obtain exactly the solution, so that

in Fourier space solutions are:
A+€ky + A_e_ky

it then then easy to show that in Fourier space:

sinh(kj(l_”LOZZ —))
sinh(khg/2)

U1 = (Zk?fl)

= cosh(k(ho/2 —y))
= ()= L o /2)

- then if khy — oo, which corresponds to an infinite domain
U1 = (Zkfl)
iy = (kf1)

which is the previous one leading to the Hilbert integral of the sub-section ”linearized Euler incompressible

flow”,
- then as khg — 0, which corresponds to this section of a thin channel, the expansion

= sinh(k(ho/2 — 7))

v = (ik < — (ikfi)(1 —2y/h
v1 = (ik f1) sinh(kho/2) (ikf1)(1 = 2y/ho)
in real space: B B
o — (f1)(1 = 2g/ho)
then velocity is
_ 1 o
U1 = kj = == 2 h
i = (k1) (75 = 2/ (Ro)
which indeed tells that f must be measured by hy as done during the previous point.
1. ZJ\
g 1
50.8
~0.6
X
w— 0.4
0.2

Figure 9: The bump and the perturbed longitudinal velocity, slender channel flow. Note that the flow is not
perturbed before the bump.
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ho wat er ho

Figure 10: A liquid layer with a free surface with a small bump in subcritical régime and right supercritical régime

2.7 Linearized Euler with free surface (for shallow water flow)

e But we can imagine a thin liquid layer in the gravity field g with an interface n flowing on plate with
a long bump of length L, using hg as transversal scale n = ho7, y = hoy, and using the long size of the
bump L for x: © = Lz, so u = Upu and v = Uphov/L to ensure dominant balance in incompressibility

Yo du | %‘;/L)g—g = 0: For pressure let us take p = pUgﬁ (note that we can take p = ghgp, the final result

L 0%
will be the same.
on o0,
ox 0y
L0u, o op
o 0y 0z’ (7)
hy 0v _9v,.  Op gho
L2(u8§: +Uag) 9y Ug
For Shallow water flow Z—(Z’ — 0, (Shallow Water hypothesis)
ou 0v
42220
0T + oy ’
ou _0v op
U% ’Uafg = —%, (8)
__ 9 _ 1
0y F?

We take a small bump: %,(Z) = af(z) with & << 1 in the gravity field with a Froude number (F? =
UOQ/(gho)). We have @ = 1+ att; + ..., © = av1 + ... interface is § = 1 + amy + ... at the surface p = 0
pressure is zero at the interface (atmospheric pressure is the reference) p = (7 — 7)/F?, so as we will expand

P =Py + apy + ..., we guess :

p=01—-9)/F?*+aij/F?>+..s0 po=(1—-7)/F*and 5, =7 /F?

the system reads

ouy

01

—_— 4t — = 07
oz 0y
Oy Op1
O _ 9, (9)
0z 0T
on
0=—2
\ dy
so the momentum gives @i; = —7)/F2. Integrating over the depth the continuity equation gives
0’1]1 1
11—+ [n]g =0
oz T [01]o
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but on the wall v;(z,0) = j—; and on the surface, the same slip v;(z,1) = %,

by integration,
i ==+ f
This gives an other expression for %, by substitution, the perturbation of the free surface is

e [

whereas the slip velocity is ~

of .
1—F?
For a fluvial flow F' < 1, the interface is deviated to the bottom, the velocity increases over a positive bump.
For a torrential flow F' > 1, the disturbance of the free surface is positive, and the velocity decreases on
the bump. Note that the flow is not perturbed before the bump. There is no upstream influence of the

downstream.

Ue =14
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2.8 Compressible Euler equations
2.8.1 Full Compressible Navier Stokes equations

In this section we deal with compressible flow. We recall first the equations and write them with potential (it
will be useful for transonic flows). After having presented this, we write the compressible small disturbance
theory (completely similar to the incompressible one presented before). See annex 6 for introduction to
acoustics.

The complete NS equations for a compressible Newtonian fluid are:
mass conservation:

d
DY (w) =0,

dt
momentum conservation:
W_g.gyy
R v
Pag =271
Energy conservation:
de
—=0g:D-V- r
P =2 =2 Y4 +

constitutive relations K = X\ + 2/3u bulk viscosity, p/p kinematic viscosity K >0, k > 0 and p > 0

g=-pl+1 with z=AV-ul +2pD, and q¢=—kVT.

law of state:
p(p,T)

coefficients:
e(T), (1), MT), ), K(T)..

boundary conditions T;, OR g, imposed, non slip conditions at the wall.

2.8.2 Full Compressible Navier Stokes equations, alternate formulation

Remember that we suppose the "hypothesis of local state” which means that each small element of volume
behaves at equilibrium (thermostatic). We will write calssical ”thermostaic” relations, like de variation of
specfic internal energy, de/dt will be the rate of variation in the framework of Irreversible Thermodynamics:
http://www.lmm. jussieu.fr/~lagree/COURS/ENSTA/Clintro.ENSTA.pdf

The entropy is by definition of function s(e, 1/p):

_de

ds T

de d 1 dh dp
Tds = p— + p—(=) = p— — =
=P TP e T w

we may write it with enthalpy having noticed that —p

I~
IS
]
|
e
<
=g
o)
B
o,
<1
&
]
|
)
S
lon
<
=
o)
wn
wn
(@)
o
B
wn
D
2
o)
e,
o
B

ds de d 1 dh dp

T8 e, D _v.gtr
T =P TP =rg — g T 2= Yoatr
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This is the general heat transfer equation written with the entropy s (see Landau & E. Lifshitz (1989)).
This writing clearly shows us that without dissipation, the entropy is constant.
We will now expand dh/dt: it is classical from ”Clapeyron’s” relations that

ds d d dl' T 0p, dp

T — )l L= e, (22 P
T = a" = @ = a + 5 v

hence the final form of heat equation is indeed with ¢,

d d
pcpdtT—i- (%)pdt =1:D-V-q+r

For an ideal gas %(—gp )p = —aT = —1, so that the equation is
d d
—T——p=17:D-YV-
pcpdt dtp 2 = g+ r

2.8.3 Compressible Euler equations

So the terms with A and g and with & will be of order 1/Re. They will disappear from the equations, so

i — _ _ dh __ d
that we can write the Euler system. We have g = —pI, and ¢ = 0 and r = 0, and then pJ = d—}t’.
2.8.4 Compressible Euler equations
So we obtain the compressible Euler equations which are : (i = 8@ o - ?)
8
aﬁ
+T-VT = _@ (10)

The last one is the enthalpy equation, it comes from energy equation which is here pde/dt = —p? T4
using mass V.= —(f)— it transforms in pde = IZ Z@’ As definition of entropy is T'ds = de + pd( %) we
have ds = :42 dp +pd(%) = 0 as expected.

By definition of enthalpy h = e + p/p, the obtained energy equation p% = B 9 hecomes as written

p dt
above:
dh 1dp

P(E - ;E) =
2.8.5 DPotential flow
We are looking at isentropic flows, so that ds = 0 remember:

ds = 9 ¢ (2)qc

T T ;) and as h = e +p/p, dh = Tds+ p *dp,

by definition of ¢, ¢y, 7 we have dh = ¢,dT and de = c,dT" and p/p = rT, this gives the Mayer relation
¢p = ¢y + 1, but we define the index v = ¢,/c,. We then have ¢, = r/(y — 1) so that dh = yr/(y — 1)dT =

v/(v = 1)d(p/p), and

dh = Tds + p~'dp becomes /(v — 1)d(p/p) = Tds + dp/p

-1II. 16-
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or
(y — 1)Tds = dp/p — pydp/p’
giving the final expected:
ds = ¢, (dp/p — vdp/p)
so when ds = 0 we have vdp/p = dp/p (latter we will write ¢ = yp/p so that dp = c*dp, see appendix 6).
This gives then the famous relation (Laplace law PV7=cste):

pocp’.

In the second equation (momentum), it is classical that

792914 @)« 7.

Then with the third (energy):

B 19+ (@ x W) x T o

If we multiply it by W we have the ”compressible Bernoulli” equation along a stream line (remember
ds/dt = 0):

- ? +h—0

If ds/dt # 0 and if the flow is iso energetic (i.e. (% 7 + h) = cst), then the creation of entropy is linked to
the rotational of the flow by the Crocco theorem:

T?s— ?xﬁ x .

As h = ¢, T'= 157, the enthalpy may be expressed with the local speed of sound h = 7_21
obtain the relatlon between the speed of sound and the velocity:

u? + v? N U3 c?
2 y—=1 2 ~4-1
It is here important to remind the definition of the Mach number:

ug .
MZ ==Y with &=

P
Cg ’ Po

Sometimes one uses the symbol ag instead of ¢g. Another useful equation may be found, let us multiply the

second by U
- ep . 27 ) 6/)
or, this is ¢*——

p p
this is due to ds = 0 so that p oc p~7 and dp = (dp)c?. Eliminating the density from the continuity equation

gives:
T (V) =EV .

7 (0 VW) = -

We may develop it as:
ou ou Ov ov
22 2 .2
— )= —wv(— + — — )= = 0.
(@ =) 5 (G + G+ (=)
So that if we look at potential flows (cf Crocco theorem) we define a potential of velocities u = 9,¢ and

v = Oy¢. the previous equation reads

(02 — )bus + 200y buy + (82 — )y = 0.

This equation is powerful, we will use it for transonic flow. Before this we come back to simple distur-
bance theory without the potential function.

-II. 17-
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u Shock-wave

Figure 11: A plane plate with a small bump in a supersonic flow.

2.9 Linearized Euler compressible supersonic flow

e We can imagine a compressible flow on flat plate: 7, (Z) = af(z) with @ << 1, compressible steady
linearized Euler, mass, momentum and energy (adiabatic) are after non dimensionalizing by po, po, Up, L
just as we did for incompressible flows:

u=Up(l+au +..); v=Uy(avs +...); p=po(l+ap1 +...); p=po(l +ap1 +...)

so that : 95 9 95

P1 u1l V1

— 4+ —+—=0

ox + oz + oy ’
ou _ 1 om
or M2 0z’ (11)
on _ 1 o;
or Mg 0y’

\ D1 = yp1.

Note that at some point we had to estimate po/(pU3) which is (ypo/p)/(vUZ) = (c3/UZ) /7, that is the ﬁ
term in the above equations. The definition of ¢y is presented in annex 6 were the expansion around the
steady equilibrium is presented. Eliminating the velocity and the density gives a Heat/Wave (depending on
the Mach number) equation for the pressure:

*p1 Py
1- M2 S0
( 0) g 72 0
with the BC:
" _ 1 9;m
dz — M2 9y "

e The subsonic case My < 1 gives again the same result than previously with a coefficient in /1 — Mg,
which can be removed in changing the scale of say /1 — M3y =Y so that

82 = 2=
oh Oh_y,
or?  oY?
which is the Laplace equation, with B.C.:
op1 YMg df’

87170:_,/1_Mgd:f:

etc, this is the Prandtl Glauert similarity:

5= L Mg . ()
T AR -

-1II. 18-
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Figure 12: Supersonic flow on a small bump , bump and velocity

note that for small My and after rescaling with poUg instead of py we reobtain the incompressible case

-1 r f'(6 .
= F e

polUg (&)
=
T (=8

e the supersonic case (My > 1) gives the 9’Alembert equation, the solution for pressure is :

p1=F(@— /M2 —1y) + Gz + / MZ — 1%)

the pressure is contant along the characteristic lines § = +z/+1/M§ — 1 + cst, clearly the bump creates the
perturbation, and there is no perturbation upstream, so that G = 0. hence, using the B.C. at the wall:

P =po— d&+

9gp1(7,0) = —yMGozv1(7,0) so \/MZ —1F'(z) = —yMZ f" (%)
the final expression or the perturbation of pressure:
Mg df
p1 = \/mdj + ...

which is the ” Ackeret formula” and the velocity is then

1 adf

VAZ 1dz

Ue = 1 —

-1II. 19-
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2.10 Low Mach approximation, Paolucci 1982 1994

We have seen that for a compressible flow of Mach number My, with a small perturbation «, if after ex-
pansion in powers of a we set My — 0 the result is the same that the incompressible equations with small
«. But we do not have set the fact that a compressible flow of Mach number My — 0 is the incompressible

equations (equations (4))).

We have seen that the system is the system of Euler compressible equations. With U = Uoﬁ,
p = pop, p = pop, then as Mg = U3 /(vpo/po), as dh = c,dT, we have dh = yr/(y — 1)dT so the system
is

( 8ﬁ — o o
E‘FV'(,OU)—O, .
— = _
ou  — = Vp
or ﬁ = - -1 ap 7 =
T=
| TV () (g T @ Vp)

This system may be linearised at a given Mach number M and we obtain the previous linearised system .

Now we look to What happens when My — 0 i 1n thls system and what is the link Wlth the Euler incom-
pressible equations (4)). We see that the problem (12 is singular (because we loose di /dt in momentum!).
To solve it, we have to do a low Mach expansion (Paolucm 1982 and 1994):

- = — _ _ _ - = = ~ _ _ _
U = tuo+Moti+..., p:po+M0p1+Mgp2..., T:T0+M0T1+M3Tg+..., p:po+Mop1+M§fyp2..

(mind the v which is for aestetics) which gives

( op =
at order 0 % + V. (ﬁoﬁo) =0,
6_
at order M62 0= —@7
YPo
g_
at order MO_1 0= —7191, (13)
1}/’0
ﬁ S
0 = v
at order 0 L—()+70‘V30:—¥7
ot 2
oT, = _ —1,0p =
at order 0 —_O—i-ﬁ()'v 027_ (L—O—Fﬁ()'vﬁo)
\ ot vpo Ot

and : po = poTp. The second and the third show that py and p; are function of ¢ uniquely, not of space, so

the last one is with time only:
dpo(t D T
pogv _ pro <0 + UO VT0>
dt v —

ot

If we impose at entrance temperature, we see that the global pressure increases in time.

e If we heat the flow at the boundaries, by conservation of mass

d
dt/vpov

but as po(t) = po(Z, 9, z,t)To(Z, §, Z, t), the pressure is :
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e If we do not input heat, Ty is constant, and then pg as well, and so is pg, hence

V- (To) =0,
-
0wy — =2— VD2 (14)
—7 tuo-Viug=-——-,
ot Po

this is as expected the incompressible standard Euler system where variations of pressure are not the ther-
modynamical ones but the O(M§) ones. Variations of pressure are O(poUg) as expected because variations
of pressure around the reference state pg are

poyMg D2 = poUg b2,
the total pression being
p = po + poUsp2 + O(My).

We have shown that the compressible Euler equations are the incompressible ones at low Mach number.

2.11 Next step...
2.11.1 Boussinesq

A famous approximation of Navier Stokes with small heating is the Boussinesq approximation, it is valid for
smaller changes of temperature than the previous low Mach expansion. Furthermore, we put gravity p? in
the system which was not necessary for low Mach system.

In Boussinesq system, we have a small heating, gravity, and the pression remains almost pg, the atmo-
spheric one. We will see that the pressure is hydrostatic plus the equivalent of the ps perturbation of velocity.

In the Boussinesq approximation everything comes from the variations of p. As p is a function of
thermodynamic 7" and thermodynamic p, we have around an equilibrium state Ty, py the small variation
around this equilibrium state:

p=po+ %(T—To) + gg(p—po) +
The first is by definition of the expansion coefficient —ap, at first order —pga the second will be obviously of
order M¢. Hence, the Boussinesq (here inviscid system) approximation for density is : p = po(1—a(T —Tp)).
Coefficient « is the thermal expansion. A redefinition of temperature due to an heating (A7) small compared
to Ty is T = Tp+ (AT)T. We define tilde variables here. Hence gy = (1—¢T) with € = a(AT) the preceeding
equations are now with gravity :

toJ] —
%JFV'@O?O)*O’
@ J
oy  — 2=, = . gL
po(ﬁ uo-Vug) = VPQ—FPOU*()Qﬁ (15)
oy, — =-
—_— T =
o1 Uuo Vv 0 0

We put pp = (1 — 5T) and as ¢ — 0 we have to redefine the pressure and Velocitgf. We take the velocity

such that —aAT% is O(e): hence Uy = / gL, velocity is O(y/€) > ¢, o = Ve . The time is rescaled
~ ~9L g _ 4 _ _pd ~ :

as well, not space. The gravity term pg UETd = a1 aTﬁfnay be interpreted as a constant gravity term

not useful for motion and a buoyancy term proportional to 7T'.
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Furthermermore we define po = 7 - + epo the first contribution is the hydrostatic one, the second is

g

. . 71 o

the dynamic one due to motion. We could have put the hydrostatic in the pj....
See more details for Boussinesq in

http://www.lmm. jussieu.fr/~lagree/COURS/ENSTA/C4cvl.ENSTA.pdf

Then the final set of inviscid Boussinesq equations is

'(UU)_Ov
_>
oy — =2— =S 4
= -V =—-Vp—T
(at oV o) P2 Kl (16)
orT —» ==
(o

We have to keep in mind that the classical Boussinesq approximation is only valid for very small heating,
if changes of temperature are "not so small” the good system is the Paolucci Low Mach approximation.

2.11.2  anelastic approximation...

It arises in meteo, it is close to Boussinesq. the difference is that we suppose a basic configuration with
p x p7 and a linear profile of temeprature.
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2.12 Linearized Euler compressible supersonic flow with potential
We have considered the equation with u, v, we can write it with ¢. Remember we wrote

ou ou Ov

v
2 20w o ou  OJv
(c u)m uv(8y+8x

)—i—(cZ—vQ)a—y =0.

So that if we look at potential flows (cf Crocco theorem) we define a potential of velocities u = 9,¢ and
v = Oy¢. the previous equation reads

(Qﬁ: - C2)¢azx + 2¢x¢y¢xy + (gb; B C2)¢yy = 0.
If we take this potential equation and linearize it
(0% = €*)¢aa = (u* = §)baw + - 2000y Pay + ...

and
(¢§ =)y = (V¥ = )y + . = (. = )y + .

which is the expected wave equation for the potential
(1- M3)¢m + ¢yy =0

This point of view is useful is the transonic case that we will see next.
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Figure 13: A plane plate with a small bump in a transonic flow. A region of supersonic flow appears.

2.13 Linearized Euler trans sonic flow

e As just seen the value Mg — 1 appears in the equations. It is clear that the previous analysis was dealing
with 0 < My < 1 and 1 < My with Mg — 1 not too small. If this arrives, the flow is transonic, and the wave
equation

Pp | 0*p
1- M)~ + —5 =0
( )5z oy
degenerates for the pressure:
0+ % -0
oy:

1
=
|M? — 1| balances A~2. We will use ¢ = |[M? — 1| as a small parameter in the expansion, we have to compare
it with « the small slope of the wall. To do that come back to equation of potential:

and as p; tends to infinity. It is then clear than one has to take a new scale \y = ¢ so that

ou ou Ov

v
2 20w ou  Ov
(c u)x uv(@y+8ac

2 2
—v7)— =0.
)+ (@ =)
So that if we look at potential flows (cf Crocco theorem) we define a potential of velocities u = 9,¢ and
v = Oy¢. the previous equation reads

(02 — ) us + 200y buy + (82 — )y = 0.

Now let us look at perturbation at unknown level € of the potential, bearing in mind that z = Lz and
y = ALy with A >> 1 (to be determined):

¢ =UoL(Z +ed+ ...
so that u = Uy(1 4+ ety + ... and v = %5@1 The local speed of sound

-1 2 2 R
¢ =c(l— fy2(u;;v)) becomes ¢? = cA(1 — (y — 1) MZedz + ...)
0

2

The dangerous term (u? — c?) is rewritten using this expression:

(2 —u®) = (1 = (v = DMGeds — MG(1 +2¢65) +...) = (1 = Mg — (y + 1) Mgeds + ...)

this gives the order of magnitude of & as we want it to come back when My ~ 1 so e = O(|1 — Mg|).

The second term 2¢,¢y¢ps, remains negligible, but the third (gbz — )¢y, is now (remember A = §):

2 ~
(gbg —A)pyy = —5202—[102%@. The equation is then:

(1= M3 — (7 + 1)M3eda) oz + 13659 = 0.
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Figure 14: The bump and the perturbed velocity, transsonic flow, there is a shock.

with as claimed at the beginning ¢ = O(A™2) but furthermore the choice e = (|1 — MZ|) is such that we
indeed have the non linear term.
But remember as well that the boundary condition of transpiration velocity 0 = 6)\*18@;65 same as of’
this gives : eA™' = a. We have e = O(\2) and the last one eA~! = q, this gives that « = A™% and £ = a?/3,
Let us define the ”transonic parameter”:

Mg —1
(v + 1) Mga?/3

then the equation is called the "Euler Tricomi” equation (Landau [I5], Germain [I0], Ashley Landhal [2],
Kevorkian and Cole [14])
—(K + ¢z)pzz + ¢g5 = 0.

in front of the derivative is K + qgj which may again change of sign. The pressure is of order of magnitude
pUge ~ ypoMga®/?,

it is no more singular... Solving the equation is another story, but here we wanted to focus on the singularities.
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curved shock wave

Figure 15: A plane plate with a small bump in a hypersonic flow.

2.14 Linearized Euler hypersonic flow

e We may now look at the other limit My >> 1. This is the hypersonic flow régime. The wave equation

82]31 2 1 82]31
— — (Mg —1)""— =0,
gz~ Mo— 1) 7>
is again singular for large Mach numbers,
82?21 —0
0%

The flow is so fast that it does not see the body. Hence, again we have to look carefully at the equations.
A good idea, is to rescale Y = Mioy to reobtain the lost term by dominant balance.

As 1/Mj is very small, it can interfere with the small slope of the body. If we define from the Mach
Number My and from the local angle of the shock ¢ and from the slope of the body 7 the parameters:

K, = Myo, K = Myt

they define self similar parameters in the Hypersonic Small Disturbance Theory (Chernyi [4]). Either
K>O0(1)or K< 1.

First we look at the shock wave:

The oblique shock wave relation (Germain [10])

tan(o — ) 1 2 (1- 1
Mg sin? o

tan T _fy+1

gives for small angles 7 and o :

Myo +1 +1 1
0 _ i + (’7 )2+ -
MUT 4 4 (M()T)

the pressure is then

2 -1
o2 e a7)
Po v+1 v+1
1 1
— 1+W%K2+7K (%K)ML (18)

then for moderate Mach number, we recover that the angle of the shock is a Mach Wave (1/Mj) and the
pressure is:




Boundary Layer

|
EH R I

Figure 16: A self similar flows over self similar shapes in a hypersonic flow (Van Dyke 82 book).

this is the ”weak hypersonic” regime. It is just the usual case with \/Mg — 1 replaced by My!.

For a large Mach number and large K the body and the shock are proportional, this is called the tangent
wedge approximation:

MoO‘ . Yy + 1
M()’T B 77
and the pressure:
P—DPo ;-2
poU3 .

this is the ”strong hypersonic regime” This gives the idea of expansion with M?72 for the pressure, so that
for a weak case M272 < O(1) we can expand

a=1+7% +...
V=TU1+ ...
p=1+ M7 + ...

We have the so called ”piston analogy” as the equations are the same with = changed in time thann the
equation of the flow induced by a piston moving in y with time.

p pu
%U + %F(U) =0 with U = pUL , and F(U) = Pt +p Selfsimilar solution may be then
v o8y
p(e+3) ple+5)+p

obtained for bodies with an z™ shape.

2.15 Conclusion of the Ideal fluid section

At the end of this section, we have for several flows the solution of the pressure distribution over a small
bump on a a flat plate in an inviscid Euler description.
We turn now to the wall in order to insure the no slip boundary condition.
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Figure 17: Experimental C, of a cone, From Germain from Van Dyke. Sketch of pressure coefficient (up side down:
positive values are toward the bottom) from Germain from Spreiter 62
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ideal fluid

boundary layer

Figure 18: The typical problem a plane plate (neglect curvature).

3 Classical Boundary Layer on a flat plate

We have looked at solutions of ideal fluid which correspond to Navier Stokes equations for Re™! = 0. We
obtained the Euler equations. The problem is that with Re~! = 0 we can no more write the no slip boundary
condition at the wall. That is the signature of the singularity of the problem. To solve the equation we
had to impose a slip boundary condition. This slip boundary condition is in fact the matching condition
between the outer and inner problem. Hence now we look at the inner problem and do a change of scale
to focus on the thin boundary layer. We begin by the simple flat plate case. We then see the influence of
pressure gradient and discuss separation.

3.1 Blasius solution on a flat plate

Ideal fluid

So we have now some examples of ideal fluid flows with a basic flow mainly in the Z direction. Let us look at
what happens when the body is a simple semi infinite flat plate. First, we compute the ideal fluid solution,
here a uniform flow. We obtain the ”slip velocity” written %, the value of the ideal fluid velocity at the wall

Boundary layer

Near the wall the ideal fluid solution is no more valid as the velocity is zero at a wall. We have to introduce
a "Boundary layer”. To obtain this we use the "least degeneracy principle” (Van Dyke [29], Darrozes &
Francois [9]): we want the convective terms and at least re hook one diffusive term (as § = §d/L):

PiL 1 o
9z Re(/L)2 02’

we then say that the boundary layer is of relative order Re /2.

Dynamical equations
in these new scales, the Navier Stokes equation are the Prandtl equations:

ou N o0 0
ox 0y
;08 ou d%*u
U— = —.
oz oy 0y?
With boundary conditions (Z,0) = 0, w(Z,00) = 1. this latter coming from the asymptotic matching

u(z, g — 00) = u(z,y — 0).
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(we call u.(Z) = u(z,y — 0), the velocity at the "edge” of the boundary layer). An initial boundary
condition at the leading edge is

u(z =0,y) = 1.
Self similarity
We can observe that they have a special invariance (see thereafter the Falkner Skan solution, see chapter on
Self Sim http://www.lmm.jussieu.fr/~lagree/COURS/M2MHP/SSS.pdf), this gives the selfsimilar variables

=62, €=z, n=g/Vi.

with in general

9_0 mo 4 9_190
or 9 280y 9y €
the velocities are;
- - 1
a=f'(n), v=—72m0f -1

2V¢

so that (note the 2 in front of the higher order derivative, it is removed in Falkner Skan)
2f" + ff"=0 with  f(0)=f(0)=0 et f'(c0)=1.

Numerical resolution by an ad hoc method gives f”(0) = 0.332, and the velocity profiles are on figure
On figure we present a Navier Stokes computation which shows the selfsimilarity of various profiles.

6
5

< 3!

0.2 0.4 0.6 0.8 1
(nf -f)/2 f (n)

Figure 19: f’(n) Selfsimilar longitudinal velocity profile : f’ in abscissa, 1 in ordinate (plain line). Selfsimilar
transversal velocity profile : (nf’ — f)/2 in abscissa, n (dashing).

We observe that the velocity at infinity is not zero. Note that nf’ — f =n(f’ — 1)+ [;'(1 — f")dn, then
as 1 — f/ goes to zero faster enough
1 1 [ 1.7208
lim (= (nf' — == 1— fdn = —— = .8604. 19
T s =) =5 [ (0= fn =25 (19)
We introduce a quantity called ”displacement thickness” 1, and define the skin friction
ot . o U
T=— 01 = 1——)dy
T ag 3 1 /0 ( ’ae ) Y,
that we write here with dimensions:
6 = 1.7208\/%321/2, and 7 = 0.332 pUgﬁaﬁ*W,

Furthermore, far away v —0.8604 Uo\/%a_cflﬂ.
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Figure 20: The flow over a flat plate computed with Freefem++ at Re = 500 is Self Similar: at the five
vertical cuts indicated we plot and superpose the profiles of the numerical solution written in boundary layer
scale: u(z,y+/Re/T), indeed all profiles collapse on the same curve.

3.2 Approximations of Blasius profile
3.2.1 Blasius solution

We have just exactly solved Blasius. So the problem is solved. But historically, approximate solutions were
found. And those approximate solutions are useful to understand Shallow Water flows as well.
We can here test some approximations and show that they are close to Blasius. We found the shear
/ = 0.332 the "displacement thickness” is 1.72.
There is another integral which will be usefull, the ”energy displacement thickness”, by definition it is:

o ~ -

~ u _

b= [0 - D

0

which value is, in the case of Blasius solution

o

| o = i = 064

so that the ratio H is

Jo (L= f'(n))dn

H= 1= @ — rm)ydn

= 2.591

H is called the ”"shape factor”.
To see the link between all those quantities, we have to write again the Prandtl equation and to notice
that
ou _0u 0%t
ox 0§ 02

may be rewritten if we collect the velocities before the derivatives using the incompressibility as

oun  Ovu  0*u oun Ou Ova O O*a
= ——=. 0r even —— =

oz T og o oz oz 0y oj 0

after using the incompressibility again. Changing the sign, and collecting, this is

o . PR d*u
%u(l —u)+ =—=0(l —a) = R
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integrating from ¢ = 0 to oo, and thanks to Boundary conditions (the part with 8% is zero), and this gives
the Von Karman equation with no pressure gradient :

[ ot
9 1 ovas— 8
a:z/o il = Wdj = 5

We can check that the derivative of the energy thickness [;* @(1 — @)dj = 0.664\/T is g—go = 0.332/V7
which is the shear at the wall as expected.

We now test simple profile shapes and see wether they are good approximation of this Blasius solu-
tion. We will look at the expression of 01, d3, H and g—g. Note that in the integral method, we will use

fo linked to the skin friction as: g—g = fgg—g = fo hg;e' For Blasius fo = 0.218 We have as well f/(4.906) = 0.99

The global shape starts from 0 and goes to one at infinity. In the next sub-sub sections we test given
shapes that start from 0 and goes to one, like exponential or error function. And we compare all.

This is a classical text book exercise for polynomial profiles. In the books, d is defined to be the value
of the boundary layer thickness, where the velocity is exactly one. This is an approximation as the velocity
is never one (except at infinity). So we can exhibit a thickness d (because § is for us the scaling of the
boundary layer, not a value of the boundary layer itself) of finite value.

It should not be confused with the effective dgg. This thickness is such that @(dgg9) = 0.99, here say
U(0so) = 1. So that for § < d, the velocity goes from zero to one. For § > o, the velocity is one.

3.2.2 Linear profile
We first test the simple linear profile
W(y) = 7/d00 for § < oo and else u(g) =1

this seems to be a crude approximation. The chosen d., is a unknown function which represents the ”size”
of the boundary layer (it has a finite value, as we will see). Let us compute the integrals

00 doo 1
/0 (1 - a)dj = /O (1= §/60)dj = 66 /0 (1~ o)y’ = 60 /2

0o doo 1
/0 a(1 - @)dj = /0 (5/820)(1 — 3/650)d§ = 66 /O Y (1= yf)dy' = 6.0/6

and 8u(y)/8y = 1/(500 in 0, SO
1 b 2 oo Y 9g 5

we put that in the Von Kédrman equation with no pressure gradient :

== o
0

0T 9o
This gives us the evolution of the ”thickness” ., because the previous equation is :
d 0o 1 06 1 d &2 =
——=—n~ ——=—n~"h —-2 =1 s0 that do, = V12
0z 6 doo N 57 6 0oo N 5z 12 50 That Ooo Vi
from this

51 i 1
6 =V3VZ, 0y =/1/3VF, H=—=3 and — =
1 VZ, & /3Vz 5 an i NG

the numerical values

)
5 = 1.732VF, 6y = 0.57vZ, H =3. and (‘7; — 0.288V/%
0

are not so far from the Blasius solution which are respectively 1.7 0.66 2.59 and 0.33.
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3.2.3 Sinusoidal profile

We test the simple sinusoidal profile now
. .Y _ .
(y) = sin(===) for § < do and else u(y) =1
2600

again the "thickness” d,, is artificial. Let us compute the integrals
00 doo
/ (1—1])(13]:/ (1—8111(25 ))dy = oo / l—sm( ))dy = 0oo(l —2/m)
0 0

/000(1 @) = 0 (2)7 —1/2)

so that after substitution in the Von Kdrman equation with no pressure gradient :

(rooE H= 2T % V2§

o= -~ =
! 4—7 ’ T—4 " 9y, 2
which gives
Py
§ =4.79Vz, 61 = 1.742V'%, 69 = 0.655VZ, H = 2.66, aif =0.32z"1/2
Yo
( Blasius solution respectively oo 1.7 0.66 2.59 and 0.33)
3.2.4 Exponential
We test the simple exponential profile i
() =1— e
which gives (with integration to infinity, not to 1)
i
So = 2T, 0, = VT, 6y = VT, H=2, aif — 0.5 /2
Yo
3.2.5 Erf
We test the error function (see Stokes problem)
i(7) = erf(55-)
which gives (with integration to infinity, not to 1)
221/ 2(v2 — 1)z!/? i 1
0 = ,522(\[—),[‘[:14-\/5’ o= —.
NZ3 NZS o LT
which is numerically
ot .36
51 = 1.753zY2, 6y = 072622, H = 2.414, Z%|g= 2.
o NZ
so that 5 9%
fo = ;};’0 is fo = 0.215
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3.2.6 Pohlhausen polynomial order one

We can imagine a polynomial expression:
W(§) = a19/5 + az(9/6)* + az(§/6) + as(§/8)* + ... for § < 6o and else () = 1

the case 4(y) = a17/0 has been seen right now.

3.2.7 Pohlhausen polynomial order two

The case @(§) = a17/do0 + a2(7/00)? leads to
() = 20 /000 — (§/500)? for § < do and else u(f) = 1

to fit the BC 4(dx) = 1 and @' (dso) = 0. After substitution:

0o = V3OVZ, 6 = \/10/3VZ, 6y = \/8/15V%, H = 5/2, gg =/2/15z1/?
0

numerical values
ot

o0 = 5.ATT23VZ, 61 = 1.8VZ, 65 = 0.7z, H = 2.5, 5 = 36z 1/2
Yo

3.2.8 Pohlhausen polynomial order three

We continue
(7) = a17/600 + a2(7/000)* + a3(7]/doc) for § < doo and else @(j) = 1

U
to fit the BC @/(ds) = 0 we have a; = (—2a3 — 3a3), and if we notice that

Ot @—@ ivesinO'O—@
_ag2g : _ag2

s0 az = 0 and u(ds) = 1 gives
() = (3/2)7/000 — (§/050)/2 for § < 65 and else a(j) = 1

After substitution:

0o = 4.64VT, 81 = 1.TVZ, 69 = 0.65Vz, H = 2.7, gg = 327 1/2
0
of course we may continue... we will see the order 4 for Pohlhausen in the section of the resolution of
boundary layer with a pressure gradient.
Schlichting says it is seen the the approximate methods leads to satisfactory results in the case of a flat
plate at zero incidence, and the extraordinary simplicity of the calculation is quite remarkable, compared to
the complexity of the exact solution”.
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Figure 21: Various profiles: linear (with the angle), parabolic, cubic, sinus, exponential (the worst one, it
is always lower than one), error function and Blasius in red.
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3.3 Compressible boundary layer

Interestingly enough, the compressible counter part problem is very similar (Stewartson [21]). The constant
velocity is the ideal fluid solution of a flat plat even in compressible flow (neglecting a weak shock at the
nose). The dynamical equations are written with the same scales, the compressible Navier Stokes equation
are the compressible Prandtl equations:

opi 0pv _ _ _0i . _oa, 0 i
o T o5 0 Mg T 50 = ailag

With boundary conditions @(z,0) = 0, %(Z,00) = 1. this latter comming from the matching

(Z,9 = 00) = (T, g — 0).

=g

The Energy equation reads with the enthalpy:

_Oh  Oh. O ,p 0. Pr—1,
P(U%+U@)—@(ﬁ@(h+ 5 u’))

The transverse variable is rewritten with the Lees Dorodnitsyn Howarth Stewartson variable dY = pdy,
and when the viscosity is approximated to be proportional to 7" and when Prandt number Pr is one, then
a selfsimilar solution may be found leading to f” + ff” = 0!
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3.4 Classical Falkner Skan solutions of flow past wedges
3.4.1 Flow at wedges

This problem corresponds to the solution of the flow on a wedge, see figure The flow comes from the left
and there is a dividing stream line with a stagnation point between the intrados and extrados (symmetrical).
The total angle of the wedge is S7.

The problem and approximate solutions were first given by V. M. Falkner (meet Paul Germain in NPL after
the war) and Sylvia W. Skan in 1930. First computations after Blasius solution 1908 and Hiemenz 1911,
were done by Hartree 1937 and latter Stewartson 1954. This very classical solution is necessary to find
simple relationships between the pressure gradient and the boundary layer thickness.

\ Brt/2 /

_’—
—» \ A

Figure 22: Symmetrical flow against a wedge shaped leading edge. Note that the x axis is along the body.
so that tangential velocity is 0 in @ = 0 and in § = 27 — 287 /2. By symmetry, the transverse velocity is 0
along the dividing stream line § = m — 7/2

3.4.2 1Ideal Fluid solution

The first move consists in solving the ideal fluid problem obtained from Navier Stokes after having defined
a Reynolds number and having said that it is infinite. There is here no length scale, we take any, say L,
there is in fact no velocity scale as well in this problem (we know why: because it is a second kind of self
similarity). The choice of the velocity scale is that the ideal fluid velocity will be w =1 in z = 1.
The Euler equations are not solved directly, we define from incompressibility a stream function ¢ with
@ = Opp and © = —719g1h. Supposing a flow with no vorticity (as it is classical since 9’Alembert [I]), we
have to solve: Lo o L o

%ﬁ(f%w) + ﬁww =0, with (7,0 =0) =0, ¥(r,m— pBn/2) =0.
The boundary conditions correspond to give the symmetry line and the upper part of the wedge to be a
stream line. The solution is straightforward (it is a special case of solution that we may write in the complex
form F(z) = 2™, with z = & + ig): )
2-p
The velocity at the wall ”slip velocity” is as in 8 = 0, 7 = &, and as the velocity is 1 at the location z =1
by the choice of velocity unit:

)= wofﬁ sin( 0).

2n
n—+1
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[Of course, one may look at solution of the Laplacian by separated variables, so that 1) = A cos K6+ B sin K6
and 7 = C7% 4+ DX then form the boundary conditions, A = 0 and K = and C' = 0 (condition at
infinity)].

Writing the Euler equation at the wall leads to the important relation between the slip velocity and the
value of the pressure at the wall p:

2
L

_ dae B dﬁe

Yelazr = dz

which is in fact the Bernoulli relation.

We note that there is no characteristic velocity ”far away” the apex of the wedge, so the velocity scale
depends on the chosen scale L by the power n. We note that this solution is an example of self similarity of
second kind.

This problem is a kind of leading edge problem figure for 8 > 0, we have a symmetrical flow between
the dividing stream line (on figure 22| we have 0 < § < 1, the flow is against a convex corner). The flow is
accelerated, n > 0. A special case § = 1 is the flow against a wall (stagnation point solution). Larger values
of B correspond to the flow against a concave corner.
£ =0 is the flow on a flat plate.

For negatives values of 5 there is no more corner, no symmetry is possible, it is the flow round a corner.
The velocity is decelerated, n < 0.

3.5 Boundary layer solution

The second move consists is writing again the Navier Stokes equations and to introduce a stretched transverse
variable by 1/v/ Re so that they become:

C oo v
ox oy
oa  oa  op o
ou  ou _ _0Op 20
Yoz " 'a5 oz o (20)
.
0=-32

boundary conditions are 4 =0 =0 on g = 0, U(Z, +00) = Ue, P(T, +00) = Pe. As g—g = 0 the pressure in the

boundary layer is exactly the pressure of the ideal fluid at the wall. And using the Bernouli relation we can

eliminate the pressure and write as . dd% =nz?n L
ou 9o ou 0 d*a
— 4 = =0, G tv— =031+ .
o 0y oz 0y 012

Often, it is written in stream function in a single equation of third order with three BC in g as (the BC in
Z = 0 is not important): o o .
9 M) Oy O
———— — ——— =nI + =
0y 0zdy 0T 072 oy®
(x,0) =0 ﬁzﬁ(z 0)=0 21;(35 +o00) = 7"
) - ? 8@ Y - 9 8@ Y - °

3.6 Self similarity
To solve this equation we try the selfsimilar technique:
T — Xz*, g —=>Yy*, u— Uu*, v — Vo* ...
the boundary condition gives U = X", the continuity gives V = Y X"~ !, the balance between inertia and
viscosity gives (X™)(X")/X = (X™)Y 2 so that Y = X(1=")/2 and then V = X(»~1/2 and as well we have
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¥ = X(147)/2 The change of scale is then for any X:
T— X, g — XU/2px g Xny*, 5 — XD/ 2% o 5 X A4n)/2 %
The formal implicit solution is invariant by this transform:
F(Z,7,4) = 0 gives F(Xz, X1~7/2¢ X"3) = 0
if we write it for ¢ the formal implicit solution is invariant by the transform:
F(z,7,7) = 0 gives F(Xz, X(1—)/25 x(n+1)/24)) = ¢
removing the X from the slots (divide by adequate powers of XZ) gives
Fy(Xz,gzn=0/2 z=(t1/2) = 0, VX gives Fy(gz"V/2 o= (t1D/2) =
(n+1)/2 5 a function of §z("1/2. So that the selfsimilar variable and the stream function are:

1 0 2
€= 1= (/"3 ) g ¥ = (e )

the prefactors like (/ ”+1) are just historical and help to have a nice equation. As:

hence z;x*

8 _ 0 n—11n 0 _ n+1l¢(n—1)/2 0
9t — o€ T 2 tom @ and £ Hem-1)/2L

n’
i= ), o=/ T e

and after substitution, the stream function equation is :

F") + F) f"(n) + B(L = f'(n)*) =0, f(0) = f'(0) =0 and f'(c0) = 1.
Solutions of this equation are plotted on figure

the velocities are obtained:

)

3.7 Numerical Tricks
3.7.1 Shooting method

In fact it is not so simple to solve this equation, the natural way consists in a shooting method: for a given set
f£(0) =0, f'(0) =0, f"(0) = f{ one solve up to a given 7, say 7, and try to obtain f'(n,,) = 1. In practice,
we write f” + ff” + B(1 — f”?) = 0 as a first order equation in matrix (U’ = F(U) with U = (f,u,v)) :
o=
u o =w
o = —uf — (1 —1?)
£(0) = 0,u(0) = 0, we guess v(0) = f”(0) so that u(oco) = 1. With this form it is clear that any Euler
forward, or Runge Kutta Metho is suitable: sarting from U(0) we compute:

U+ An) =U(n) + AnEF(U(n))
from n = 0, where U(0) = (f = 0,u = 0,v = f”(0)) to 7, where the first component of U must be close to
1. We compute as well as a result [(1 — u)dn.

Playing with this system, it works well for § > 0, but we observe that it is a very stiff problem for 5 < 0.
It means that a very small change in f” (O) can dramatically change the value of u(n,,). So, the best way is
to solve the equations in an ”inverse Way ’ with two variables: we have to find the given value of u(o0) and

the given value of the displacement I (oo fo (1 —u)dy. We add the integral to the previous one.
;o=
v =
Vo= —vf =B —u?)
I' =(1—-w)
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f(0) =0,u(0) =0,1(0) =0 we guess v(0) so that u(co) = 1. and I(co) = D, were say D is the given value.
We shoot the condition f'(1,,) =1 and [ (1 — f'(n))dn = D to do this we try and guess the values of f{
and (. This procedure allows to obtain the reverse branch on figure 24] and the reverse profiles (where w is
negative at first).

3.7.2 Unsteady method

Rewrite the Falkner Skan equation and ad an unsteady terl

%’: = "+ L1+ B(1 = f?), with (f' = u) it reads gz ="+ fu' + B(1 - u?)

at iteration n
(un—i-l _ un)

At

it is a two point BV problem u"*1(0) = 0 and «" ! (ymaz) = 0 the second order derivative is solved implicitly,
the tridiagonal system is solved with Thomas algorithm.

_ un+1// + fnun+1// +/8(1 o un2) and fn+1/ — un+1

3.7.3 alternate methods

http://basilisk.fr/sandbox/easystab /blasius.m
http://basilisk.fr /sandbox/easystab /hiemenz.m
http://basilisk.fr/sandbox/easystab /falkner-skan.m

3.8 Special cases

e for § = 0 we obtain the Blasius solution:
n=0,a=f'(n),n=7/v2z, o= 1/(vV22))nf - f)-

the Blasius equation
"+ ff" =0, solution f”g = 0.47 / (1—fdn=1.2
0

then f7o/v2=0.332, V2 [°(1— f)dn=1.72

Of course the Blasius equation was writen 2f"” + f f”” = 0 at the beginning of this chapter, the ”2” is removed
by the historical change of scale from Falkner Skan, that is the reason of the v/2 in displacement and 1/v/2
in friction).

e for =1 we obtain a stagnation point solution (Hiemenz) n =1 :
w=2zf'(n) v=—f(n),n=7

oo
"+ Q- =0, f§=123, / (1— fdn = 0.6479, H = 2.15
0
On figure [26] we compare the full Navier Stokes resolution, we clearly see the stream function in hyperbola
(corresponding to 1 = 72sin(26). On the right figure, the longitudinal velocity divided by x is plotted, we
compare it to the selfsimilar solution (in fact it is an exact solution of Navier Stokes).
e For B > 2 there is no physical solution but we may compute them with no problem. In fact we can even

compute 3 — oo, Falkner Skan solution reduces (1 — f2) = 0, so that there is an external solution f’ =1
every where. Near the wall, we introduce a "boundary layer”say f' = F/(Y) and n = eY’, so with ¢ = p1/2
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we obtain F” + (1 — F'?) = 0, which is the self similar flow in a convergent u, = —z .

JoS (1= F')dY =0.779, F"(0) = 1.15. There is even an exact solution:

F(n) = V2+/3 5
"o | (VEE)evan)
t s

3 (1 _ (“/§+V§)eﬂ”)2

The convergent 8 = oo and n = —1 u = —z~1f/(n), with n =y f” +1— 2 = 0. fJ/ = 1.1547, and
JoS (@ = fNydn = 0.7783 and [;°(1 — f') f'dn = 0.376, so H = 2.070

e For 8 < 0 the flow is decelerated;

e For g = —.1988 it is the point of ”incipient separation”, the derivative of the velocity is always 0:
f"(0) = 0; n=—0.091 and [;°(1 — f)dn =23, 6 = 3.49

e For 0 > 8 > —.1988 there are in fact two solutions, one with f”(0) > 0 and another one with f”(0) < 0.
The two solutions have different values of [(1 — f’)dn.
Other branches of solution exist.

e Falkner Skan solutions, small g3
In Brown & Stewartson (On The Reversed Flow Solutions Of The Falkner-Skan Equation Mathematica
1966), they looked at the dependance in f"”¢ in 3 for small 3 (the returning curve). the obtained that :

f70 ~ 1.544(—B)%/4

e Some triplet solution ([ (1 — f")dn, f"(0), )= (0.649,1.23,1), (0.8,0.93,0.51), (1,0.669,0.18), (1.21,0.44,0),
(1.5,0.29,-0.12), (2,0.09,-0.189), (2.5,-0.026,-0.198), (3,-0.09,-0.183), (4,-0.042,-0.196))

I

2 \ /2 5 0
I A
%{)

Figure 23: Some remarkable cases of Falkner Skan flow, for 8 = 1 to the negative § massively separated
flow.

We seen on figure that there is a non uniqueness in the solutions. Libby & Liu 1967computed far
more branches of solution for 8 < 0. They correspond to oscillating f’ (see Sobey’s boook).

3.9 Non self similarity

A generalization of the FS equation may be obtained when the flow is non similar. If ¢ is a short hand for

Oz f, we may write the Prandtl equations in introducing n = % Cg; then

P FE A B ) = a(f 0= of),
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Figure 24: Left, dependence of the slope at the wall f”(0) as a function of the acceleration parameter 3.
right some velocity profiles.

o

Figure 25: Navier Stokes computation with freefem++ of the flow field and comparisons of the computed
profiles /T compared with the selfsimilar solution f'(y) of Hiemenz.

3.10 Compressible Falkner Skan solutions

In the case with pressure gradients, in the case of model flows, a selfsimilar problem may be obtained:
B — ) =0, 8"+ fS' =0...

where S is the total enthalpy (see Stewartson 64).
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4 Integral relations

4.1 Von Karman equation integral relation

Boundary layer equations are a 2D PDE which is not so simple to solve. Nevertheless, we observed that the
velocity profile is sometimes self similar. It means that there is a unique profile and that all the profiles are
deduced by stretching it. The velocity of the ideal fluid at the wall and the thickness of the profile are two
fundamental parameters which stretch the fundamental profile.

In this part we present the Von Karman-Pohlhausen (1921) equation which consists in writing only the
global dependance between @, and the displacement thickness ¢; supposing that in fact all the profiles are
nearly similar.

An interpretation of 47 is that the flux of mass trough an enough large y say ¢ (not to be confused by the
shape factor H that we define just after) is the same than the flux of a constant velocity across a smaller
section ¢ — 91 so that (we are just in non dimensional variables, no tilde):

H H
= / udy = (A — 01)Ue, i.€. O1Ue = / (ue —u)dy
0 0

then, we suppose that 7 is large enough so it may be changed by co. This gives the physical definition
of the displacement thickness, it is the distance by which the external stream lines are shifted due to the
boundary layer development.

A

v

O1

S -

Figure 26: The flux of mass is the same in the boundary layer and in a equivalent layer of ideal fluid shifted
by an amount of ;.

Let us now look at Von Karméan equation, we write the total derivative ﬂ% + 62—3 in conservative form
then adding 0z (@u.) = 10z (te) — U050 allows to write the momentum equation as:

9
oz

ou 0 %4
~_ .9 — - e O .- _ _
(Ute — 0%) + (e — W) oz 9 (0(a — 1)) 07

Defining the displacement thickness, the momentum thickness and the shape factor

S [T Dy b= [T - Dy and 1= 2
0 0

Ue Ue Ue 2

and defining a function f5 linked to the skin friction as: ((?TZ = fo 1{5;6 gives the following equation where the

ideal fluid promotes the boundary layer:

d o1, & 2. du.  foH
daz(H)+ae( e oyl

i.e. 0, = F(i), (21)

Initial condition is for example 61(0) = 0 (but the Hiemenz value may be a good first guess) and e (0) = 1.
In the classical approach, d; is obtained through the knowledge of @., which we write formaly §; = F(t).
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4.2 Pohlhausen closure

One needs the shape of the boundary layer and then compute the integrals and the shear. In the original
methods, one needs a thickness, say do, (the effective dgg is such that u(dgg) = 0.99u., here say u(doo) = Ue.
Hence, we construct a shape which is 1 for y > do, and varies from 0 to 1 for 0 < y < do. Let us define
N=1Y/bc0.

Trying a Polynomia closure is Pohlhausen idea, we already presented polynomials of order 1, 2, and 3
for the Blasius solution. We extend the method in the case of pressure gradients

u/ue = ag + a1n + agn? + asn® + agn* + ..

at order 4, we write the boundary conditions, u(0) = 0 u(1) = 1 u/(1) = 1, 0 = due/dx + §- so that the
velocity is
1
w=(2n= 27" +n") + <Al = 30" + 30° — ')
or in a compact form

w=1-(1 =1+ (1~ ZA))

where we have defined A = 6%du,/dx (it introduced with the condition at the wall). Then, by integration:

01/000 = (36 — A)/120

82/000 = 37/315 — A /945 — (A?)/9072,

H = ((36 — A)/120)/(37/315 — A /945 — (A%)/9072)

f2a=(2+ A/6)(37/315 — A/945 — A%/9072)
With all those values, the profile is determined as a function of o, and u., or as function of §; and u.. The
relation between §; and u, is found then with the Von Karmén equation. We plot on figure in green,
first left H(\1) as a parametric plot of A;1(A) and H(A). We plot on figure [4.3|in green, second right fo(H)
as a parametric plot of fo(A) and H(A).

10F

08

06

= 041

02F

L L L L =
00 02 04 0.6 08 1.0
n

Figure 27: An example of closure Pohlhausen A = 12,0, —12, —24.

Flat Plate case

In the case of zero pressure gradient A = 0, we first obtain the value of the coefficients fo = 74/315 =
0.234921 and H(0) = 189/74 = 2.5540540 (Blasius values areHp = 2.59 the slope is 0.332 so fo = 0.22 =
0.332 % 1.721/2.59). and we put them in the Von Kérméan equation with u, = 1

d b, pH
dz 'H’  §a,

61 =\ 2f2H0£B1/2

hence /2fs H = 9,/7/185 = 1.75068 (very close to the Blasius value). The shear at the wall is then
evaluated, and is again close to the exact Blasius value H fo/8; = (1/3)+/37/352~1/2 = 0.3427252~1/2

the integration gives

The ”physical” Pohlhausen’s thcickness § = 120/366, = 6+/35/37x'/2 = 5.8355921/2
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4.3 Falkner Skan Closure

To solve this boundary layer equation, a closure relationship linking H and fs to the velocity and the

displacement thickness is needed. This is of course a strong hypothesis. Defining A = 5% ngf, the system is

closed from the resolution of the Falkner Skan system as done before. Remember the solution is ue = f’(n)z"

with n = (4/ nTH)5<1?vL>/2 so that

the "Pohlhausen” parameter A; is

o dle 2n

M= 85 = - gyt

then

A =60 [ (= £y
On figure (see figure [4.3)):

I { 2.5905¢~0-3709%8ALif Ay < 0.6

_ g1 -2
2.074 if Ay > 0.6 } fo=1.05(—H " +4H7?).

It means that we suppose that each profile remains a Falkner Skan one in the boundary layer. We used this
crude solution in exponential with the value of the sink H = 2.074 as a limiting value. We tested it to be
enough good, other closures may be found in the literature. Some closures use the concept of entrainment.
The closure may be done with other families of profiles, and Pohlhausen profiles are good candidates (the so-

5
0.5
4 0.4
3 0.3
T iy
2 0.2
0.1
1
N N ——
-1.5 -1 -0.5 0 0.5 1 0 5 10 15 20 25 30 35
A1 H

Figure 28: An example of closure of the integral relations. The dots are the Falkner Skan values and the
line the proposed function. if A; > 0.6 in fact H = 2.07 is constant, for F'S it means that 8 — 2 (accelerated
case). Note the very good agreement for fo.

lution is part of a polynom). With those profiles the reverse flow is over estimated compared to Falkner Skan.

4.4 Remarks

In general, the Von Kédrméan equation is written with the momentum thickness bo:

d = oz _du. Ou
%(52%3) + 51Ue% = @}gzo (22)
(often the symbol 6 is taken, and &; is written §*), we prefer o write it with 61 as we will see that this value

has a real physical interpretation. The reason why mainly Jo is used is that its derivative is clearly linked
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Figure 29: Left: we plot here with blue dots the result of Falkner Skan solution, H as a function of A; which
is B(f(1— f'(n))dn)?. In red the approximation 2.5905e~0-37098A1 if A} < 0.6. In green the plot of H(A) as
function of Aj(A) from Pohlhausen. Right, blue dots Falkner Skan, red curve the fit fo = 1.05(—H 1 +4H 2
green curve Pohlhausen for fs as function of H.

to the skin friction (this gives a technique to deduce the skin friction from even crude measurements of the
boundary layer profile.

In general, another thickness is introduced, the ”boundary layer thickness”: dg9. The velocity is defined
so that if § > d99 we have @ = .. In the Falkner Skan description, this length does not exist as the velocity
is attained only at infinity. That is why it is defined sometimes as position at which the velocity is 0.99,.
We put this subscript not to confuse this ”value” with the scale 6 = L/ VRe = LJ.

For instance, using this thickness, the Pohlhausen technique allows to approximate the Blasius profile by :

G=1—(14+n)1—-n)?° 8 =.35, 61/0 =255

So, if we define nevertheless this thickness (it is common in turbulent flows, and it the original Pohlhausen

approach as well). Starting from the incompressibility equation
ov  oOu
Y 0z

%%6 and after integration (with (0) = 0) up to a & function of z

we obtain, after adding and substracting
that the velocity is:

6 ) <
i 0 _ . d . _dd
U((S)——/O %udy——% ; udy—i—ue%

so, as for § > & by definition @ = 4., then f05 udy = f05 Uedly — foé(ﬂe — )dy and we obtain the behaviour:

b . 1d,_

— —9(0) = ——=(Ue(d — 91)).
DR CACEEY)
This is the definition of the ”entrainment coefficient” Cg. It represent the difference between the growth of
the boundary layer and the velocity at the edge of the boundary layer. Closure relations may be written to
model it. We will see that this concept is not so useful, we will write in a better way this same integral and
we will do a proper matching to get rid with this non asymptotic concept of dgg
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5 The problem of boundary layer separation

5.1 definition

Separation consists in the existence of a long vortex near the wall caused by a deceleration of the flow. Fluid
is trapped in a ”bubble” or a ”bulb” which increases the apparent size of the body. From the point of vied of
aerodynamics, it is not a good thing as it creates, dissipation, turbulence and decreases dramatically the lift
of airplanes. The ideal fluid-boundary layer description is believed to fail due to boundary layer separation.

Figure 30: A sketch showing the body, the separated bulb, and the deflexion of stream lines.

Boundary layer separation occurs in the boundary layer. Due to the shape of the body, first the ideal
fluid accelerates and then on the lee side decelerates. So does the slip velocity at the wall. When slip velocity
is decreasing u, Ugjf < 0, It corresponds to a counter pressure: % > 0. The pressure is increasing, upstream
to downstream. Note that the pressure does not depend on y. This correspond to the case of the ideal
flow on a cylinder, this is a generic case: 4, = sin(z). Near the wall the influence of the adverse pressure
gradient is larger and larger, as the velocity is smaller and smaller. So, near the wall, were the velocity is
small, the velocity is more fragile. Hence, due to this adverse pressure gradient, a reverse flow may appear.
This is boundary layer separation, it corresponds to the existence of a counter flow near the wall. A long
vortex arises near the wall.

The point of separation is the point defined by % = 0 (definition is not so clear in unsteady flows). See
an example of representation on figure [31| taken form Prandtl himself [19].

v ;7::7/ . ]
(12rg— /:,/ / L / %

ed)

T
|

|

u —f

¢ /7
- 777 N AL x
i

Figure 31: A sketch from Prandtl [I9] of the flow near the point of vanishing shear stress.

Then when there is separated flow, near the wall, the dangerous terms in the BL are:

iy 2k
gz Tt g

with o < 0, and changing Z in t, this is a kind of heat equation with a negative coefficient:
or 0T
ot oy?

so it is unstable (ill posed). It is then impossible to cross the position of boundary layer separation. That is
why, in most classical textbooks, the boundary layer separation is presented as the death of boundary layer.
For example Kundu & Ira p368 of the fourth edition say: ” The boundary layer equations are valid only as
far downstream as the point of separation. Beyond it the boundary layer becomes so thick that the basic
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underly- ing assumptions become invalid. Moreover, the parabolic character of the boundary layer equations
requires that a numerical integration is possible only in the direc- tion of advection (along which information
is propagated), which is upstream within the reversed flow region. A forward (downstream) integration of
the boundary layer equations therefore breaks down after the separation point. Last, we can no longer apply
potential theory to find the pressure distribution in the separated region, as the effective boundary of the
irrotational flow is no longer the solid surface but some unknown shape encompassing part of the body plus
the separated region.” We will show that every thing is false, and even that the impossibilities presented
are the clues to find the solution of the problem!

This problem of boundary layer separation is of course very important for flow around wings, as it creates
"stall” (dramatic decrease of lift). It arise in most practical cases of flow and is responsible for dissipation
of energy. Furthermore, it creates instability and turbulence. The boundary layer separation control is of
high importance.

It is a real XXth century problem and victory of asymptotics. It has been introduced in 1904 by Prandt,
then in the forties it was a dead end (Landau, Goldstein). In the fifties light hill had some intuition to
understand it. In 1969 the framework was settled, it is known as ”Triple Deck”. In the 80’ it was applied
to a lot of configurations and was shown to be linked with instabilities.

5.2 Example of separation on a cylinder

In the classical framework it is not possible to trespass the separation point. This impossibility is known as
Goldstein singularity (1948). On figure is presented an example of boundary layer computation with an
external flow 4, = sin(z) corresponding to the flow on a cylinder. A Integral resolution of the equations is
compared with a complete boundary layer resolution showing how precise is the Von Kédrman approach.

The flow is accelerated from & = 0 to 7/2, near x = 0 we have an Hiemenz linear flow. The flow
is decelerated for £ > m/2, this deceleration promotes an increase of the boundary layer thickness and a
decrease of the skin friction. At the point where % = 0, the boundary layer is singular, we can not compute
numerically (here by finite difference) the boundary layer.
Using the Von Karman equation gives the same behavior! It fails nearly at the same point (not exactly, but
not so bad).

A simple way is to observe it is to look at the Von Karméan equation:

i((il é(l E)d@e _ hH
dz "H’ = G, H’dz  §a,
in which the derivative of 0, /H may be approximated by
d 6. 1. d- o0y dH dA;
iz = ' G fIdAldal)
so for a decelerating flow linearizing the velocity near the point of separation is say t. = sin(Zs) — a(Z — Z5)

with a = cos(Zs) and linearizing around small A; (which is not true but is a enough good approximation)
H = Hy — H,A1 where Hy = 2.59 and H,, ~ —0.96 this term is

d 01 1 d: - 2Hpad}

G = (i )

Aijj)_—%ﬂ+%Xﬂﬁ+m
Hydz ' (1- QHEZ(SI)
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then d%;gl is infinite, (with 6, finite here) we can not march in  anymore. This crude estimation shows that
the separation point is impossible to cross.

It is very disappointing as Falkner Skan profiles allow separation (Pohlhausen as well), but using this
description it is not possible to cross the separation point. Direct numerical finite difference solution gives
the same result (figure [32)).

w

-
L BT B RT A T
5] L

5]

Figure 32: Boundary layer separation on a cylinder, the outer velocity is @, = sin(Z), points are numerical
finite difference solution of the Boundary Layer equations, line is the integration of Von Karman equation
with the proposed closure. Separation occurs for an angle of 104°.

5.3 Thwaites method 49.

Note that the more classical way to do that is tu use the Thwaites method which uses a simplification of
the closure coefficients when integrating the Von Karma&dn equation:

0218 = 05(0)2a.(0)° + 0.45/ w’dz
0

5.4 Example of separation on a plate with a bump.

One may think that the cylinder case is to severe. A smoother plate is maybe less difficult to compute.
It is of course not true, on figure we show boundary layer computations examples for an outer flow
Ue = 1 — ae=6@=15  For each case, velocity profiles displacement boundary layer thickness and skin
friction are presented. Unfortunately again, even for such a smooth outer velocity, for a = 0.06 there is the
incipient separation. For greater a we can not go through the separation point, where g—g = 0, the boundary
layer is singular.
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Figure 33: Examples of profiles of a boundary layer with an external given velocity @, = 1 — e 8@=15  For each
case, velocity profiles, then from top to bottom 8 = 1.73z%/2, 4., and skin friction. Top left , Blasius boundary layer
(=0, 6y = 1.732"/2, @, = 1, skin friction 0.33z1/2), top right a = 0.03, the boundary layer thickness decreases,
the skin friction increases when the velocity increases. For o = 0.06 (bottom left ) it is the incipient separation. For
greater & we can not go through the separation point, where g—g = 0, the boundary layer is singular. [click to launch
the movie, QuickTime Adobe/ Reader required]
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Figure 34: A typical velocity profile at separation is u = (no terms in y) + %(g—i)gf + (no terms in y3) + aqy* + ...

5.5 Attempts to understand the boundary layer separation
5.5.1 Landau

One of the first attempts may be found in the Landau Lifshitz book [15], §40. They notice that as in the
boundary layer v << wu, so the transverse velocity must increase a lot to be as large as the longitudinal one.
it is apparently the case when the flow is separated (stream lines are ejected from the wall). In boundary
layer variables they infer that v = oo and dv/dy = oo so that du/0xr = —oo. The velocity is strongly
decelerated near the point of separation xs. So they propose to work with the inverse of the function ( g—z)

and propose a reciprocal expansion of x in u near z as:

ox 10%x
B =y = (= ) + 5 5 (= ) = Ou = ) + S ) (u— ) o+
so that one may write the velocity v and by the continuity equation v as:
_ / _ B(y)
u=1us(y) + 26 (y)vVrs —x+..and v = —=— + ...

VIs — X

They inject it in the momentum equation in which they neglect the viscosity:
udpu + voyu = 0

but using incompressibility, ud,u + vdyu = u?*(9y(2)). Hence

Oy (

which means that v/u does not depend on y. The function § is just proportional to u. They then deduce
an hint for the profile near separation as :

Oug 0A
A —_7=
oy (z) v Oz

unfortunately this description does not fit the good boundary conditions at the wall....

v
Y=0
)

us A(z) =avzs — x.

u=us(y) +

It is striking that the exercise in the Landau is exactly the one which allows to obtain the triple deck
scaling.... but this was due to the fact that Landau (1908-1962, Nobel 1962) spend time in the laboratory of
Sychev (Vladimir Vasil'yevich Sychev 1924-2077). Sychev was working on boundary layer separation when
Landau visited him at TsAGI... see after.

5.5.2 Goldstein singularity 1948

The real serious attempt came from Goldstein, we present here an over simplified analysis of his paper. He
wanted to look at the region of separation near the point where velocity may be written as

r
u = Yps1a.y

We put this development in the boundary layer equations (after manipulating the equations: derivating
twice the boundary layer momentum equation in y = 0), we obtain:

1.d .
u =Ty + 5(%) 2 1 (no terms in y®) + agy* + ...
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if we define 7, = Ou/0y|,—o and if we note that az = 0. Then after manipulation we can show that

0*u 10
74’1/:0 =4lay = ,7:1:7—2.

dy

*if a4 is zero it is a special case (regular separation / marginal separation), but this case is not general.

* if a4 is not zero:
Tp = \/48as(xs — x)).

so that v = —%%Tg behaves like 1/4/zs — 2. The paradox comes from the fact that a4 > 0 before separation.
But it would be negative after, so it is impossible. We can not go through the separation point, the stream
lines have a vertical tangent. In fact Goldstein 48 analysis is far more complicated, it leads to developments

in y/(xs —x)'/4, but the conclusion remains the same.
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6 Unsteady boundary layer

6.1 Unsteady boundary layer flow over a semi infinite flat plate impulsively started

Reintroducing the time in the boundary layer equation seems a simple task, the convective time scale
reintroduces 9/0t. We show a first example which is simple (Stewartson 51 et 73, Smith 70 & 72 et Hall
69). At time ¢t = 0 a semi infinite flat plate is impulsively put in motion. We are in the framework of the
plate, so that the Ideal Fluid response is instantaneously u. = 1 (the plate slips in the ideal fluid). One has
only to introduce the time derivative in the boundary layer equations :

Oou  Ov

7 + oy 0,
ou  Ou  Ou O

a—l—uax%-va—y— ek
u(z,0,t) = v(z,0,t) =0, (23)
u(z,y>0,t=0)=1
v(z,y >0,t=0)=0
)=1

L and u(x,00,t >0

At a fixed position x we observe for short times the Rayleigh flow (or Stokes first problem, in fact as noted
in Schlichting, this is the Stokes problem):

82%“:8;“; u(y>0,t:0):1,u(0,t):(),u(y%oo,t):1
The solution is with the error function (self similar solution...)

u(z,y, t) = erf(%\/i)

we can compute the displacement thikness, the momentum thickness, the shape factor and the shear at the

wall

5 2t1/2 5 2AV2- 1)t1/2 1
And we guess that for a long time, at a given x, the flow will finally be steady, du/dt = 0, we will recover
the Blasius flow. The good variable is 7 = ¢/x. Depending if it is small or large, we go from Rayleigh to

Blasius. Transition occurs for 7 = 1, this time correspond to the time necessary so that information which
travels at velocity 1 arrives at the considered point.

) H:1+\/§a @|0:
y

The solution is numerically computed on figure we use simple finite difference technique.

For 1.5 < 7 < 4, the difference between the two régimes is noticeable. We see it on the figure (first
obtained by Hall 69 with a specific method using similarity variables and valid for 7 > 1), we plot on this
figure %@zoi)ﬁ so that

1t
T>>1 7, =.332/\x, 61 = 1.732/z; and for 7<1 7, =1/Vmt, 01 =24/ —.
T

On the next figure we plot 2\/; — 01 %, which is 0 for Rayleigh solution (7 < 1) and which is function of

7 in the Blasius case (2\/2 —1.732 \/; , expression valid for 7 >> 1.

The analytic study of the problem of the transition between the two régimes is difficult. Stewartson had
to do two papers (51 & 73) to solve it. The difficulty comes because there is an ”essential singularity” in
the developments around 7 = 1, it means that all the terms of the Taylor expansion are zero (just like 6*12,

this function has no Taylor expansion in x = 0).

-1II. 53-



Boundary Layer

‘calcul' Igul
A i
Raylsigh - Rayleigh ----
0.8
e
o6 e
— o
B e
[ .
04| o
—| & g
Pl
S
[N} 5
0.2 f?
03 /
0
/ . .
02 1 2 3 4 5 6 4 2 4 3 8 10 12
T T

Figure 35: Unsteady numerical solution in finite differences of the unsteady boundary layer equation. We observe
the transition from Rayleigh infinite flat plate impulsive solution to the Blasius steady solution. Left, shear times /x

at the wall, from Rayleigh, at small 7, to the constant Blasius value. Right, plot of 2\/; -6 \/% , (points) compared
to the Balsius value 2\/; — 1.732\/; , line, as a function of 7

6.2 Unsteady boundary layer flow over a semi infinite flat plate impulsively started,
integral point of view

The unsteady system may be written in integral form (0,u = —dyv),

ou ou ou Ou Ou®:  Ovu

a‘i‘u%ﬁ-vafy:a-f—%ﬁ—aiy_
ou  Ow?—wu) Ou Ovu
+ + + =

at O or ' dy
du n O(u? — u) N Ov(u—1)) _@
ot ox oy o oy?’

were we have defined the displacement thickness, the momentum thickness and the shape factor

51 :/ (1 - U)dy, (52 :/ u(]_ — u)dy and H = ﬁ’
0 0 52

and defining a function fy linked to the skin friction as: g—;‘ = fg%. Then by integration, and by boundary

condition in 0 and oo

0 06  foH

Bl ST el

8t ! + al‘ H 61
We see a convection equation 9;6; + H 10,01, of velocity 1/H. This velocity is the velocity of propagation
of the information of the existence of the leading edge of the semi infinite flat plate.

For small time, at a given position x from the nose, we are in the Rayleigh-Stokes problem: there is up
to now no information that the plate is not infinite 0, is zero, we have only

95 _ foH
ot T gy

which gives the square root behavior of §; in time

61 = \/2fHVt

using the closure, this gives fo = 0.22, H = 2.59 andd; = 1.06v/¢ (Stokes value 1.12)
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For long time, at a given position x from the nose, we are in the Blasius problem: there is no more the

unsteady 9; term, we have only
0 ﬁ _ foH

orH 6,

which gives the square root behavior of §; in space

01 =/2fH\z

using the closure, this gives fo = 0.22, H = 2.59 and 0; = 1.7\/x (Blasius value 1.732)

Of course, we see that if 7 = ¢/x, then we go for small 7 from §; = \/2foH+\/t to 61 = v/2foH/7 at large
7. The propagation of the information of the existence of the leading edge of the plate is at velocity 1/H.
As H ~ 2.6, we obtain the same estimate than previously on 7 when solving the full problem.

K<<l [> ] =]+

Figure (moovie): Boundary layer formation on an impulsively started semi infinite flat plate, the given

external velocity is 1, solution obtained from equation %51 + 8%% = ;—fl at small times the displacement

thickness increases with v/t at large time it increases in /z ¢ from 0.1 to 2.5. [click to launch the movie,
QuickTime Adobe/ Reader required].

Figure 36: (moovie): Boundary layer formation on an impulsively started semi infinite flat plate, the given external
velocity is 1, solution obtained from Gerris [click to launch the movie, QuickTime Adobe/ Reader required]..

6.3 Unsteady boundary layer flow over a cylinder impulsively started (finite time
singularity)

An other fundamental example is the case of the flow round a impulsively started cylinder. We may expect
no problem, as before. But here a terrible problem of singularity will appear. The equations are the same
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Figure 37: Navier Stokes computation by Gerris at Re = 1000, left we have the selfsimilar Blasius profile (superposition
of several profiles plotted with §(Re/Z)/?). Right the erf solution.

than previously, with a different matching, the velocity at time 0 is the Euler steady irrotational potential
flow. Velocity at the wall is sin(z) is z is the distance along the cylinder, so x = 0 is the leading edge and
x = 7 is the trailing edge.

ou o0 _,
oxr Oy ’

ou ou ou du. 0%u

anLu%Jrva—y ZUSEJr@in’

u(x,0,t) = v(x,0,t

) (24)
u(z,y > 0,t =0) = ue(z)
)
)

:O,
v(z,y>0,t=0)=0

L and u(x,00,t > 0) = ue(x), with ue(z) = sin(x).

X
x

This case is catastrophic.

Figure 38: Unsteady separation on a cylinder @, = sin(Zz).

Since Van Dommeln [28], it is known that an outer decelerated flow creates a nice separation bulb
(which was not present in the steady case). But very soon there is a finite time singularity at time ¢ ~ 3.
On figure [40| we see the development of the separation zone (left) and the singularity of the boundary layer
displacement thickness (right). It has been shown by Smith that the time singularity behaves as

o1~ (ts—t)™ V4t ~3.

Separation occurs for an angle of 115 degrees (angle of Goldstein). Notice that all the part computed before
x = 2.01 is exactly the same than in the steady case. (see figure .

- II . 56-



Boundary Layer

3.5

Figure 39: Unsteady separation on a cylinder @, = sin(Z) at times ¢ = 1, 1.5, 2 2.5 et 2.8 computed with finite
differences. Left skin friction evolution, the separation occurs at time ¢ = 0.65, it creates no Goldstein singularity.
Nevertheless, for ¢ ~ 3, there is a time singularity. This time singularity is characterized by a pinching in the
displacement thickness plotted on the right part for several time steps.

R TLLLTHTTI T

K] I> ] =]+
Figure- Boundary layer séparation on a cylinder, fields along 6 [click to launch the movie, QuickTime
Adobe/ Reader required].
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7 Separation on a cylinder, Kirchhoff

7.1 Separation on a cylinder: free streamline

The boundary layer separation on a cylinder with external velocity u. = sin(Z) gives a separation point at
angle 1.9rad=108 degrees. In this point of view the external flow has been solved using the potential flow
theory, and the sketch of the flow is on figure |40| (a) (from Stewartson).

The boundary layer is so thin that we do not see it, the boundary layer is singular at separation.

There is another point of view for separation on a cylinder using the inviscid theory of Kirchhoff. To
model the separation in inviscid flow, we say that the separation bubble is infinite, it is a wake, it is at
zero velocity and at constant pressure in the wake. This hypothesis has been proposed by Kirchhoff and by
Rayleigh, this is based on the free-streamline theory of Helmholtz. There are contribution from Levi Cevita,
Brillouin, Villat... the sketch of the flow is on figure [40| (b) (from Stewartson).

The classical resolution is :

find 9 so that ?%ﬁ = 0, with ¢ = 0 on the symmetry line and ) = 0 on the body.

This is solved with complex variables, F(z) = ¢ + i), and z = x + iy, the conjugate of the velocity
u—iv = dF/dz, let us define ¢ the modulus and 6 the angle of the velocity. If one defines Q = In(dz/dF),
(some times people use iln(dz/dF) see just after Imai analysis) as dF/dz = ge~®, then Q = —In(q) + i6.
This Q = L + i is an analytic function of z, then of F, if we write L = —In(q) we have always a laplacian

0? 0?
orz? " o =0

in the € representation, the rigid walls are 6 constant, and the free boundaries are L constant, on both v
is constant as it is a stream line. The Kirchhoff-Helmoltz resolution is :

(a)

(b)

o

F1G. 1. Two of the candidates for the steady solution of the Navier-Stokes equations for flow past a circular
cylinder at R » 1. (a) attached potential flow. (b) Kirchhoff free-streamline flow.

Figure 40: Steady separation on a cylinder, upper Euler attached flow/ or external flow Lower half, the free stream
line theory with a infinite wake, the angle of separation is ~ 55°, from Stewartson ”d’Alembert Paradox”, SIAM 81.
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find v so that ?21/) = 0, with ¥ = 0 on the symmetry line and ¥ = 0 on the body, find the pressure so that
it is constant in the wake.

7.1.1 Separation on a cylinder, numerical resolution

As just said, the Kirchhoff-Helmoltz problem is :
find v so that ?211) = 0, with ¥ = 0 on the symmetry line and ¥ = 0 on the body, find the pressure so that
it is constant in the wake.

This can be done with FreeFem++, it is a bit difficult as the wake must be adjusted to obtain the good
value for pressure. In fact, we define the circle up to the fixed point of separation zs. The part of the
boundary which is after this position will change during the iterations. We move the mesh for =z > x,
depending on the value of the velocity on this boundary (see code in Annex 5).

Depending on the value of the pressure in the wake, there is a position of the point of separation. Or
depending of the chosen point of separation, one has a pressure in the wake.

7.1.2 Separation on a cylinder, Imai analysis

Looking at the position where there is separation Imai 1953 [13] introduced the classical complex potential
F(z), with u —iv = F’, he defines U velocity in the free streamline so that

In(dF(z)/dz/U) = ln(q/U)e_w

then he writes ¢ In(dF(z)/dz) = iIn(q) +6. The function ¢ In(F’) may be expressed as an expansion kz™ +...
near z = 0 so in the streamline, » > 0, ¢ = U are such that i In(F’) = 0. So that § = kr™, hence k is real.
Before the separation, on the wall, z = re'™ then iIln g+ 60 = kr"™e"™" taking the derivative along the surface
d .
with ds = —dr 0 = +i—L = —kmr™ 1ei™™ the real part — = —kmr™ ! cos(mn) hence m = 1/2 or
ds qds ds
m > 1 and

db . dq k . —1/2 . 1/2
Y S S h h In(dF =
I + qus 50 so that we have iln(dF(z)/dz) = kz

So finally, the results from Imai are the two behaviors:

. qTZg _ _5(—5)‘1/2 and = finite for s < 0
B ok, 1
oq_Uand£—2(5) for s > 0.

sillage de Kirchoff

— — — — — .»
séparation classique

Figure 41: Steady separation on a cylinder, upper half, the Kirchhoff point of view (separation will maybe be around
~ 55°). In the inviscid theory one may construct a region of constant pressure (the separated wake). A stream line
which is tangent to the body. Lower half, the boundary layer point of view, the angle of separation is ~ 108°, the
separated bubble is a finite extent. The external ideal fluid is "attached” and as no wake
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circle

circle

o5t /S E 05 |

Figure 42: Steady separation on a cylinder Kirchhoff-Helmoltz problem solved with FreeFem++, with fixed =, =
cos(m — «). Left, if the separation point is before o = 55° (25, 30, 35, 40 45, 50 and 55) the curvature of the streamline
is negative (which is unphysical). Right, if the separation point is after 55° (55, 60, 65, 70, ..., 100, 105,110) the
curvature of the free streamlines has an angle with the body. For an angle of about 55° the stream line is tangent to
the circle.

05 FEEE

05 | g 05 |

circle

circle

E L L R L L
-2 -15 -1 -0.5 0 -2 -1.5 -1 -0.5 0

Figure 43: Steady separation on a cylinder Kirchhoff-Helmoltz problem solved with FreeFem++, with fixed z, =
cos(m — ). Pressure along y = 0 and along the circle, pressure is taken to 0 in the wake. Left, if the separation point
is before oo = 55° (25, 30 35 40 45,50 and 55) the pressure decreases from the stagnation point to the chosen z,, with
a square root behavior. For o = 55°, the pressure is tangent. Right, if the separation point is after 55° (55, 60, 65,
70, 80, 90 100,) ) the pressure decreases and re increases. This final counter pressure should move x4
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separated wake

Figure 44: Steady separation on a cylinder with FreeFem++, the separation point is imposed to the value 55°,
Kirchhoff-Helmoltz wake of pressure constant.
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Figure 45: Steady separation on a cylinder with FreeFem++, the separation point is imposed to the value 55°,
Kirchhoff-Helmoltz wake of pressure constant. Iso v/u? + v2 are ploted here
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7.1.3 Separation on a cylinder, Sychev analysis

pemienue, ofIajaomee BCeMn it P,
210 Gosree mOaApoOHO.

Pemenne sagaun of TIAJTROTO Kpy=-
TOBOTO IUMHApa 1o cxeme Hupxroda, BooOme roBops, HEOJHOZHAHO.
On0 MOReT GHITH WOCTPOCHO NPH PAIMIHBIX IONOKEHMAX TOUKH OTPHI-
Ba HYJIEBOIl JMHANK TOKA OT HOBEPX- k=0
mocti Tena (pue. 1.4). Ecan nauaro

x Hoit cut-
y cTembl KoopiwmHar Oy IOMECTHTH B
1.3 Self-Induced Separation 11 TOWKY OTXOJIA HyJeBOf JMHHE TOKa

k=0 OT ToBepXHOCTH Teia, TO Kpupmsma _Uo
©BOGOJIHON JHMENE ToKa OyjieT ompe-
JeJATHCA BHIPAKCIHEM

%= —ha "+ o+ O (27),

z—>+0 (31)  pre. 14, Dopma_CBOGOMHBIX JMHMIE TO-
( o~ X@ B Tewemmx Kupxropa npu pasmrd-
e — HEBIX TOYRM OTPHIBA 3
BEPXHOCTH TeJa B TOYKE OTPHIBA, 10~
B

P!

a HA
CTH TeJa B OKPECTHOCTH TOIl TOURM Gy/ieT paBHa

%;k(_ z)“/’+-‘3§k‘+0[(——z)“’], z—>—0; :
. Fig. 1.4 The form of the free streamlines for Kirchhoff flows with various posi- o (3.2)
Flg. 1 tions of the separation point. ZE_0, z>0.

Figure 46: Steady separation on a cylinder, Brillouin Villat condition the curvature of the free streamlines is tangent
to the body at the ”"separation point”. Left from original 1972 Sychev’s paper. Center from Vladimir V. Sychev,
Anatoly I. Ruban, Victor V. Sychev, Georgi L. Korolev ” Asymptotic Theory of Separated Flows”. Left, from the
initial edition Sychev Sychev, which is more clear.

In the freestreamline framework of 2D steady ideal fluids, we showed that the pressure on the body in

a neighborhood of the separation point is (changing Imai notations, z3 — x = —s, u% = _% ) so that
pressure gradient and pressure are:
dp k

+ .... before separation, and after p = py.

dr 2z —x
p=po— kvzs —x + .... before separation, and after p = py.

de
whereas the curvature (d—) of the free stream line is 2\/%75, where x, is the point of separation. The

3k
streamline shape is ys(z) = ?(aj — 2,)%/? (Smith uses —k in his 1977 paper).

It was noticed that this solution presents it self a paradox:

e If k < 0, pressure decreases to 0 (see figure 43| left), but stream lines enter in the obstacle (see figure
left). This is impossible.

e If k£ > 0, stream lines live the obstacle with an angle (see figure right). The pressure decreases and
increases just before ;. So that its gradient will create a boundary layer separation before x4, so before the
”separation point” it self.... This is impossible.

e The sole solution is &k = 0, this is the Brillouin-Villat condition: the curvature of the free streamlines
is tangent to the body at the ”separation point”. This continuity of curvature was written by Brodetsky
1923 as well. But the flow is smooth, there is no counter pressure. So there is no separation. This is the
”Brillouin-Villat” paradox.

This is discussed in Sychev Book and in Stewartson (d’Alembert’s Paradox 1981). With complicated
analysis Brillouin 11 Villat 14, Birkhoff 57. See Ruban [20] p201. We will see latter that the good idea
comes from Sychev, a small positive counter pressure exists:

k(Re) — 0 as Re — oo,

it is vanishingly small with the Reynolds number.

7.1.4 Separation on a cylinder, Landau analysis

In the early 60’s, Sychev had the idea that if a pressure gradient Ap can cause separation, the scales he
proposed are exactly what is then used in the Triple Deck theory settled by Stewartson, Neiland and Messiter
in 1969.
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He considers that perturbations occurs near the wall in a layer of thickness d3 in the boundary layer of
thickness §. Near the wall, the velocity can be written

03
u~ —

o

as very close to the wall the velocity is linear, with § = Re~/2 the boundary layer thickness and were d3
represents the order of magnitude of the transverse position. Then pressure inertia balance (udyu ~ 9,p)
gives:

Ap ~ u?.

This is the good order of magnitude to create a change in the sign of the longitudinal velocity. Then, the
inertial pressure balance is after substitution

but the viscous inviscid equilibrium (ud,u ~ Re‘lagu) gives at a new small scale say z3:

)% =R 55

gives 03 = aré/ 3Re*1, so that it gives the estimate between pressure and scale in x:

prxg/g.

Visiting Sychev institute (TsAGI), Landau reproduced this in his book as an ”problem” end of §40 p 156 of
reference [15]. We then deduce that the pressure gradient near the separation on a cylinder is k/v Az (due
to the square root behavior of the pressure). Hence the previous estimate

Ap ~ kvVAz ~ Ag?/3

gives that
k ~ Az'/S.

This is the first clue that the Brioullin Villat conditions holds: & is smaller and smaller as Re — oo as
Az — 0 forRe — oo
7.1.5 Separation on a cylinder, Sychev Triple Deck analysis

With a bit more estimates, we are close to the triple deck analysis that we will develop later, the displacement
of the stream lines is then Y/Az, the curvature of the flow is then Y/Axz? which is Re™'Az~%/3 this is of
same order of magnitude as the pressure gradient (by the potential flow theory). So dp/dx ~ Re 'Ag=5/3
but Ap ~ Az?/3 hence Az=/3 ~ Re=1Az=5/3 which gives

Az ~ Re /8 and k ~ Re /16

This is part of the resolution of the 9’ Alembert paradox with the ingredients of the Triple Deck that we
will see more precisely in the next chapter. Before, we have to look at second order boundary layer theory.
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8 Second order boundary layer

8.1 Sequence.

We may think that the second order of the boundary layer may fix the problems. But in fact not!
Nevertheless, the scheme is as depicted on figure 7] The first order expansion of the ideal fluid creates a
first order expansion of boundary layer. This first expansion disturbes the ideal fluid and creates a second
order expansion. This perturbation creates a second order expansion in the boundary layer and so on.

Outer Inner
expansion expansion

Number
of
term

Q-0
oRoRE

Fig. 5.6. Matching order for inner
and outer expansions.

Figure 47: Classical sequence, image taken from Van Dyke’s book.

8.2 Second Order

Let us look at the transverse velocity in the Boundary Layer, we up to now never match the transverse
velocity. The reason was that is is of order Re~1/2, which is negligible for the Ideal Fluid. We see that this
velocity induces in the Ideal Fluid a perturbation.

Starting from the incompressibility equation and adding and substracting the same derivative of the
velocity (in the spirit of Von Karmén integral equations):
0v ou Ou ou
(P ey o
Y Oor 0% oz

we obtain, after integration up to an g (Z and g are independent variables) the velocity is:

so, if ¢ is large enough and as 9(0) = 0 we obtain the behavior for large enough 7:

s 0 ,_ ~ _ O,
U(y) = %(ueél) ) oF

This velocity must be multiplied by Re~1/2; and § = Re~'/2jj. Now, we write the velocity in the ideal fluid
as a Taylor expansion near the wall for small 3:
o0v _ O,

17:17(93,0)+g8—g+... =0(2,0) —g5—+

matching this velocity and the boundary layer velocity show that:

v(z,0) = Relﬂi(ue&)
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So that the boundary layer disturbates the ideal fluid at order Re~'/2. Tt is called the ”blowing velocity”.
So the velocity in the ideal fluid (called transpiration boundary condition as well):

0=+ Re 2y, v="=u1+Re 20y p=p1+ Re V?po....
with @y (z,0) = a(z).

Note that we have always slip boundary condition for wus.

8.3 Flat plane case

We substitute this in Euler equation and have to find what is the flow created by a flat plate with a given
blowing velocity which is in 8v/Z/2 with 8 = 1.7.

on 0 _
oy Oz ’ (25)
oxr Oy
We easily see that an irrotationnal solution in cylindrical variables 7, 8 like 1) = —Bv/7 cos(g):
Ug = — b sin(g)7 Uy = p_ cos(=),
27 2 2VF 2

as a result we have a solution with us = 0 at the wall allows to fit the boundary conditions, the two velocity
are plotted on figure We observe that the ideal fluid longitudinal velocity is zero at the wall, so it has
no effect at the next order on the boundary layer. The Blasius solution is valid up to the order 2 for a flat
plate in an external constant flow!

0
1.5
-0.1 1.25
-0.2 o« 1
> >0.75
-0.3 0.5
-0.4 0.25
0
0 2 4 6 8 10 0 2 4 6 8 10
y y

Figure 48: Second order velocity field o and s induced by the blowing of the displacement thickness at Z = 1 for
Y increasing.

On figure 49| we plot the iso 1) over a flat plate. On the middle figure, we plot the solution of the linear
system 0%15 + ang = 0 with naive boundary conditions Z < 0 and § = 0 ¢ = 7 (like an incoming constant
flow), Z > 0and § = 0¢ = —3z'/4. z =0,¢ =§ on § = Jmaz ¥ = Jmas (as if there is no more perturbation
far from the plate) and on T = T4z, %’ = 0 (a Neuman condition).

So we clearly see that the influence of the blowing is not negligible (Re = 500) and that it as an influence
on the incoming profile. One should then be very careful to compute the Navier Stokes flow with a numerical
solver.

8.4 Curvature effects

Nevertheless it is not so simple in the other cases. We examine now the case of non flat plates. Starting
from Navier Stokes equations (see all the Van Dykes articles [29] [30]) written in curvilinear coordinates: s
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Figure 49: Inviscid first + second order iso 1 field induced by the blowing of the displacement thickness. Left the
exact solution rsin(f) — BRe™1/ 2\/77008(g), center solution of Laplacian, right superposition of both.

measured along and n normal to the surface, with h = 1 + x(s)n, where the curvature x is positive on a
convex surface.

ou  O(hv)
- =0
ds + on ’
ou O(hu) op 0 , _q,0(hu)
el =_ X4 h=(h 26
u@s+v on 88+ On( ( on )): (26)
Ip
—ku? = —h——.
KU n
Expanding in the boundary layer variables in powers of Reynolds number:
U= uy + RG_I/QUQ + ...
gives at first order the classical equations the second order is then
Ouz | Ovz _ O(nw1)
0s on on
8u2 aUQ 8U1 8U1 8}91 8 8U2 8 8 8
—= - = o= T T2 kT (n—uq) — U — 27
“as T on = ds  om 0s + non " an("anul) “on (nun)), @7)
2 92
! on’

so all the effect of curvature appear as a linear contribution to the non-curvature case. Again the pressure
is constant in y if there is no curvature effects.
In n =0 ug = v = 0, the matching at infinity is

ug(z,00) = uz(x,0) — kuy (z,0)n
and for large n the matching in pressure requires
p2(z,m — 00) = pa(x,0) — kuy(z,0)%n.

8.5 Rotational effect

Ideal incompressible fluids are rarely rotational. Compressible fluids are mainly rotational due to shock
waves. Nevertheless we may imagine a rotational flow at first order u; = 1 + wy,v; = 0 (first done by
Murray [17] before than a clear definition of second order equations had been settled by Van Dyke the next
year, see Brazier [3]).
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At first order, we have the standard boundary layer equations; again the velocity at infinity creates the
second order of Ideal Fluid, again the solution at order two is the solution on a paraboloid ¢ = —f \/?cos(g).
Even usg is always zero at the wall, now there is pressure gradient due to the vorticity:

Op2 Oui(z,0)  f
o va(z,0) oy Qﬁw'
In the boundary layer:
' Quz | w2 _
Ox oy
8u2 aUQ 8’LL1 8U1 8])1 8 aUQ
e’} 72 = o 2T 28
15z vlay +u28x +v23y ax+3y oy’ (28)
_ Op2
\ 0=—an

in y =0,u2 = v2 = 0 and then in co uy — ua(z,0) + y%jj’o) = wy so we search ug as ug = wy/xg’(n) after
substitution:

29///+fgn _f/g/+2f//g:_6

After computation we find the correction to the skin friction which is

ﬁ: 0.332 +3.12w

2 vVzRe Re

8.6 finite flat plate

We just remark that there is a far wake solution in exponential which describes the finite flat plate problem.
But the trailing edge problem is not simple, it requires a new development. Kuo in 1953 supposed that teh
displacement thickness remains constant at the trailing edge and presented a kind of second order problem
for x > L where vy = 0 in y = 0 (instead of 1/4/x). After difficult computations he obtained the global drag

coeflicient:

Cp 1.33 1
— = —4+4.12—
2 v Re + Re

But the triple deck theory that we will see soon shows that there is an extra term which is larger than
the second order one.

8.7 The Lock-Ting Wake problem
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9 Annex 1: An example of NS computation on a flat plate

For sake of illustration we use FreeFem++ to compute the flow over a flat plate at Re = 500 (figure |50| left). If
we plot several velocity profiles with the self similar variable §(Re/Z)'/? all the profiles are the same (figure
left for j(Re/z)'/? < 7). If we go further, for values of §(Re/Z)"/? larger than 7; we see an overshoot of
velocity. This is a second order effect.

But this is a spurious effect do to the boundary conditions. In fact, to compute it, we imposed naive

boundary conditions. On the entrance: 4 = 1, = 0. On the top 9yt = 950 = 9yp = 0. At the output p =0
and dzu = 00 = 0.
The boundary condition at the top of the domain produces a kind of channel effect. To confirm this, we
compute the solution of the linear system of Ideal Fluid 92%) + 85& = 0 with naive boundary conditions
T <0and 7§ =0 ¢ = 7 (like an incoming constant flow), Z > 0 and § = B\/Z/Re ¢ =0. T =0, ¢ =
on §J = Ymaz ¥ = Ymax (as if there is no more perturbation far from the plate) and on Z = Znax %p =0
(a Neuman condition). The streeam line are on figure |50] right and are similar to the Navier Stokes ones
on figure 50| left. The ideal fluid velocity is larger at the wall 1.7(Re)~Y/2z'/2. This extremum is visible on
figure [51] right and correspond to the overshoot of the Navier Stokes solution of figure [51| middle.

So we clearly see that the influence of the blowing is not negligible (Re = 500) and that it as an influence
on the incoming profile. One should then be very careful to compute the Navier Stokes flow with a numerical
solver.

p— ]
ﬁ ‘)

Figure 50: Left Navier Stokes solution by FreeFem++ at Re = 500, stream lines. Right, Ideal Fluid solution by
FreeFem++ over a body 1.7(Re)*1/ 271/2 | stream lines are nearly the same and one see the displacement effect induced
by the boundary layer..

— = = =
- = = =}
- = = = |
= = ——= |

0 I I I I I I 0 I I I I
0o 1 2 3 4 5 6 70 7 14 21 28 2 3 4

Figure 51: Navier Stokes computation by FreeFem++ at Re = 500, left we have the selsimilar Blasius profile
(superposition of several profils tracés plotted with 7(Re/Z)'/?). Middle, the same profiles but up to a larger value of
7(Re/Z)'/?, we see the decrease of the velocity. Right Ideal Flow over a body in 1.7(Re)~'/2%z/2, the velocity decreases
from the body to the top of the domain. This overshoot of velocity is a spurious second order effect of displacement
of the stream lines.
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10 Annex 2: Hypersonic Strong interaction

The strong interaction (p = M?26?) and the 23/* shock and boundary layer.
the Weak intearction (p = 1+ M6) (see Hayes en Probstein [12])

Figure 52: Weak and strong interaction

11 Annex 3: Von Karman equation axi and plane

Let us look again Von Karméan equation, we write the total derivative:

u% -+ w%
or 0z
in conservative form
iaro‘u2+8uw _[iaraqu 8711)]_’_ %—i— @
r®  Or 0z  ‘re Jr “az u@r w@z

because (o = 1,0 in axi or 2D)
Lot o
re or 0z

as
%0 (ruue) = uer™ *0p (ru) + udy (ue)

again using incompressiblilty and as u. does not depend on z, we have u.0,w = 9,(wue) so that

%0 (ruue) = udy(ue) — 0, (Wie)
we substract the momentum equation

a,,2 2
YO (r%une) — Tiaararu + (e — u)Op(ue) + Oz (w(ue — u)) = —@

allows to write the momentum equation as:

1 Or*(u(ue —u))

0 0
o or + (e — U)E(Ue) + a(w(ue —u)) = “92

remember the 2D expression:

0

2 . 0u. O 9%
ozx

o 6731(@(& —Ue)) = _87312

Uit — %) + (e — @)

Defining the displacement thickness, the momentum thickness and the shape factor

- 00 O~ © g . o
5 = 1— —)dij, 6y = —(1——)dj and H = =-
o= [Ta= D = [T - By ana =3
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and defining a function fo linked to the skin friction as: 6—; = fo I{fe gives the following equation where the

ideal fluid promotes the boundary layer:

1 0r®(u2ds) 0 ou

ro or +orue or (ue) = 0z o
. orody) . ou? 9 9
1 or® U U
2 4 2 e v _ v
Ue s o, + 0o o + 01U ar (ue) P lo
developing the derivative
10 ) 2 0 ou
2+ Y, all = s, 9
Yela 8T(T H)+(1+ H)51u66rue 62’0

with o = 0 we have again:

d 81 51 2  di, foH
e —— - 1 —— = e
df<H)+ae( +H)d§: O11e

ie. 6, = F(ie), (29)

Initial condition is for example 61(0) = 0 (but the Hiemenz value may be a good first guess) and 1.(0) = 1.
In the classical approach, ¢; is obtained through the knowledge of @., which we write formaly § = F(i).
12 Annex 4 Pohlhausen closure for Hiemenz flow

We use the polynomial closure at order 4, so that

u(n)

Ue

1
= (2n—2n° +n*) + GAn— 30 + 30 — )

with A = 62dti./dZ in the Hiemenz case 2, = Z then A = 62, The Von Karmanan equation

reads

which is an equation were &1 /6 = (36 —A)/120 and d/d = 37/315— A /945 — (A?) /9072, and u'(0) = 2+ A/6)
and remember that A = §2, we then substitute in VK:

3 62\ L2 PR LR Ve
I 26— — 4 7 ) =
0 (10 120) 5T < 9072 945 315) 0

we solve and find numericaly § = 2.65562 this gives A = 7.05 and §; = 0.640617, and H = 2.30809 and
=0 = 11957

The real Hiemenz flow f” + ff” + (1 — f?) = 0 as solution f”(0) = 1.2325 (compare to 1.1957 for
Pohlhausen4), the displacement thickness is [(1 — f")dn = 0.6479 (compare to 0.640617 for Pohlhausen4).

Note that the axi Hiemenz flow f” + 2ff” + (1 — f”?) = 0 as solution f”(0) = 1.31194 (in 2D 1.2325),
the displacement thickness is [(1 — f")dn = 0.568902 (compare to 0.6479 in 2D).
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Figure 53: Pohlhausen (dashed) compared to Hiemenz (line)
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13 Annex 5 : Falkner Skan with Mathematica

(** Falkner Skan Equation **)

eqf = £22°[y]l + fly] £2°[yl + b (1 - £ [yl*f’[y]);

fs[fpp_7NumberQ, beta_?NumberQ, etamx_7NumberQ] := Block[{fpinf, dinf},b = beta;

sol = NDSolvel[{
(eqf ) == 0,

£[0] == 0, £7[0] == 0, £27[0] == fpp }, {f }, {y, 0, etamx}];

fpinf = f’[etamx] /. soll[[1, 11];

dinf = etamx - fletamx] /. sol[[1, 1]]1;
(* Print[ "1=",fpinf," ",dinf]l; *)

Return[{fpinf,dinf}]]

fs1[fpp_7?NumberQ, beta_7?NumberQ, etamx_7NumberQ] := Block[{fpinf, dinf},b = beta;

sol = NDSolvel[{
(eqf ) == s

ff0] == 0, £°[0] == 0, £’°[0] == fpp }, {f }, {y, O, etamx}];

fpinf = f’[etamx] /. sol[[1, 11];

dinf = etamx - fl[etamx] /. soll[[1, 11]1;
(*  Print[ "1=",fpinf," ",dinf]; *)

Return[{ fpinf}]]

FindRoot [fs1[xx, 0, 4] == {1}, {xx, .44, .48}, MaxIterations -> 20]

plp21 = Plot[{Evaluate[f’[y] /. soll[[1, 1111 , 2x(2xy/3 - (y/3)"2)/2}, {y,

0.01, 7}, PlotRange -> {{0, 7}, {-1, 1}}]

14 Annex 4: Navier Stokes

Navier Stokes computation with Gerris

HHHHHH B HA SRR H R R H SRR R R R R

# Blasius par PYL, sauver dans "blasius.gfs"
# lancer avec
# gerris2D -DRe=1000. blasius.gfs | gfsview2D v.gfv
# 29/09/10
# valeur du Reynolds
#Define Re 100000.
# definition de 3 boites avec 2 connections
3 2 GfsSimulation GfsBox GfsGEdge{
# met le coin gauche decalle - > paque 2 est en 0,0
x=-0.6y=0.5 }{
SourceViscosity {} 1./Re
PhysicalParams { L = 2 }
# precision 2x*(-4.) = 1/16=0.06 5-> 32 0.03 6 —>
Refine 6
# temps initial O
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Init {3 { U 1
V=013
Init {istep = 1}{
dyU = dy("U"); }
AdaptVorticity { istep = 1 } { maxlevel = 8 minlevel = 4 cmax = le-2 }
# sortie tous les 20 pas de calculs du temps en cours
OutputTime { istep = 20 } stderr
# valeurs qui vont sortir pour entrer dans gfsview
# tous les 30 pas de calcul
OutputSimulation { istep = 30 } stdout
OutputLocation { step = 0.1 } vals.data cut.dat
OutputSimulation { step = 0.25 } SIM/sim-%g.txt { format = text }
EventScript { step = 0.25 } { cp SIM/sim-$GfsTime.txt sim.data}
OutputPPM { step= 0.05 } { ppm2mpeg > blastok.mpg } { min = 0 max = 1 v = Velocity }
# pl0:10]1[0:1.5]"< awk ’{if($1>.7){print $0}}’ sim.data" u ($2/sqrt($1/1000)):6,sin(pi*x/2/4.79)*1.
# pl0:10]1[0:1.51"< awk ’{if ($1>.9){print $0}}’ sim.data" u ($2/sqrt($1/1000)):6,sin(pi*x/2/4.79)*1.
# pl0:5][0:1.5]"< awk ’{if ($1>0){print $0}}’ SIM/sim-3.txt" u ($2*sqrt(1000)):6,1,erf(x/2/sqrt(3))
#p[1[:] "< awk ’{if($2<0.01){print $0}}’ sim.data" u ($1):($9),.33/sqrt(x/1000)
# arret lorsque la variation de U devient "petite"
EventStop { istep = 10 } U 1.e-4 DU}
#conditions aux limites
# first box free stream
GfsBox {
left = Boundary {
BcDirichlet U 1
BcDirichlet V O }
bottom = Boundary {
BcNeumann U 0
BcDirichlet V O }
top = Boundary {
BcNeumann U O
BcNeumann V O }

}
GfsBox {
# en bas vitesse nulle
# second box the flat plate
bottom = Boundary {
BcDirichlet U O
BcDirichlet V O }
top = Boundary {
BcNeumann U O
BcNeumann V 0}
}
GfsBox {
# thrid box
bottom = Boundary {
# BcNeumann U O
#the trailing edge
BcDirichlet U O
# or the plate
BcDirichlet V O }
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top = Boundary {
BcNeumann U O
BcNeumann V O}

right = Boundary {
BcDirichlet P O
BcNeumann U 0 }
}
1 2 right
2 3 right
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15 Annex 5: Massive separation

Separation with FreeFem++

exec("echo \"Kirchhoff\"");
/* Lausanne fev 2013 */
/* 0K 2018 */

verbosity=-1;
real sO=clock();
real t=0;

// solution de Kirchhof-Helmoltz

real h0=17; //hauteur domaine

real L1=15; //longueur gauche

real L2=20; //longueur droite

real hb=1; //hauteur free init

real R=1; // rayon

real ts,xs,ys,alpha; // freestream droite
real hm=0.01; //0.01

real hM=.25; //.5

int n=8; //nbre de points

int i=0;

real coef=1;
real U0=1.1,0f=0,UfmU0=1;
real psiO=hoO;

ofstream ff("UO.txt");
for (int ia=0;ia<27;ia++)
{
alpha=10+iax*5b;
UfmU0=1;
coef=1;
i=0;
t=0;
hb=0;

ts= cos((180-alpha)/180.*pi);
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xs=R*ts;
ys=sqrt (R¥*R-xs*xs) ;

// definition des cotes Maillage

border bas1(t=-1,0) { x= t*(L1-2*%R)-2%R; y =0 ; label = 2; };
border bas2(t=-2,-1){ x= Rx*t; y=0 ; label = 2; 7};
border bas3(t=-1,ts){ x= Rxt; y = sqrt(R*R-x*x); label = 1; };
border bas4(t=ts,1) { x= R#t; y = ys; label = 799; };
border free(t=0,1) { x= t*x(L2-R)+R; y = ys; label = 799; 1};
border droit(t=0,1) { x= L2; y = ys+(hO-ys)*t; };
border haut(t=1,0) { x= L2*(t) - (1-t)*L1l; y = hO; label = 33;};
border gauch(t=1,0) { x= -L1; y = h0o *x t ; };

border c1(t=0,1) { x=R; y = (Rx1.5-ys)*t+ys; }
border c2(t=1,-2) { x= Rxt; y = 1.5%R; }

border c3(t=1,0) { x= -2%R ; y = 1.5%R*t; }

mesh Zoom = buildmesh(bas2(30)+bas3(30)+bas4(30)+c1(30)+c2(30)+c3(30));
mesh Th= buildmesh(basl(n*L1)+bas2(10)+bas3(100)+bas4(100)+free(L2*n)+droit (n*(hO-ys)/4)+haut (n*L1/:
plot(Th,wait=0);

//espace EF

fespace Vh2(Th,P2);
Vh2 psi,psiT;

Vh2 phi,phiT;

Vh2 w,wT;

fespace Vh1(Th,P1);
Vhl u,v,U;

fespace Vhz1(Zoom,P1);
Vhzl Uz,wz;

// visu

real [int] visopsi=[ 0,0.5,1,1.5,2,2.5,3,4,6];

real [int] visophi=[-5,-3,-2, -1.5, -1, -0.5, 0,0.5,1,1.5,2,2.5,3,3.5,4,5,7];
real[int] viso(61);

for (int i=0;i<viso.n;i++) viso[i]l=i*h0/60.;

/** problemes */
problem freeb(w,wT,solver=CG) =
int2d (Th) (
dx (w) *dx (wT) +dy (w) *dy (wT) )
+ on (gauch,w=0)
+ on (33, w=0)
+ on (basil,bas2,bas3, w=0)
+ int1d(Th,799) (-wT*(UO - U));

problem Lappsi (psi,psiT) =
int2d (Th) (
(dx (psi)*dx(psiT) + dy(psi)*dy(psiT)) )
//  + on(gauch,psi=y)
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on(2,psi=0)
on(1,psi=0)
on(799,psi=0)
on(33,psi=psi0) ;

+ + + +

//

problem Lapphi (phi,phiT) =
int2d(Th) (
(dx (phi)*dx (phiT) + dy(phi)#*dy(phiT)) )
+ on(gauch,phi=-L1)
+ on(droit,phi=L2); ;

while ((abs ((UfmU0))>.00001))
{

if (i>1666) break ;

i++;
Lappsi;

u= dy(psi);
v=-dx(psi);
U=sqrt (uku+v*v) ;
Uz=U;
plot(Uz,fill=1);

if (1%50==1) plot(Th,cmm="psi=",psi, viso=viso,fill=0,wait=0);
freeb;

// xs=R*ts-2*hm;
// xs=Rx*ts;
// ys=sqrt (R*R-xs*xs) ;
// dernier point
real xm=-10000,ym=0;
for (int i=0;i<Th.nt;i++)
{ for (int j=0; j <3; j++){
if(Th[i] [j].1label==1){
if( Th[i][j].x >=xm)
{ xm = Thlil[j].x;
ym = Th[il [j].y;}

XS=Xm;

ys=ym;

Uf=U(xs,ys);

UfmU0=Uf-U0;

if ((i>1) ) { UO=UO+.005*(UfmUO) ;} // relaxation

if (i%15==1)
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ofstream ff2("free.txt");
for (int i=0;i<Th.nt;i++)
{ for (int j=0; j <3; j++){
if ((Th[i] [j].1label==799) || (Th[i] [j].label==1) || (Th[i] [j].label==2)){
f£f2<<Th[i] [j].x << " "<< Th[i][j]l.y << " "<< U[1[Vh1(i,j)] << " " << U0 << endl;
}
}
}
}
//

cout <<" "< t <<" w max="<< abs(w[].max)+abs(w[] .min)<<" ++++++++HHHHHHH4+ A 4+ U0=

real minTO= checkmovemesh(Th, [x,y]); // the min triangle area
while(1) // find a correct move mesh
{
real minT=checkmovemesh(Th, [x,y+coef*w]); // the min triangle area
if (minT > minTO0/5) break ;
coef=coef/1.5;
// if big enough
}
Th=movemesh(Th, [x ,y+coef*w]);
WZ=W;
Zoom=movemesh (Zoom, [x ,y+coef*wz]);

if ((i%15==1)&&(i<100))Th = adaptmesh(Th,dx(u),dx(v),w,hmax=hM,hmin=hm,iso=true,ratio=1);
if ((1%15==1)&&(i<100))Zoom = adaptmesh(Zoom,dx(Uz) ,wz,hmax=hM,hmin=hm,iso=true,ratio=1);

if(i%10==6) plot(Th, U,fill=1,wait=0);
t=t+coef;
coef=.1;

}

Lappsi;

Lapphi;

cout << " " <K< t << " w max=" << abs(w[].max)+abs(w[].min) << " aa== " << alpha << " +++
plot(Uz,fill=1,ps="uz.eps");

plot(phi,psi,U,fill1=0,wait=0);

ff << alpha << " " << UO << endl;

exec(" sort -n -k 1 free.txt > tfree"+alpha+".txt");

exec(" cp uz.eps uz'"+alpha+".eps");

cout << "CPU " << clock()-s0 << "s " << endl;
exec(" gnuplot kirchoff.gnu");
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16 Annex 6 : Speed of sound

Acoustics corresponds to perturbation of steady state, there is no free stream velocity Uy, but there may

be a characteristic velocity constructed with py and py which is Uy = /(po/po) say that e1/(po/po) is the
velocity of the sound source of pulsation w so that the scale of length will be L = Uy/w, then

u="Uy(eu; +...), u=Up(ev1+...), p=po(l+ep1+...)

and t = t/w and x = LZ.... the first order equations of perturbation are:

'@ﬁl o (9171_

ot Vor Ty 7O
Om _ _o; (30)
ot oz’
ovn _ _o;

L ot 0y

Eliminating the velocity gives :

O’p1  O%p1 OPpr 0

o2 o0z oy
We need a final relation, the one coming from entropy or from any equation of state like p = P(p), the
isentropic cas gives p/po = (p/po)” so that p; = yp; and

(52171 32}51) 18P
0z2 = oy’ 4 02

This is the 0’Alembert equation with wave velocity . Coming back to dimensions

o*p1 O*m

1 6%py
(8302 + Oy?

__9n_
) g ot? ’

with cg = vpo/po the speed of sound. This is the usual equation for linear acoustics.

Note that if p = P(p) (any given relation) then ¢ = LZ;’) ).
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