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Abstract

We present here briefly the famous ”triple deck theory”. In this
framework, boundary layer separation is possible without singularity.
Some numerical experiments describing the flow over bumps or wedges
without or with flow reversal in various asymptotic régimes are pre-
sented.

1 Introduction.

Let us present a summing up of the preceding chapters. We presented what
happens in a wall layer when a shear flow is disturbed, we next saw the
perturbation of a Poiseuille flow. We observed in that case that pertur-
bations can exist in the core flow (the Main Deck), the perturbations are
expressed as a perturbation of the stream lines trough a function −A. We
then presented the Blasius boundary layer, we emphasized the influence of
the displacement thickness and the retroaction with the ideal fluid in the
framework of Interacting Boundary Layer Theory.

2 Triple Deck

2.1 Overview

In the fifty’s Lighthill [4] and Landau among a lot of others began to un-
derstand that boundary layer separation will be explained by new scales
and a strong displacement of the boundary layer. This occurring at a small
longitudinal scale, but larger than the boundary layer itself.

Then, simultaneously Neiland [6], Messiter [5] and Stewartson [13] in 69
proposed a new asymptotic structure in three decks (figure 1).

First, there is the basic boundary layer, which is now the ”Main Deck”.
this layer is disturbed near the wall where the velocity is the smaller, the
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Triple Deck

length of this layer is small. Perturbations in this lower layer called ”Lower
Deck” are transmitted through the ”Main Deck”. In this layer the pertur-
bation acts as a displacement of the stream lines (with a function called
−A(x)). This deflexion of the stream lines is transmitted to the ideal fluid
layer : the ”Upper Deck”. This deflexion creates a disturbance of pressure,
and this disturbance of pressure will be transmitted back in the lower deck
promoting the velocity disturbances. So that we will deal with a coupled
system of equation: a disturbance of pressure creates a disturbance of stream
lines which in turn creates a disturbance of pressure.

(STEWARTSON K. & WILLIAMS P.G.1969 "Self induced separation", Proc Roy. Soc A

312, 181- 206.)
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La synthèse se fait en partant de la solution de Blasius et en la perturbant à l'échelle !3

dégagée. Comme on est à une échelle plus courte que celle du développement de la couche

limite, le profil de Blasius (noté U0) ne varie pas en x à l'échelle considérée.

On a pour le frottement pariétal (en y=0):

 dU0/dy=# !-4. et #=.3321

on écrit le développement suivant:

 u=U0+!u1+...; v=!2v1+... p = !2p1

En substituant dans les ENS: on en déduit que la solution est une perturbation non visqueuse

des équations, et qu'il n'y a pas de variation transverse de pression:

u1=  A(x)U0
', et v1= -  

d$

dx
 U0 et  

% 

%y
p1=0

-dA/dx (x en !3.....) Retenons que la solution dans le "pont principal" ("Main Deck") est une

perturbation non visqueuse de la solution de Blasius.

1.2.2. pont inférieur

Près de la paroi on constate que la développement de la solution de pont principale donne:

u=#y + ! A(x)#
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Figure 1: Left, the triple deck scales. Right, ”triple decker ship of the line” from

HMS victory brochure Porthmouth (”vaisseau de ligne à trois ponts”). In german

”Dreierdeck-Theorie”, a french translation of Triple Deck Theory may be ”Triple

Pont” instead of ”Triple Couche”.

2.2 Scales

2.2.1 Main Deck

The classical way to look at Triple Deck is to consider perturbations of the
Boundary Layer. The first idea to introduce is the existence of a perturba-
tion of small length compared to the boundary layer development itself.

We have the basic non dimensional Blasius profile UB(ỹ) in the boundary
layer, where ỹ is the transverse variable scaled by L/

√
Re. Now suppose that

at longitudinal scale say x3L there is a perturbation of this basic profile. Of
course x3 � 1. We will call ”Main Deck” the region considered which is
of relative scale x3 but which is of boundary layer scale in the transverse
direction. As this scale is small, the boundary layer as not evolved, and at
first order VB = 0. So, suppose that at longitudinal scale say x3 there is a
perturbation of this basic profile of magnitude ε, then:

ũ = UB(ỹ) + εũ1
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Triple Deck

In order to retain all the terms in the incompressibility and in the total
derivative equation,

ũ = UB(ỹ) + εũ1, ṽ =
ε

x3

√
Re

ṽ1

longitudinal equation of momentum (UB
∂ũ1
∂x + ṽ1U

′
B), is of order ε/x3. The

previous analysis show that the relevant pressure term is in ε2/x3 which is
negligible as are the viscous terms. This small value of pressure may be
considered here as a first hypothesis that we will verify after. The system
to solve is then

∂ũ1

∂x
+
∂ṽ1

∂ỹ
= 0, (UB

∂ũ1

∂x
+ ṽ1U

′
B) = 0,

∂p̃1

∂ỹ
= 0.

By elimination we find: U2
B
∂
∂ỹ ( ṽ1UB

) = 0, the classical notation is then to
introduce a function of x say A(x) introduced as a constant of integration,
such as

ũ1 = A(x)U ′B(ỹ) and then ṽ1 = −A′(x)UB(ỹ)

is solution of the system.
With this description, the velocity is not zero but εA(x)U ′B(0) on the

wall, so we have to introduce a new layer to full fit the no slip condition.

2.2.2 Lower DeckL'équilibre diffusif/ convectif doit être respecté pour assurer l'adhérence à la paroi:

u
!u

!x
 ~ R-1 

!2 

!y2
 u.

 près de la paroi: "u ~ u ~ #3/#.

Ce qui s'écrit avec les ordres de grandeur  précédents et  compte tenu du fait que l'accident se

produit sur une échelle rapide x3,

"u"u/x3~"u/(#3/#)2.

Cette expression fournit l'ordre de grandeur de l'échelle rapide en fonction du rapport des

couches:

x3~(#3/#)3=$3.

On constate facilement ensuite que la pression est en $2, on admet (dans cette analyse rapide

mais on peut le montrer) qu'elle ne varie pas en y et quelle est encore inchangée au travers du

"Pont Principal" Main Deck. Cette perturbation de #3 de la couche limite produit une

déflexion des lignes de courant  #3=$#. L'angle de déflexion correspondant est donc:

$#/$3.

Cette perturbation est alors ressentie par le fluide parfait comme une bosse de longueur $3 et

d'épaisseur $#. Le fluide parfait linéarisé rétroagit donc avec  $3 comme échelles transverses

et longitudinales ("Pont Supérieur" Upper Deck) à cette bosse d'angle $#/$3. La perturbation

de pression de fluide parfait est donc proportionnelle à l'angle de la bosse en $#/$3. Or l'ordre

de grandeur de la pression compatible dans le Pont Inférieur est $2, donc pour qu'il y ait

rétroaction, il faut que ces deux pression soient égales:

$2=$#/$3

Ce qui donne le paramètre magique:

 $=#-1/4=R-1/8.

1.2. synthèse: développements asymptotiques

1.2.1. pont principal

Il s'agit de la formulation de Stewartson 1969.
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Figure 2: Near the wall the velocity profile is linear, the order of magnitude of

the variation of velocity must be the same than the basic flow in order to obtain

separation.

The purpose of the lower deck is to introduce a layer in which this per-
turbation of velocity will be annihilated. So the scale of velocity is ε, then
as the velocity of the boundary layer is linear near the wall it is natural to
guess that the lower deck will by of size εL/

√
Re.

The behavior of the velocity in the Main Deck is

ũ = UB(ỹ) + εA(x)U ′B(ỹ).
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Triple Deck

We look at it near the wall. For ỹ → 0 the Blasius profile is linear near
the wall UB(ỹ) → Ũ ′B(0)ỹ and then the velocity is U ′B(0)ỹ + εA(x)U ′B(0),
written in the inner variables of the lower deck this is (as ỹ = εy)

ε(y +A(x))U ′B(0).

So we deduce that in the lower deck the velocity should match to this quan-
tity:

lim
y→+∞

u = (y +A(x))U ′B(0)

The convective diffusive equilibrium of the Navier Stokes equations

u
∂

∂x
' Re−1 ∂

2

∂y2

written with the longitudinal x3 and transversal εRe−1/2 scales reads:

ε

x3
∼ Re−1 1

(εRe−1/2)2

so that the longitudinal scale is :

x3 = ε3.

The pressure comes from the non linear balance

u
∂u

∂x
' −∂p

∂x
,

it is of order ε2, and the transverse equations of momentum gives as in the
classical boundary layer:

∂p

∂y
= 0

so, the pressure does not depend on y and is constant across the lower deck.
The final system is then:

∂u

∂x
+
∂v

∂y
= 0, u

∂u

∂x
+ v

∂u

∂y
= −dp

dx
+
∂2u

∂y2
.

With no slip condition at the wall (u = v = 0), the entrance velocity profile
u(x→ −∞, y) = U ′B(0)y, and the matching condition with the Main Deck:
u(x, y → ∞) = (y + A)U ′B(0). Note, that the system is parabolic, there is
no output condition needed to solve it.
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2.3 Upper Deck

The disturbed velocity in the Main Deck is :

ũ = UB(ỹ) + εA(x)U ′B(ỹ); ṽ =
1

ε2
√
Re

A′(x)UB(ỹ)

and for the pressure
∂p̃

∂ỹ
= 0

Now let us see what happens at the top of the Main Deck, for ỹ →∞:

ũ = 1; ṽ =
1

ε2
√
Re

A′(x),

there is no more longitudinal perturbation of the velocity at order ε, but
there is a transverse velocity, a kind of ”blowing velocity” at the edge of the
Main Deck. Note that the pressure remains the same order ε2.

Therefore we look at a layer of longitudinal size x3 = ε3 and of same
thickness in which we have a blowing velocity at the wall of order 1√

Reε2
and

a pressure of order ε2. This rings us a bell: the problem of perturbation of
an dial fluid by a bump, which is equivalent of a flat plate with a blowing
velocity. To have a consistent problem both orders of magnitude of blowing
velocity and pressure perturbation should be equal ε2 = 1√

Reε2
, so that we

obtain the final magic parameter:

ε = Re−1/8

3 The various régimes

3.1 Upper Deck, coupling relation incompressible

The velocity at the top of the Main Deck is then the velocity at the bottom
of the upper deck: −A′. Depending on the ideal fluid régime, one may
compute the pressure. For a incompressible flow on has the Hilbert relation:

p =
−1

π

∫
−

dA
dx

x− ξ
dξ

One see that there in the equations one can remove U ′0 in the equations in
changing the scales, say u multiplied by U , p is multiplied by P , x by X
and y by Y , so by invariance (u∂xu versus ∂xp) P = U2, and (u∂xu versus
∂2
yu) gives U = X/Y 2. At infinity u ∼ U ′0y + ... so that X = U ′0Y

3. The
pressure displacement relation tells that the pressure is proportional to A′,
so U2 = Y/X which is (X/Y 2)2 = Y/X or X3 = Y 5. But remember that

X = U ′0Y
3, then X = U ′0

−5/4 so, finally

x3 = (U ′0)−5/4Re−3/8, δ3 = (U ′0)−3/4Re−5/8
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u3 = (U ′0)1/4Re−1/8, v3 = (U ′0)3/4Re−1/4, π = (U ′0)1/2Re−1/4

so that the final system is independent of the base flow.

3.2 Upper Deck, coupling relation supersonic

For a compressible supersonic flow, one has the Ackeret formula:

p = −γ M√
M2 − 1

dA

dx

again, changing the scales, one can remove the U ′0 :

x3 = C3/8(U ′0)−5/4(M2 − 1)−3/8Re−3/8, ...

then the relation is p = −A′.

3.3 Upper Deck, coupling relation transcritical

In transcritical flows a new parameter K = (M2 − 1)(U ′0)−2/5C−1/5Re−1/5

and

p = −(
3

2
√
γ + 1

A′)2/3

see Bodoniy, Bartels & Rothmayer, Bodonyi and Kluwick [2].

3.4 Upper Deck, coupling relation sub/supercritical

In the case of water flow, the ideal fluid response was for the pressure the
disturbance divided by F 2 − 1. So by rescaling:
x = (x∗/L−1)U ′B(0)5

∣∣Fr2 − 1
∣∣3 /(Re−3/8), y = (y∗/L)U ′B(0)2

∣∣Fr2 − 1
∣∣−1

/(Re−5/8),

p = (p∗/(ρU2
0 ))U ′B(0)2

∣∣Fr2 − 1
∣∣−2

/(Re−2/8),
p = A for subcritical flows (F < 1) and p = −A for supercritical flows
(F > 1).

3.5 Jet Flow

Nearly the same configuration may exist for a wall jet of thickness δ =
Re−1/2 near the wall l:

1

x3
ε2ū

∂ū

∂x̄
∼ ε

ε2δ2Re
(
∂2ū

∂ȳ2
)

so that x3 = ε3 and u = U0 + εA(x)U ′0 and v = − εδ
x3
A′(x)U0

U0
∂v

∂x
= −∂p

∂y
, so the scale is

εδ

x2
3

(−A′′(x̄))U2
0 ∼ −

ε2

δ

∂p1

∂y
,

so that ε = Re−1/7 which gives x3 = Re−3/7 and εδ = Re−9/14

p(x̄, 0) = −A′′(x̄)

∫ ∞
0

U2
0 (y)dy

- IV . 6-



Triple Deck

3.6 The various régimes, canonical system

The canonical system is:

∂u

∂x
+
∂v

∂y
= 0, u

∂u

∂x
+ v

∂u

∂y
= −dp

dx
+
∂2u

∂y2
.

With at the wall (u = v = 0), at the entrance u(x → −∞, y) = y, and at
the infinity u(x, y →∞) = (y +A).

• p = −1
π

∫
−

dA
dx
x−ξdξ incompressible case

• p = −A′ supersonic

• p = −A hypersonic case

• p = A fluvial.

• p = −A torrential.

• p = −A mixed convection.

• −A = 0 pipes, Couette.

• p = −A′′ pipes, wall jets.

• p = −∂xφ, A′ = ∂yφ, with ∂2
yφ = (1 + ∂xφ)∂2

xφ, transsonic.

3.7 Linearised solution: self induced solution

We can look at a linearised solution of the canonical system. The linearised
system is:

∂u1

∂x
+
∂v1

∂y
= 0, y

∂u1

∂x
+ v1 = −dp1

dx
+
∂2u1

∂y2
.

With at the wall (u1 = v1 = 0), at the entrance u1(x→ −∞, y) = 0, and at
the infinity u1(x, y →∞) = A1.

We test eKx solutions on the linearized system, with K > 0.

u1 = eKxφ′(y), v1 = −KeKxφ(y), p1 = eKxP

with φ(0) = φ′(0) = 0 and say φ′(∞) = 1 so that A1 = eKx; as the incom-
pressibility is fulfilled, the momentum is

Kyφ′(y)− φ(y) = −KP +
∂2φ′(y)

∂y2
, (1)

so by differentiation wez have to solve:

∂2φ′′(y)

∂y2
= Kyφ′′(y),
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with φ′′′(0) = KP . If we write z = K−1/3y and φ′′ = f , then the equation
is

d2f(z))

dz2
= zf(z),

whose form is Airy function. f(z) = Ai(z). Hence, from the boundary
condition in 0 (φ′′′), we have the derivative of the Airy function Ai′. Then

φ′′ is K2/3Ai(K1/3y)P/Ai′(0) and φ′ = K1/3P
Ai′(0)

∫ y
0 Ai(ξ)dξ so that we deduce,

because
∫ y

0 Ai(ξ)dξ = 1/3:

φ′(∞) =
K1/3

3Ai′(0)
P

• The supersonic case allows then an eigen solution

K = (−3Ai′(0))3/4

with K = 0.827
This exponential is the rational explanation of the observed self induced
separation.
• The supercitical case and the hypersonic case and the mixed convection
case allow then an eigen solution

K = (−3Ai′(0))3

with K = 0.47

• The jet case (or pipe) allows then an eigen solution

K = (−3Ai′(0))3/7

with K = 0.89

The incompressible, the fluvial and the couette or symmetrical pipe cases
do not allow this self induced solution.

3.8 The Prandtl transposition theorem

There is a trick called ”Prandtl tranform” or ”Prandtl transposition theo-
rem” which allows to change the bumpy wall into a flat one. One writes
ỹ = y − f(x) and keeps x̃ = x. Then, as ∂x = ∂x̃ − f ′(x)∂ỹ and ∂y = 0 + ∂ỹ
continuity equation becomes

∂

∂x̃
u+

∂

∂ỹ
(v − f ′u) = 0

and as the total derivative:

u
∂

∂x
u+ v

∂

∂y
u = u

∂

∂x̃
u+ (v − f ′u)

∂

∂ỹ
u
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so the Prandtl transform or ”Prandtl transposition theorem” is: ỹ = y−f(x)
, x̃ = x, ũ = u and ṽ = (v − f ′u) so that system is invariant:

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −dp

dx
+
∂2u

∂y2
.

(2)

u = v = 0 on y = 0, u→ y when x→ −∞, and u→ y+f(x) when y →∞.

The sole difference lies in the boundary condition at the top.
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3.9 Linearised solution explicit solution in Fourier space

We can look at a linearised solution of the canonical system. The linearised
system is in Prandtl transform:

∂u1

∂x
+
∂v1

∂y
= 0, y

∂u1

∂x
+ v1 = −dp1

dx
+
∂2u1

∂y2
.

With at the wall (u1 = v1 = 0), at the entrance u1(x→ −∞, y) = 0, and at
the infinity u1(x, y →∞) = A1 + f1.
We are looking for solutions in Fourier space so we test eikx solutions on the
linearized system.

u1 = eikxφ′(y), v1 = −(ikx)eikxφ(y), p1 = eikxPk f1 = fke
ikx, A1 = ake

ikx

with φ(0) = φ′(0) = 0 and then φ′(∞) = ak + fk so that; as the incompress-
ibility is fulfilled, the momentum is

ikyφ′(y)− φ(y) = −ikPk +
∂2φ′(y)

∂y2
, (3)

so ∂2φ′′(y)
∂y2

= ikyφ′′(y), and as φ′′′(0) = ikPk, so φ′′ is (ik)2/3Ai((ik)1/3y)Pk/Ai
′(0)

and φ′ = (ik)1/3P
Ai′(0)

∫ y
0 Ai(ξ)dξ so that we deduce φ′(∞) = ak + fk = (ik)1/3

3Ai′(0)P

The relation between the perturbation of pressure and the displacement
is then in Fourier space:

β∗FT [p] = FT [(A+ f)]

where β∗ = (3Ai′(0))−1(ik)1/3.

• The supersonic case βpf = 1/(−ik)

• The subsonic case the pressure displacement relation is βpfFT [p] = FT [(A)]
with βpf = 1/ |k|

• The supercitical case is such that βpf = −1

• The fluvial case is such that βpf = 1

• The no displacement case βpf = 0.

• The no displacement case βpf = 0.

To plot the figures 3.10 one uses then the following relations:

FT [p] =
FT [f ]

β∗ − βpf
and FT [τ ] =

(ik)2/3

Ai′(0)
Ai(0)FT [p]. (4)

and the linearized perturbation of the skin friction (τ)
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3.10 Plots of linearised solutions
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Figure 3: Friction distribution and pressure over a bump in 6 cases, linear
solution. Top left the Hilbert case, just to compare. Top right the subsonic

case p = −1
π

∫
−

dA
dx
x−ξdξ. Middle left, the supersonic p = −A′ case. Middle

right, p = −A case. Bottom left, the A = 0 case. Bottom right, the p = A
case.
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3.11 Supersonic case

Supersonic case p = −dA
dx , flow over a wedge, non linear case.
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Figure 4: pressure distribution over a wedge
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Figure 5: Friction distribution over a wedge
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3.12 Subsonic case

p = −1
π

∫
−

dA
dx
x−ξdξ subsonic/ incompressible case with the Hilbert integral,

non linear case.
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Figure 6: pressure distribution over a bump
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Figure 7: Friction distribution over a bump
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3.13 Transsonic case

p = −(
3

2
√
γ + 1

A′)2/3

Figure 8: Friction distribution pressure distribution over a expansive wedge

- IV . 14-



Triple Deck

3.14 Various scales on a bump

Smith et al. [12] and Roget et al. [7] showed that a bump which is at the
triple deck size is at a kind of interaction of several effects.
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Figure 9: various scales converging in the Triple Deck

We saw that the triple deck corresponds to a very special size for a bump.
So we may ask what happens if we change the size of the bump. Imagine
that the bump is no more of size O(1) in the Triple Deck scale but is smaller
or larger. How changes teh longitudinal scale if we want to have always the
maximum number of terms in the equations.

Let say that y is changed by Y y, so, in the triple deck if we change
y → Y y then in order to have the non linear viscous balance, we have:
u → Y u, x → Y 3, p → Y 2p and A → Y A. With this transformation lower
deck equations are the same.

Let use H the size of the bump as the parameter of height. H is not Y ,
and f → Hf

The ideal fluid relation (using Prandtl transform):

p =
−1

π

∫
−A

′ − f ′

x− ξ
dξ
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has the following rescaling:

(Y 2)p = (Y −2)
−1

π

∫
− A′

x− ξ
dξ + (HY −3)

−1

π

∫
− −f

′

x− ξ
dξ

• If now Y is large (this is a large bump X = Y 3), and if H is large,
the displacement contribution decreases. for Y 2 = HY −3 i.e. H = Y 5 or
H = X5/3.

The largest size of the bump is the boundary layer itself, so it gives a
maximum size of Re−3/10.
• If now Y is small (small bump X = Y 3), and if H is large, the displacement
contribution decreases.

(Y 4)p =
−1

π

∫
− A′

x− ξ
dξ + (HY −1)

−1

π

∫
− −f

′

x− ξ
dξ

so H = Y and we have A′ + f ′ = 0. this is the no displacement case.

• there is a more subtle case, as the matching relation is u(x,∞) = y+A+f ,
then if H is large, we may imagine that A is large (change A→ HA) and as
y → Y y (with Y << H), the lower Deck is broken in two parts one where u
goes from 0 to A and another one where u = A+ f (u is of order H >> Y )
so if we change A → HA, x → Xx,u → Hu and p → H2p. The ideal fluid
relation (using Prandtl transform):

p =
−1

π

∫
−A

′ − f ′

x− ξ
dξ

has the following rescaling:

(H2)p = (H/X)
−1

π

∫
− A′

x− ξ
dξ + (H/X)

−1

π

∫
− −f

′

x− ξ
dξ

so that H = 1/X.
We then have to solve:

A
∂A

∂x
=

1

π

∂

∂x

∫
−A

′ − f ′

x− ξ
dξ
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4 Link with IBL

The IBL formulation emphasizes on the displacement thickness,

δ1 = (Re−1/2)

∫ ∞
0

(1− u(x, ỹ))dỹ

we have to decompose it into two parts as we cross the lower and the main
decks. Let introduce Ỹ

δ1 = (Re−1/2)(

∫ Ỹ

0
(1− ũ(x̄, ỹ))dỹ +

∫ ∞
Ỹ

(1− ũ(x̄, ỹ))dỹ)

the first integral is estimated near the wall, so the Lower Deck description
(ỹ = εy) is valid there, but a good idea is to write the velocity u(x, y) =
U ′B(0)(y +A) + uc where uc is a correction:

(

∫ Ỹ

0
(1− ũ(x̄, ỹ))dỹ) = ε(

∫ Ỹ /ε

0
(1− ε(U ′B(0)(y +A)))dy −

∫ Ỹ /ε

0
εucdy)

the second one is in the Main Deck∫ ∞
Ỹ

(1− u(x, ỹ))dỹ =

∫ ∞
Ỹ

(1− UB(ỹ)− εA(x)U ′B(ỹ))dỹ.

Re summing the two integrals and changing the order of the terms allows
then write:

δ1 = (Re−1/2){[ε(
∫ Ỹ /ε

0
(1− ε(U ′B(0)(y)))dy +

∫ ∞
Ỹ

(1− UB(ỹ))dỹ]+

+[ε(

∫ Ỹ /ε

0
(−ε(U ′B(0)(A)))dy +

∫ ∞
Ỹ

(−εA(x)U ′B(ỹ))dỹ]− ε2

∫ Ỹ /ε

0
ucdy)}

so that we recognize :

δ1 = (Re−1/2){
∫ ∞

0
(1−UB(ỹ))dỹ+

∫ ∞
0

(−εA(x)U ′B(ỹ))dỹ−ε2

∫ Ỹ /ε

0
ucdy)}.

or

δ1 = (Re−1/2){
∫ ∞

0
(1− UB(ỹ))dỹ − εA(x)−O(ε2)}.

the −εA contribution of the triple deck is the perturbation of the displace-
ment thickness

∫∞
0 (1 − UB(ỹ))dỹ. So the IBL technique based on δ1 is

justified by the triple deck analysis.
Remember that the ideal fluid velocity is

ūe = 1 +
1

π

∫
f̄ ′(x̄)ūe +Re−1/2 d(δ̃1ūe)

dx̄

x− ξ
dξ +O(1/Re)
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in this framework d(δ̃1ūe)
dx̄ is no more small, it is large. Hence one can not

neglect Re−1/2 d(δ̃1ūe)
dx̄ . The order of magnitude of the term Re−1/2 d(δ̃1ūe)

dx̄

is Re−1/2ε/x3, but Triple Deck gives x3 = ε3 and that the perturbation
of velocity in the Upper Deck is ε2. Hence Re−1/2ε/x3 = ε2, and again
ε = Re−1/8.

5 Full flat plate problem

The leading edge problem, velocity is of order one, x and y are of same order
of magnitude so

u
∂u

∂x
∼ Re−1∂

2u

∂x2

with the scales
1

X
∼ Re−1 1

X2

hence
X = Re−1

written ε8 = Re−1 on the figure.
The trailing edge problem.
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Figure 10: The scales on the plate, from K. Stewartson, On the flow near
the trailing edge of a flat plate, Mathematica 16 1969
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6 ∂’Alembert Paradox and Kutta condition

At this point, it is time to introduce the famous d’Alembert Paradox 1752.
Remember what it is exactly, it states that in Ideal fluid there is no

drag. To remove this, Prandtl introduced the boundary layer in 1904. But
discussion is still active on the large Reynolds number wake (separation on
a cylinder).

The triple deck structure is a possible response to solve it. The Kutta
condition does not exist, the flow can turn round the trailing edge, but this
is at a Re−3/8 scale, it is so small when Re → ∞ that this gives the Kutta
condition.
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7 Conclusion

In this chapter we presented the Triple Deck scales and equations. We
showed that there is an interactive problem between a thin layer near the
wall and a layer of ideal fluid through the displacement of the stream lines
−A. In the thin layer, Prandtl equations are valid with new scales, and a
different matching condition involving this displacement function −A. The
upper layer Euler small disturbance theory applies, the layer in between is
the boundary layer which is passive and only transmits the perturbations of
−A and pressure p. This framework allows to understand boundary layer
separation and self induced separation. The pressure deviation relation pres-
sure p displacement −A allows a large variety of various coupled problems...
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