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Abstract

We present here the Interacting Boundary Layer Theory. This is a way to solve an approximation
of the Navier Stokes equations using the Ideal Fluid Boundary / Layer decomposition. But, instead of
solving first the ideal Fluid and second the Boundary Layer, both are solved together. This ”strong
coupling” allows to compute separated flows which was impossible with the classical way. We present
some numerical experiments.

1 Introduction

We are now familiar with the concept of Ideal Fluid/ Boundary Layer decomposition. We have understood,
that putting first 1/Re = 0 in Navier Stokes gives the Euler description. In this non viscous description, the
flow slips at the wall. This gives an outer velocity at the wall, parallel to the wall. This singular behavior is
removed by the introduction of a thin layer of relative thickness 1/

√
Re. The velocity at the upper bound

at infinity is by matching the ideal fluid velocity at the wall. In this boundary layer, viscous effects act in
order to decrease this velocity to full fit the no slip condition.

From a practical aeronautical point of view, the ideal fluid description gives the lift of the wing, the
viscous layer gives the drag (we are aware of the induced drag on finite span wings which is a ideal fluid effect).

But, everything is not so simple, there are problems when computing the boundary layer: we remain again
the boundary layer separation problem. But there are other paradoxes: we introduce an other important
problem which is the ”upstream influence problem”. We will show that to solve those two problems, the
good strategy is a strategy of ”strong interaction” between the boundary layer and the ideal fluid. So it
was called ”Interacting Boundary Layer” or ”Viscous Inviscid Interaction” (or Inviscid Viscous Interaction).
Some practical examples from literature and for various flows régimes are presented.

2 Problems associated with the Boundary Layer

2.1 Separation

We already had a glimpse on the problem of separation of boundary layer. We saw that for a given external
flow, one can not compute the boundary layer if the skin friction vanishes. This is called Goldstein singularity,
close to the point of separation:

u = us(y) +
∂us
∂y

A(x) v = −∂A
∂x

us A(x) = a
√
xs − x.
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So, for a given external decreasing velocity, there is a possibility of separation with a singularity. The compu-
tation can not pass the separation. Most of classical text book of fluid mechanics do the same and end their
course on boundary layers by this dead end, for example one can read in Kundu [9]: ”the boundary layer
equations are valid only far downstream as the point of separation. Beyond it the boundary layer becomes
so thick that the basic underlying assumptions become invalid. Moreover, the parabolic character of the
boundary layer equations requires that a numerical integration is possible only in the direction of advection
(along which information are propagated), which is upstream within the reversed flow region. A forward
(downstream) integration of the boundary layer equations therefore breaks down after the separation point.
Last, we can no longer apply potential theory to find the pressure distribution in the separation region,
as the effective boundary of the irrotational flow is no longer the solid surface but some unknown shape
encompassing part of the body plus the separation region.”

Is it a dead end? No!

2.2 Inverse Boundary Layer

This paragraph must be reversed! In fact computing the reverse flow within a boundary layer is possible with
the Prandtl equations. The good idea is: impose the displacement thickness and solve for pressure gradient.
This was the idea of Catherall and Mangler [3] in 66, and they were the first to succeeded to pass the point of
flow separation while solving the steady boundary-layer equations with a prescribed displacement thickness
(a kind of parabolic shape).

Does it surprise us? We have already solved the Falkner Skan equations: we obtained flow separation for
some values of β. To obtain it, we had to impose the thickness

∫∞
0 (1− f ′)dη, and we found the value of β

associated. Hence, a simple way to feel that the boundary layer must be solved in inverse way is really the
Falkner Skan case. It is representative by many aspects of the boundary layer behavior: for a given external
velocity one has a given β and one computes the corresponding profile. But, we see on figure 1 that if the
external velocity is with a β to small, there is no solution. Only for an ad hoc external velocity we have
solution(s).
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Figure 1: Not any external velocity is compatible with the boundary layer, for example in the Falkner Skan case,

too small β (less than -0.199) are not relevant (small dashing). A larger value of the outer velocity gradient (large

dashing) gives solutions.

See on figure 2 an example of inverse boundary layer computation using the Keller Box method, the
displacement δ1 is given, the velocity is deduced.
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Figure 2: Examples of inverse boundary layer computation. Separation is not an issue when displacement is

prescribed. Here given δ̃1 = 1.73x̄1/2 + αe−25(x̄−1.5)2 , we compute the associated external velocity, and the skin

friction. For α = 1.43 (top right) is the incipient separation, for smaller increase of δ̃1, there is no separation just a

decrease of velocity (top left). Bottom: for larger values we have separation with reverse flow. The outer velocity

decreases and reincreases.
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2.3 The problem of the influence of downstream on upstream

2.3.1 Observations, the paradox

One other strange problem appeared in the 50’ at the time of the supersonic-conquest: the problem of
”Upstream Influence”. A model configuration for supersonic wing was the aligned flat plate in a compressible
supersonic flow. In various experiments in supersonic flows (Ackeret Chapman and others), it was observed
that an impinging shock wave on a boundary layer produces perturbations far upstream. The boundary
layer deviates from its basic state upstream of the impinging shock, see on figure 3 from Stewartson 64 book
[18]. On this figure we even see that three different accidents (an impinging shock, a forward facing step
and a wedge) produce the same upstream flow. The deviation occurs far away (in boundary layer thickness
units) from the accident.

Figure 3: The ”upstream influence” in supersonic flows. Left, a sketch of the shock wave boundary layer interaction.

Right, the three different accidents (an impinging shock, a forward facing step and a wedge) produce the same upstream

flow. Figures from Stewartson book [18].

In the classical supersonic framework this is impossible (figure 4). First the ideal fluid is supersonic
(hyperbolic) so perturbations move downstream in the Mach cone. Second, the boundary layer is parabolic,
so perturbations move downstream and across the boundary layer. No disturbance can theoretically move
upstream against the flow. This is the upstream influence paradox.

Mach cone

parabolic

hyperbolic

Figure 4: Upstream influence paradox: the ideal fluid is supersonic (hyperbolic, perturbations move downstream in

the Mach cone), the boundary layer is parabolic (perturbations move downstream and across the boundary layer).
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2.3.2 Some explanations

This puzzled people.

• Some people think that there is always a subsonic part in the boundary layer, so that the retroaction can
travel back in this subsonic layer. In fact it is not the good mechanism as the the upstream influence would
be of same length than this subsonic layer is thick. But on the experiments, the longitudinal scale is far
larger than the boundary layer thickness.

• Garvine [8] proposed a simplified boundary layer model linearising around u = 1 the supersonic boundary
layer (neglecting thermal effects):

∂x̄ũ = −∂x̄p̄+ ∂2
ỹ ũ, ṽ = −

∫ ỹ

0
∂x̄ũdỹ

and writing the Ackeret formula as:

p̄ =
M2

√
Re
√
M2 − 1

ṽ(δ̃)

he obtains after claiming δ̃ = cst (yes he did!) that the pressure gradient is − M2
√
Re
√
M2−1

∫ δ̃
0 ũx̄x̄dỹ so that a

model equation of the interaction is:

∂x̄ũ =
M2

√
Re
√
M2 − 1

∫ δ

0
ux̄x̄dỹ + ∂2

ỹ ũ.

It pointed out the come back of ellipticity due to this ux̄x̄ term. He then obtained a set of eigen solutions
with Laplace transform, in fact the exponentially growing one of those solutions can be obtained in looking
to eKx̄ solutions, so that solution behaves as:

e

√
Re
√
M2−1

M2δ̃
x̄.

So the coupling of the two equations produces explosive solutions.

• Numerically those explosive solutions were obtained by Werle Dwoyer, and Hankey [19] (among others).
On figure 5 we have a clear example of what happens when solving in a marching way the coupled system.
Starting from a given initial location they solved the coupled boundary layer system with the so called
tangent wedge law (valid for stronger shocks than the linearised Ackeret formula). They showed that
changing a bit one parameter may cause different solutions. Those are called ”branching solutions”.

Figure 5: Branching solutions [19]: changing a bit one parameter may cause different solutions while solving the

equations with a marching scheme.

• In fact, one may consider the most simple argument, see Le Balleur [12]. He considers the strong coupling
of the boundary layer in Von Kármán form (neglecting again thermal effects) with the Ackeret formula
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(linking the perturbation of pressure at M > 1 due to the variations of the effective wall (represented by δ1)
as:

d

dx̄
(
δ̃1

H
) +

δ̃1

ūe
(1 +

2

H
)
dūe
dx̄

=
f2H

δ̃1ūe
, p̄ =

M2

√
Re
√
M2 − 1

dδ̃1

dx̄
, (1)

so that, supposing that ūe is nearly one and ∂x̄ūe = −∂x̄p̄

d

dx̄
(
δ̃1

H
) =

δ̃1

ūe
(1 +

2

H
)

M2

√
Re
√
M2 − 1

d2δ̃1

dx̄2
+
f2H

δ̃1ūe
,

this equation is ”not so far” from from the basic flow with subscript 0 and ūe ∼ 1, so after linearisation.

d

dx̄
δ̃1 =

δ̃10

ūe
(H0 + 2)

M2

√
Re
√
M2 − 1

d2δ̃1

dx̄2
+ ....

where we forget the contribution of the skin friction. So again, we obtain exponential solutions (called
supercritical by Crocco and Lees in 52) for the disturbance of the displacement thickness δ1:

e

√
Re
√
M2−1

δ̃10M
2(H0+2)

x̄
.

It is nearly the same result than Garvine.
• In fact, Lighthill in 53 proposed a pre-theory of triple deck explaining most of the mechanism (see in
Stewartson 64 book as well). We will see it in the chapter on Triple Deck.

• This kind of solution will be called ”self induced solution” in the Triple Deck framework. This upstream
influence will be understood as a not well posed problem. In fact, even if each part of the flow seems
hyperbolic/ parabolic, due to the interaction one recovers the output influence.

This is the case in the supersonic flows, in shallow water flows at small Froude number, in mixed con-
vection. But there exist flows with no upstream influence: for example in the symmetrical pipe flows.

As a conclusion of this section, we see that the new ingredient is that the boundary layer is no more
driven by the ideal fluid but can retroact. The retroaction explains the observed self induced interaction.
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3 Interactive Boundary Layer

3.1 Examples of users

So it became clear that the interaction with the ideal fluid is not weak but strong. In the early 60 Gad and
Curle employed Von Kármán -Pohlhausen method to try to solve the shock waves-boundary layer interaction,
”without much success” (as quoted by Lees and Reeves [11]. Lees and Reeves in 64 [11] did computations
with integral methods, with more success, but the details are not so clear. Reyhner Flügge Lotz 68 [17] did fi-
nite differences on the Boundary layer and succeed by iteration to compute the supersonic wedge interaction.

Among people working for applications in the aerospace area, some names are to be associated to IBL/
IVI. Among them:

• Le Balleur, from 1977 understood the interaction and using Von Kármán profiles did a lot of practical
computations at ONERA, in supersonic and transsonic régimes.
• Veldman as well has is own codes at the National Aerospace Laboratory NLR in Amsterdam,
• Carter, Jameson at Stanford.
• Cebeci did a huge work (several books on the interactive boundary layer for example [4] [2]) and applied
IVI at Boeing.
• Lock & Williams in a review [15], present the english RAE point of view.
• And last but not least Neiland and Sychev at the TsAGI in USSR.
Of course, this is a very very partial list.

3.2 Interactive Boundary Layer

One other way to bypass Goldstein singularity is to adopt the Interactive Boundary Layer point of view. It
means that we use the classical Prantdl boundary layer equations :

∂ũ

∂x̄
+
∂ṽ

∂ỹ
= 0, ũ

∂ũ

∂x̄
+ ṽ

∂ũ

∂ỹ
= ūe

dūe
dx̄

+
∂2ũ

∂ỹ2
,

with no slip boundary conditions (ũ = ṽ = 0 on the body f̄(x̄)), a first given velocity profile: Blasius. The
matching ũ(x̄, ỹ →∞)→ ūe(x̄).

A result of this computation is the transverse velocity at infinity, remember that for large ỹ the transverse
velocity behaves as:

ṽ ' d(δ̃1ūe)

dx̄
− ỹ ∂ũ

∂x̄

which gives the ”blowing velocity”.

v̄e = Re−1/2d(δ̃1ūe)

dx̄

Hence, the outer flow is no more only given by the wall f̄(x̄) (so that the blowing velocity is f̄ ′ūe) but,
the wall is ”thickened” by the boundary layer thickness (or ”blowing velocity”, or ”transpiration boundary
condition”), so that for a subsonic flow:

ūe = 1 +
1

π

∫
f̄ ′(x̄)ūe +Re−1/2 d(δ̃1ūe)

dx̄

x− ξ
dξ

or in a supersonic flow

ūe = 1− M2

√
M2 − 1

[
d

dx̄
f̄(x̄)ūe +Re−1/2d(δ̃1ūe)

dx̄
]

Instead of the usual weak coupling with the hierarchy (figure 6 left), the boundary layer retroacts on the
ideal fluid (figure 6 right). The boundary layer thickness δ1 acts as a fictive wall (cf figure 21 of chapter
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second order), it disturbs the ideal fluid, the pressure (pressure and velocity ūe(x̄) are linked) develops the
boundary layer itself. It is a strong interaction. The two layers are coupled. It explains the term ”Interactive
Boundary Layer”, or ”Viscous Inviscid Interaction”.

Most of the separation problems are then solved...

1 1

22

Figure 6: Interactive Boundary Layer, left the usual point of view of the ”regular development ”. Right, we mix the

terms, as there is a singular behavior : Re−1/2 d(δ̃1ūe)
dx̄ is not so small...

Figure 7: Interactive Boundary Layer

3.3 Justification of the Interactive Boundary Layer

At separation, the displacement boundary layer thickness becomes very thick. It is then not counterintuitive
to think that the ideal fluid will be drastically changed by the the viscous layer. That is the picture for
”Triple Deck”, but the scales are changed.

In fact one may say that the problem consists to solve ideal fluid up to 1/Re:

ūe = 1 +
1

π

∫
f̄ ′(x̄)ūe +Re−1/2 d(δ̃1ūe)

dx̄

x− ξ
dξ +O(1/Re)

plus the Boundary Layer problems at order 0 and at order 1/
√
Re (to be consistent with the O(1/Re).

The usual approximation supposes that the term Re−1/2 d(δ̃1ūe)
dx̄ is negligeable as Re−1/2 → 0. This is the

regular development point of view. But at separation, d(δ̃1ūe)
dx̄ is no more small, it is large. Hence one can

not neglect Re−1/2 d(δ̃1ūe)
dx̄ . This is again a singular perturbation.

In fact it is easy to show the that the IBL equations (Interactive Boundary Layer Equations) give at
large Reynolds number the Triple Deck structure. The −A is the disturbance of the displacement thickness.
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The IBL equations seem to be ill posed as they mix different order of magnitude.
Starting from NS equations, Dechaume Mauss and Cousteix [6] and Cousteix & Mauss [5] showed that

we may obtain the IBL system using an other technique than ”Matched Asymptotic Expansion”. They
rather used the so called “Successive Complementary Expansions Method” (MASC in french).
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3.4 Coupling the solvers

3.4.1 Boxes

As there are two problems, it is natural to define kind of ”boxes”. A first ”box” is the Euler Solver. Given
a wall, it computes the pressure and the slip velocity. This box may be a subsonic, supersonic... a linear or
not solver. It does not matter, the input is the wall geometry, the output is the slip velocity.

The second ”box” is of course the boundary layer box, given an outer velocity, it computes the dis-
placement thickness. The equations may be laminar or turbulent with any turbulent model. It may be
full finite differences resolution or Von Kármán integral method. This box may be used in reverse, given a
displacement thickness it computes what outer velocity produces it.

3.4.2 Coupling

Now, we couple the boxes and present the various possibilities. In fact we will use δ1 and u in the fol-
lowing figures. We may use dδ1

dx instead of δ1, and instead of u we may use −p (by Bernoulli linearised)

or we may use dp
dx . There is no real influence of the choice of δ1 instead of his slope, nor in u, p or his gradient.

• Now, having those boxes, we have to branch them. First, the classical boundary layer theory may be
represented as a ideal fluid box followed by a boundary layer box, figure 8.

Boundary LayerIdeal Fluid ue δ1yw

Figure 8: Classical Boundary layer, the geometry gives the velocity which gives the boundary layer.

• But as mentioned previously, branching the output of the boundary layer to the input of the ideal fluid
will give the second order effects but will not allow the separation, figure 9.

yw + δ1 Boundary LayerIdeal Fluid ue δ1

Figure 9: ”Direct method”: the geometry gives the velocity which gives the boundary layer, the rebranching will

give the second order effects.

• The good way to solve the boundary layer, is to solve it in inverse, we can imagine that we solve the ideal
fluid in inverse as well. This is the ”inverse method” figure 10. in fact it is not a good idea as it is difficult
to rewrite the Euler codes.

yw + δ1 Boundary Layer Ideal Fluidue δ1

Figure 10: ”Inverse method”, the total geometry (boundary layer thickness and effective geometry) give the velocity

which gives a total geometry, and so on.

• The good way to solve the boundary layer, is to solve it in inverse, the good way to solve the ideal fluid
is in the direct way. So we have to relax the input depending on the difference of the outputs. This is the
semi-inverse coupling by Le Balleur (figure 11).
• There are other possibilities, one is the ”quasisimultaneous method”. It means that during the coupling
values computed downstream are reinjected, which is more useful in the subsonic case.
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Boundary Layer

Ideal Fluidyw + δn
1 un

e

un
BLδn

1

δn+1
1(un

BL − un
e )→

Figure 11: ”Semi Inverse method”, inverse boundary layer, direct ideal fluid. The difference of the two output

velocities is used to update the displacement thickness, and so on.

3.4.3 Semi inverse coupling

The point to be clarified is how to update the new δn+1
1 from δn1 and the difference (unBL−une ), the simplest

way is to write:
δn+1 = δn + λ(unBL − une )

One has to notice that by the Bernoulli relation variation of velocity are opposite of variation of pressure
so that we can write as well:

δn+1 = δn − λ(pnBL − pne ).

The choice of λ is such as we obtain stability for the iterative method.
Le Balleur (see [13] and Wigton and Holt [20]) analysis consist to linearize the equation. He defines two

operators, one for each box, first B∗ defined as δn = B∗pnBL and for the ideal fluid, he defines in the same
vein a linear response δn = Bpne . Then the update is as:

δn+1 = δn − λ(1/B∗ − 1/B)δn

To make it clear, we use Fourier analysis for all the frequencies between π/L and π/∆x (the smallest
linked to the domain size, and the highest linked to the discretisation step). Furthermore, the B operator
may be obtained in subsonic flow we have B = −1/k. The analysis is then very simple, defining a ”gain”
G = δn+1/δn:

G = 1− λ(
1

B∗
+ k),

we want |G| < 1 for π/L < k < π/∆x. Often ([13], [20]), it was considered that B∗ was real, so we can find
an optimal λ.

For a supersonic flow we have B = (ik
√
M2/(M2 − 1))−1. It is easy to show that in this case it is

impossible to find an optimal λ. The coupling is always unstable. The good coupling is now with the
derivative of the pressure:

δn+1 = δn − µ(
d

dx
pnBL −

d

dx
pne )

then again we have:
δn+1 = δn − µik(1/B∗ − 1/B)δn

which allows to define a ”gain” G = δn+1/δn. We want |G| < 1 for all the space frequencies π/L < k < π/∆x.
We can find an optimal µ.

In the following examples, we use this semi-inverse coupling.
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4 Examples

4.1 Some numerical examples

We just reproduce here some examples from literature using this IBL theory. On the curves, the experimental
and the computation are displayed showing a very good concordance. We selected among others comparisons
of experiments, IBL and Ideal Fluid over an airfoil. We selected Drela & Giles [7] on figure 12, comparisons
from Le Balleur computations 13, and comparisons from Lock & Williams [15] on figure 14. On figure 15,
Aftosmis et al. [1] successfully compare IBL strategy with a Navier Stokes solver.

Figure 12: Example of comparison of IBL computation, Drela & Giles [7]

Figure 13: Example of comparison of IBL computation, Le Balleur.
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Figure 14: Example of comparison of IBL computation, Lock & Williams [15]

gence of the coupled-IBL solution using 4-levels of multigrid. Boundary-layer updates were performed 

every other multigrid cycle. Convergence of integrated forces is somewhat slower than in the previous 

example on the RAE wing, but is still reasonable. While initial convergence of the L1 density norm is 

quite good, the residual stalls abruptly after converging just over four orders of magnitude.  Detailed in-

spection of the developing boundary-layer profiles indicates that this may be due to a slight separation at 

some of the inboard stations. The right frame in figure 20 compares the surface pressure profiles of the 

inviscid and coupled-IBL method with RANS results at 40.9% span. The RANS results included for com-

parison were reproduced from reference [11] and are based on the NSU3D solver. The Cp distributions in 

Figure 20 show the shock moving forward by about 20% of the wing-chord at this spanwise location, and 

the profile of the coupled method agrees very well with that produced by NSU3D. As in earlier examples, 

there is a slight irregularity of the Cp profile near the wing trailing-edge. Reference [11] noted a similar 

irregularity when computing the same flow using a coupled-IBL approach based on essentially the same 

boundary-layer routines. 

44th AIAA Aerospace Sciences Meeting, Reno NV, January 9-12, 2006! AIAA 2006-0652

14 o f  1 9

A m e r i c a n  I n s t i t u t e  o f  A e r o n a u t i c s  a n d  A s t r o n a u t i c s

Figure 19: Surface pressure distribution for coupled-IBL (left) and inviscid (right) simulations on DLR-F4 wing-body 

geometry at  M! = 0.75, !"="1.0°, and ReC"="3x106. In addition to the boundary layer stations on the wing (far left), 

the coupled-IBL simulations used four additional stations on the fuselage (not shown).

Coupled-IBL Inviscid

Boundary-layer 
stations on wing

Surface Pressure

Figure 20: DLR-F4 convergence history (left) and computed surface pressure coefficients at 40.9% span at 

M!"="0.75, !"= 1.0°, and ReC"  ="3x106. Pressures with the present coupled-IBL approach  are compared with results 

from the pure inviscid solver  and published data using the NSU3D RANS solver from reference [11]. 
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Figure 15: Example of comparison of IBL computation, pressures from [1] (coupled-IBL approach) compared with

results from the pure inviscid solver and published data using the NSU3D RANS solver (see [1] for details).
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4.2 Some numerical examples

4.2.1 Bump on a flat plate in a incompressible (subsonic) flow.

As a first example (fig 16), we present the results for the IBL on a flat plate with a bump defined by
ȳw = αe−25(x̄−2)2 ; with α increasing by steps of 0.01 and Re = 10000. The velocity is:

ūe = 1 +
1

π

∫
f̄ ′(x̄) +Re−1/2 d(δ̃1ūe)

dx̄

x− ξ
dξ

Before the bump there is a small decrease of the ūe velocity. In a pure Hilbert case, the response in ūe
is perfectly symmetrical, but here, due to the boundary layer, the velocity is no more symmetrical. Due
to the acceleration on the bump, the displacement thickness first decreases and increases again after the
bump. It increases more. So, there is a small overshoot of the thickness associated with the boundary layer
separation. This makes the outer velocity non symmetrical. The skin friction increases before the crest, and
decreases after. This is consistent with the fact that, for instance, before the crest, the velocity increases,
and the boundary layer thickness decreases, so the slope of the velocity in the boundary layer increases
(it is more or less the ratio of ūe and δ̃1), the reverse happens after. We notice that the maximum of the
skin friction is before the crest, after the inflexion point of the bump, the velocity increases less, but the
boundary layer continues to decrease because of the inertia of the fluid, so the maximum of skin friction is
between the inflexion point of the bump and the crest. There is eventually a separated bulb with negative
skin friction.

4.2.2 Bump on a flat plate in a Supersonic flow.

As a second example (fig 17), we present the results for the IBL on a flat plate with a bump defined by
ȳw = αe−25(x̄−3.5)2 ; but in the compressible supersonic case, so that the edge velocity is:

ūe = 1− M2

√
M2 − 1

[
d

dx̄
f̄(x̄) +Re−1/2d(δ̃1ūe)

dx̄
].

The bump creates upstream influence and a separated bulb far upstream. The skin friction reincreases and
then redecreases to create a second separated bulb.

4.2.3 Bump on a flat plate in subcritical flow.

Nearly the same occurs in the case of the subcritical flow (F < 1) or in the case of symmetrical pipe flows.
The edge velocity is:

ūe = 1 +
1

1− F
[f̄(x̄) + δ̃1Re

−1/2]

It means that the velocity increases and decreases after the crest (see figure 18). The skin friction is extremal
just before the crest, and there may be flow separation on the lee side. The behaviour is nearly the same
than in the incompressible case but there is no influence of the bump before the beginning of it, it the
incompressible case there was some small effect due to the Hilbert integral.

4.2.4 Bump on a flat plate in a Supercritical flow.

In the supercritical flow, the equation is the same for the edge velocity, but the story is completely different
as F > 1. We observe a strong upstream influence on figure 19. The velocity decreases due to the bump,
and the skin friction is negative upstream of the bump, the extremum is on the lee side, after the bump.
There is a huge jump in δ̃1, a kind of hydraulic jump.
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4.2.5 Wedge on a flat plate in a Supersonic flow.

As final example (fig 20), we present the results for the IBL on a flat plate with a wedge defined by
ȳw = α(x̄− 3.5)+; with α increasing by steps of 0.01 and Re = 100000. For enough large α we observe the
”plateau” of pressure which is the signature of the self induced interaction and upstream influence. This
increase of pressure before the wedge creates a region of reverse flow.
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Figure 16: Incompressible flow [click to launch the movie, Adobe Reader required]. Top the velocity field
ũ, ṽ (Prandtl transform), bottom the wall, here a bump, the displacement thickness δ̃1 (starting from Blasius
value 1.7 in x̄ = 1), the skin friction (starting from Blasius value 0.3 in x̄ = 1) and the outer velocity starting
from Ideal Fluid value 1 in x̄ = 1. A positive disturbance of the wall increases the velocity and decreases
the displacement. Separation may occur after the bump, or before the tough.
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Figure 17: Supersonic flow on a flat plate with a bump [click to launch the movie, Adobe Reader required].
Top the velocity field ũ, ṽ (Prandtl transform), bottom the wall, here a bump, the perturbation of displace-
ment thickness from Blasius ∆δ̃1 (starting from 0 in x̄ = 1), the skin friction (starting from Blasius value
0.3 in x̄ = 1) and the outer pressure starting from Ideal Fluid value 0 in x̄ = 1. Note the pressure plateau
associated to separation.
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Figure 18: Subcritical flow on a flat plate[click to launch the movie, Adobe Reader required]. Top the velocity
field ũ, ṽ (Prandtl transform), bottom the wall, here a bump, the displacement thickness δ̃1 (starting from
Blasius value 1.7 in x̄ = 1), the skin friction (starting from Blasius value 0.3 in x̄ = 1) and the outer velocity
starting from Ideal Fluid value 1 in x̄ = 1. A positive disturbance of the wall increases the velocity and
decreases the displacement. Separation may occur after the bump.
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Figure 19: Supercritical flow on a flat plate [click to launch the movie, Adobe Reader required]. Top the
velocity field ũ, ṽ (Prandtl transform), bottom the wall, here a bump, the displacement thickness δ̃1 (starting
from Blasius value 1.7 in x̄ = 1), the skin friction (starting from Blasius value 0.3 in x̄ = 1) and the outer
velocity starting from Ideal Fluid value 1 in x̄ = 1. A positive disturbance of the wall decreases the velocity
and decreases the displacement. Separation may occur before the bump, note the long upstream influence.
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Figure 20: Supersonic flow on a flat plate with a wedge [click to launch the movie, Adobe Reader required].
Top the velocity field ũ, ṽ (Prandtl transform), bottom the wall, here a wedge in x̄ = 3.5, the perturbation
of displacement thickness ∆δ̃1 (starting from 0 in x̄ = 1), the skin friction (starting from Blasius value 0.3
in x̄ = 1) and the outer pressure starting from Ideal Fluid value 0 in x̄ = 1. Note the plateau pressure and
the separation far upstream of the wedge.
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4.2.6 Trailing edge

The trailing edge is such that at the position of it say x̄bdf , we have no more the no slip condition but the
wake condition:

x̄ < x̄bdf : ũ(x̄, 0) = 0, x̄ > x̄bdf :
∂

∂ỹ
ũ(x̄, 0) = 0.

There is small upstream influence near the leading edge, in this region the velocity is increased to adjust to
the new boundary condition.

Figure 21: Example of trailing edge computation, Re = 1.6 105. The flat plate stops in x̄ = 3.5. The displacement

thickness decreases in the wake, there is a singularity in the skin friction just before the trailing edge were the velocity

adapts itself to the change on boundary condition.
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4.3 An over simplified Model

4.3.1 von Kármán closure

The von Kármán equation contains interesting things, it reads for example:

d

dx̄
(
δ̃1

H
) +

δ̃1

ūe
(1 +

2

H
)
dūe
dx̄

=
f2H

δ̃1ūe
,

with Λ1 = δ̃2
1∂ūe/∂x̄, we have

H =

{
2.5905e−0.37098Λ1 if Λ1 < 0.6
2.074 if Λ1 > 0.6

}
, f2 = 1.05(−H−1 + 4H−2).

Other closure exist.

4.3.2 Simple model

linearising in a crude simple way around the Blasius solution, so the gradient of velocity is small Λ1 << 1
we develop the closure coefficients as H = H0 −HpΛ1 + ... and f2 = f20 + fpΛ1 + ...

with Λ1 = δ̃2
1∂ūe/∂x̄ and with ūe = 1 + ū and δ1 = D(1− Ã)

√
x̄ and ū is the perturbation of the outer

velocity and −A is a perturbation of the displacement thickness.... so

HpD2

H2
0

∂2

∂x̄2
ū+ (1 +

2

H0
− fpH0 +Hpf2 +

3HpD2

2H2
0

)
∂

∂x̄
ū+ (

1

H0
− f2H0

D
)ū =

1

H0

∂

∂x̄
Ã+ (

f2H0

D2
+

1

H0
)Ã

the numerical values are D = 1.7, H0 = 2.5, Hp = .53, f20 = .25 and fp = 0.19 :

0.71Ã+ .71Ã′ = 0.35ū+ 3.28ū′ + 0.48ū′′

this crude developement is such that, if now we introduce the ideal fluid relation between ū and −Ã we
obtain or not upstream influence...
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5 Conclusion

Figure 22: Complexity and models from Jameson [10]

So we now know that the boundary layer equations are more than useful. They can handle flow separa-
tion and compute reverse flow bubbles.

The methodology may be summarized in the figure 22 extracted from Jameson [10]. Even if this paper
was written in 1983, it seems that most of the flying aircraft have been defined by Viscous Inviscid inter-
actions. The Airbus A380 is one of the first aircraft designed with ”full Navier Stokes” (in fact certainly
crude RANS models). In the late 90’, before the end of the century, a large effort has been done on Navier
Stokes solvers. Lot of people are working on this equation. Tremendous progress have been done, and with
Navier Stokes, the complexity of the geometry is a problem with lot of solutions. So Navier Stokes solvers
are very promising, and give a lot of results.

To a certain extent, IBL-IVI methods are less versatile and require specific methods, they need a kind
of ”savoir faire” which as not been transmitted (Aftosmis et al. [1] point some difficulties of the IBL). For
example Le Balleur has codes which may compute even large stall on wings, giving results very close to
experiments. NS solver are not able to reproduce those results. Most of people who did all those IBL, IVI
methods are now retired or nearly retired. A great part of IBL as been lost as people are focused now on
Full Navier Stokes.

The review of Piomelli & Balaras [16], shows that up to now only very simple models are taken for
boundary layer near the wall. They suggest a coupling of a LES Navier Stokes with a boundary layer code
near the wall.
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