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Abstract

We propose a theory predicting the transition between splashing
and deposition for impacting drops. This theory agrees with current
experimental observations and is supported by numerical simulations.
It assumes that the width of the ejected liquid sheet during impact
is precisely controlled by a viscous length [,,. Numerous predictions
follow this theory and they compare well with recent experiments re-
ported by S.T. Thoroddsen (The ejecta sheet generated by the impact
of a drop, J. Fluid Mech 451, pp 373 (2002)).

1 Introduction

A raindrop splashing on the ground, the impact of a fuel droplet on the walls
of a combustion chamber, pesticides sprays, ink-jet printing, all involve the
same complex dynamics. These impacts arise in many different contexts, and
have important industrial applications as well as relevance to the natural
sciences, such as soil erosion. Photographs of splashing droplets, starting
with Edgerton’s classic[2], have become media icons. Splashing can occur at
widely different scales, from the astronomical when a comet impacts a planet
to the microscopic in laboratory experiments. Since the pioneering work of
Worthington[3], many experimental, theoretical, and numerical works have
been performed. Nevertheless the problem is far from being fully understood
(for a review see [4], [5], [6]).

The present study concentrates on the early times of droplet impact on
a thin preexisting liquid layer. The two principal outcomes are splashing
and deposition. Splashing occurs for large Weber and Reynolds numbers
and involves many different dynamics. In many cases, a thin liquid sheet jets
almost immediately after the impact. It arises in a small “impact neck” region
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located at radius rg, at the intersection between the almost spherical drop
and the upper boundary of the liquid layer. Starting at early times the sheet
grows into a corolla and propagates radially from the drop. The end rim that
grows at the edge of this corolla is unstable and developps fingers of liquid|7].
The fingers eventually break up into small droplets by the Rayleigh-Plateau
instability. This whole process, shown on well-known photographs, has been
described in numerous experimental papers (for instance see [1, 8, 9, 10]) and
is generally called “corona” or “crown” splash. Such crown splash can still be
produced until fairly low Weber and Reynolds number although it may not
have enough time to break up and create secondary droplets. Also, usually
at very high impact velocity or for impact on rough surfaces, the crown-type
splash is not observed but a “prompt splash” is seen, in which secondary
droplets are emitted immediately after the impact without any observable
smooth sheet or corolla at the base. Below the velocities at which all these
kinds of splashes are present, the drop only spreads gently on the surface
without emitting jets nor secondary droplets.

An empirical relation has been established experimentally for the cross-
over between spreading and deposition behaviors through the dimensionless
“Sommerfeld parameter” K = We %Rei, where We is the Weber number
and Re the Reynolds number (as defined below)[9, 11, 12]. When K is
smaller than a threshold value K. then only deposition is observed, while for
K > K, a splash develops. A reasonable estimate is K, ~ 50 although the
exact value of K, depends on the roughness of the solid surface and on the
thickness of the liquid layer.

Direct numerical simulations for drops impacting on liquid layers are
a relatively new topic. It has attracted the attention of many researchers
[13, 14, 15, 16, 17] but only recently. Several of the simulations are based
on a potential flow model with surface tension in axisymmetric geometry.
They exhibit corolla formation and the rx ~ t'2 spreading law [13, 15, 16].
In particular, simulations have shown that for strong impacts (large Weber
numbers) a jet was formed in the neck region defined as the region of the
interface where the drop and the film meet[15, 16]. However, potential flow
calculations cannot exhibit the effect of viscosity while the Sommerfeld law
includes it to predict the splashing-deposition transition. The theory that
follows indeed shows why. Our theory investigates the splash dynamics with
special emphasis on jet formation at short times.

In simulations, we included viscosity and surface tension and solved the
Navier-Stokes equations with sharp interfaces between a liquid and a gas
phase. Momentum balance was solved on a very fine square grid. Interface
tracking and conditions on the interface use Volume of Fluid (VOF) tracking
as in [18, 19].
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The theory below starts by assuming potential flow, which is then matched
to a small viscous region at the impact neck.

2 Numerical Method

We consider a liquid drop of diameter D, density p;, and dynamic viscosity
pur. It impacts at speed U onto a thin liquid layer of the same liquid of
thickness h. The surrounding gas has density pg and viscosity ug, the tension
of the interface is 0. These initial conditions are shown on Figure 1.

We solve the axisymmetric incompressible Navier-Stokes equation with
surface tension. Written in the one-fluid formulation, the equations read

p(g—ltl +u-Vu)=-Vp+ V- (2uD) + okdsn (1)
where u = (u, v) is the fluid velocity, p the fluid density, D = } (Vu + (Vu)T)
is the rate of deformation tensor and p is the pressure. n denotes the normal
to the interface and ¢, is the bidimensional delta function restricted to the
interface. The viscosity and density are constant in each phase. Gravity is
neglected and the continuity equation is :

V-u=0 (2)

Later on we will consider only axisymmetric dynamics. The discretiza-
tion is performed on a Marker and Cell (MAC) grid and pressure is solved
by the explicit projection method making use of multigrid convergence. The
interface is followed by the Volume of Fluid/Piecewise Linear Interface Cal-
culation (VOF/PLIC) method of [20] and the capillary force is computed
through a variant of the continuous surface stress and continuous surface
force methods [21, 19, 18] adapted to axisymmetric geometry. A full de-
scription of the method can be found in [18] except for the adaptation to
axisymmetric geometry which is described in [22].

In this paper we investigate various grids from 128 x 128 to 512 x 512. We
have found that 256 x 256 grid points are needed to obtain a fair description
of the impact, although we sometimes perform control runs on the finest grid
(512 x 512).

The VOF calculation is started with a droplet travelling at a prescribed
velocity towards the fluid layer. At some time the two fluid regions reconnect.
This involves various very small spatial scales. A thin gas layer forms between
the two liquid regions and must be expelled. Under certain conditions voids
or gas bubbles are actually entrapped during the impact because the thin
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layer cannot retract fast enough[13, 23]. Molecular forces, acting on very
small length,would also affect the motion of the interfaces in reality. These
effects are below the grid scale and are not simulated. For the moment
these very early times are beyond the scope of our study. However since
the numerical method is based on the precise resolution of the momentum
balance and the mass conservation equation, we argue that the situation just
after reconnection offers a realistic starting point for the simulation run.

Here the Weber and Reynolds numbers for the liquid are
pLU?D _ plUD

ML

We =

, Re

Additional dimensionless numbers are the ratio h/D and the two numbers
pc/pr and pg/pr describing the gas. The effects of the gas are not consid-
ered in any detail here, although they are present and add realism to the
simulations. The characteristic time of impact is 7 = D/U. In the present
study, we neglect compressibility and gravity. This implies that the Mach
number Ma = U/c¢, and Froude number Fr = gD/U? are small. For in-
stance, for the impact of a waterdrop of D = 2 mm from a height of one
meter, we obtain Ma = 3-107% and Fr = 1073, At very short times and
scales, it is clear that gravity has an even smaller effect, but compressibility
could be relevant. However even there, Lesser and Field [24] have shown that
compressibility plays no significant role at the velocities considered below.

3 Theory

We attempt to analyze the early instants of impact in the large Reynolds and
Weber number regime, when the descending sphere, if it were unperturbed
by the impact, would intersect the upper plane of the liquid layer at a point
J at a small distance 7;(t) ~ (DUt)'/? from the origin (Figure 2).

Our theory is based on the principle that at these early times, most of
the liquid layer and the impacting drop are unperturbed. Thus there is an
outer region (called region I) for |r| > r; in which the velocity is nearly
constant in the falling fluid (region Ia) so u ~ —Ue,, and near zero in the
liquid layer (region Ib). Region I matches to an inner region II where the
flow is perturbed. We first investigate the potential flow problem of impact.
The horizontal length scale for that flow is 7;(¢), while the vertical distance
between the free surfaces is r3/D = Ut. It is likely that multiple solutions of
the free surface potential flow problem exist, as is the case in other problems
of this type [25]. In particular we may distinguish between solutions with and
without jet (Figure 3). The solution without jet is reminiscent of the solution

4
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for the water entry of a wedge, which was found by conformal mapping
techniques in [25]. It consists there to find a self-similar solution defined
by a geometrical length equivalent to r;. Similar problems have also been
considered for free surface flows[26, 27].

The base of the jet is on the horizontal length scale at distance rx = Cr;
from the origin, where C is a numerical constant given by the full solution of
the potential flow problem. This constant will be taken equal to 1 in what
follows, and so will be other dimensionless constants, to avoid carrying on
too many unknown numerical constants. The jet thickness must match the
vertical length scale so e; = Ut.

The velocity vy of the jet may be obtained by a mass conservation argu-
ment. We assume that no mass radiates to or from infinity, an assumption
that will be discussed below. Then the mass that comes from the impacting
sphere per unit time is

q = pUnri (3)

which has to be equal to the mass flux through the jet
qQ = 2mprrejuy (4)

thus
v = (t/m)*U (5)

where 7 = D/U.
When the jet starts forming it ends with a rim which tends to recede
through surface tension effects. The receding or Taylor-Culick velocity [28,

29] is given by
1/2
20
v~ | — 6
o= (2) Q

for a sheet of thickness e; thus
ve =~ (t/7) YU We ~1/2 (7)

If ve < vy the length of the jet increases, but is on the other hand ve > vy
the jet cannot form. Thus a necesssary condition for the formation of the
jet is that the Weber number is large. In that case, potential flow theory
predicts that the jet may form at any time after impact. It remains to be
explained why a potential flow solution with jet is selected over a solution
without jet. In particular one needs to explain how the jet can appear in the
free surface potential flow. We just notice that in the solution without jet the
acceleration of the free surface at point K in Figure 3 points from the gas to
the liquid, which indicates that the interface is unstable with respect to the
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Rayleigh-Taylor instability in the frame of reference moving with the fluid,
and for two-dimensional perturbations. These perturbations would naturally
lead to the formation of a jet. This inviscid theory with jet is supported by
numerical simulations which show very early jet formation in high resolution
runs.

If viscous effects are included we may find a viscous length scale of the
order of I, ~ (vt)}/2. This length scale is larger than the vertical length scale
Ut of the potential solution for ¢ < ¢, where ¢, = TRe ~!. It defines a region
IIT at the base of the jet. Vorticity is also concentrated in region III. Indeed
it is created in the highly curved regions of the interface at the base of the jet,
then diffuses to distances of order /,,. The solution in region III merges to the
jet-like flow outside it. The analysis of the dynamics in this region presents
a peculiar property since both viscous length [, and geometrical intersection
r; follow the same regime in square-root of the time. Thus the viscous effects
appear has a self-similar correction embedded in the geometrical dynamics.
The jet has naturally a thickness of the order of the size of region Ill e; =1, .
When this happens the velocities of the jet and the receding tip are modified:
the above argument now yields

vy ~ Re'?U (8)
while
ve ~ U(t)7) Y4 We ~1/2Re V4 9)
The condition v < vy for jet formation now implies
t 1/2
Re '/?We (—) > 1 (10)
T

This condition gives a time ¢; after which the jet can form
t; ~ TKRe 'We 2 (11)

This time is always shorter than ¢, for We > 1 thus jet formation at ¢, is
consistent with the assumption of a viscous regime. Whenever ¢;/7 is not
small, the above may be seen as an approximation in the limit of large Re
and We for the time of jet formation. Jet formation occurs early if t; < 7

that is when
Wel/?Rel/* < K, (12)

We thus recover Sommerfeld’s law.
Further predictions may be made if we assume a scaling form for the
solution. For distances larger than [, the solution ought to be potential. For
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t > t, this involves all length scales ¢ > Ut, for ¢t < t, the potential flow is
limited to £ > [,. These conditions define region II, inside which we assume
the scaling form for the velocity potential

¢ =UD(t/7)"f(X,Y) (13)

where X, Y are the rescaled variables X =1—1r/r; , Y = z/r;, and n is an
exponent to be determined. The potential must satisfy boundary conditions
on a free surface. The free surface must be determined a part of the solution
but asymptotes to the spherical surface of the drop at large distance from
region II.

In region II the pressure also scales as

p=pU(t/T)"g(X,Y) (14)

where g is another scaling function and m has to be determined. This may
be done by a momentum conservation argument. To simplify the discussion
we consider 2D flow and momentum per unit length in the third dimension.
The downward momentum of the falling sphere is reduced by impact. This
effect is felt in region II, so vertical momentum “lost” during the impact is
of the order

M ~ CprsU (15)

where C is a numerical constant of order 1 and the pressure increases this
lost momentum by

dM rJ
— d 1
== [ par (16)
thus . .
5 (DU PUC = U3(t/7)™ / 9(X,0)dX (17)
0
Assuming the integral converges, it is a constant term and we find m = —1/2.

The maximum reached by the pressure depends on the behavior of g as
X — 0, X = 0 being the location of the base of the jet. Expression (14) is
valid until the smallest length scale in region II is reached. For ¢ > ¢, this
length is Ut so | X| ~ Ut/rx = (t/7)"/2. Thus

Pmax ~ pU(t/7) 2 g((t/7)'/?,0). (18)
On the other hand when ¢ < ¢, the minimum length is I, , | X | ~ Re ~*/? and

Pmax ~ pU2(t/7)"/2g(Re /2, 0). (19)
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On this basis it is possible to show that the pressure field is harmonic. The
Bernouilli theorem for potential flow implies

1 P
O + 5(W))? + 5= 0. (20)

where the V operator is in the original (unscaled) variables. We shall see
that at short times the first and third term dominate the second. Balancing
the third with the first term, we find that n = 1/2. The velocity may then
be found by differentiating Equation (13) to yield

Vé=UVxf=UV(X,Y) (21)

where Vi is the gradient with respect to the scaled variables and V is a
dimensionless function. Velocity is thus independent of time at first order,
which is consistent with the need to match a constant velocity at X, Y large,
as we go towards region I. Thus our hypothesis is confirmed, namely that the
first and third terms of the Bernouilli equation, being of order t~1/2 dominate
the second. Thus

Oup = —%’. (22)

Since A¢ = 0 we also must have
Ap =0. (23)

so the pressure field is harmonic as in the pressure-impulse theory. We re-
trieve here a property of the problem of pressure impact studied in [30].

4 Numerical results and discussion

For more insight into the splashing dynamics we now turn to the numerical
simulation results. A series of simulations has been performed, for a 2-mm
diameter droplet of a water-like liquid impacting a layer of the same liquid,
0.3 mm deep with a velocity of 10 m-s™!. The gas is taken twice denser
than air at atmospheric pressure (p,/p, = 500) and the surface tension
has been taken a fraction of the air-water surface tension (¢ = 0.025 kg-
s72). The viscosity of the gas is taken slightly higher than for air (u, =
5-10*kg-m~'-s7!). We only varied the viscosity of the liquid, from 0.02 to 0.5
kg-m~!-s7!, with intermediate values 0.05, 0.1 and 0.2. The Weber number
is thus 8000 for all cases while the Reynolds number evolves from 1000 to
40. The choice of these values was determined mainly by numerical stability
and convenience to allow a large range of liquid Reynolds numbers. For

8
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instance higher density ratios would lead to stronger numerical instability at
the interface by spurious currents. Time ¢ = 0 is set at the instant of impact.
In addition, the liquid in the droplet and in the layer have been marked
with two different colors, so that their specific evolution can be observed for
various Reynolds numbers in Figures 4, 5 and 6.

These three simulations show important qualitative differences. The two
less viscous impacts (figures 4 and 5) are splashing. The less viscous the
fluid, the thinner the corolla and the larger the angle between the liquid
sheet and the liquid layer. For the highest Reynolds number the impact is
rapidly followed by secondary droplet break-up. Because of axisymmetry the
liquid patches seen on figure 4 are actually toroidal. Further 3-D calculations
would be needed to account properly for the evolution of the crown once non-
axisymmetric perturbations grow[14, 31]. On the other hand, for Re = 40,
the droplet spreads gently on the surface. The impact creates a radially
expanding surface wave. Jet formation is visualized in Figure 7 a) where the
interface profiles are shown near the neck of the impact as the jet is created,
for Re = 1000.

The spreading radius rx is detected automatically in the simulations.
For this purpose it is defined as the radius of the point where the velocity
of the fluid was maximal at a given instant. We have checked that this
definition agrees with the visually determined spreading radius. In particular
the basis of the corolla is well captured at large times and for high Reynolds
number with this method. At short time this point almost coincides with the
intersection between the drop and the liquid layer. Indeed we first observe
that rx and r; follow the same scaling behavior:

rx ~rs(t) = VDUt (24)

Actually, a more precise study gives rx = 1.1-7,(t). It accounts thus for
the mass conservation correction to the geometric law r;. The theory above
predicts a constant ratio rg/l, with time. This is observed on figure 7 b)
where the width of the jet is captured by two straight lines as rx increases.

Figure 8 shows rx for We = 8000 and Re = 100, 200, 400 and 1000.
The geometric relation (24) is well verified for each curve and no significant
dependence on the viscosity is found. We can remark that the geometric
scaling law (24) is valid even at large times while the argument was only
valid at short times. It is however a well established result for the impact
radius[9, 32]. At larger times the dynamics of expansion is indeed imposed by
an effective collision between the expanding liquid coming from the drop with
the liquid of the layer at rest. It has been shown[9] that the dynamics is there
controlled by a Burgers-type equation which leads to the same scaling (24).
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There is here a remarkable coincidence: the physical principles that lead to
the square-root behavior at short times are completely different from those
leading to the scaling at long times. However in our range of simulations
law (24) is valid with the same prefactor from short times to moderate times
(t/7 ~ 3). No explanation has yet been found for this fact.

A pressure peak is observed in the simulation at the impact neck (Figure
9) as predicted in our theory. Figure 10 shows the maximum pressure in the
liquid as a function of time for We = 8000 and Re = 100, 200, 400 and 1000.
For these Reynolds numbers a jet is always created. The scale pU? (t/7)"/? is
also shown on the figure and gives the corect behavior of the pressure peak
for small time (¢/7 < 1). Indeed, for large Reynolds and small ratio ¢/7 the
scaling (19) suggests that the pressure peak should follow this scale. However
the dependence on Re!/? does not appear here. The pressure drops rapidly
as expected in our theory for ¢t ~ 7. The observation of the pressure field
shows also that regions of equal pressure fan around the neck (see figure 9).
Moreover, figure 11 exhibits the pressure profile near the neck at short times
after the impact. The normalized pressure is exactly shown as a fonction
of the normalized distance A (A = |r — rxe.|/rk) along the vertical from
the neck. The pressure drops spatialy from the impact center. The profiles
however do not superpose, indicating that the asymptotic regime predicted
by the theory has not yet been reached.

Eventually, we analyze the influence of viscosity on the vorticity field.
The vorticity fields for Re = 1000 and Re = 100 are shown in Figure 12 for
t/T = 0.1. It corresponds to the third snapshot of (4) and (5). The vorticity
is concentrated near the neck and forms two counter-rotating vortex rings
which expel the liquid towards the jet. Figure 13 a) follows the absolute
mean amplitude of the vortex dipole as a function of time for the different
Reynolds numbers explored already. The amplitude of the vortex dipole
is computed through the difference between the highest (positive) and the
lowest (negative) values of the vorticity in the liquid bulk. The four curves
show a similar behavior but at different scale, and we observe that the larger
the viscosity, the smaller the amplitude. The vorticity is indeed diffused
through viscous diffusion over a distance [,(¢) from the interface. Thus the
vorticity scale should evolve like 1/v/Re when viscosity varies. Actually, in
figure 13 b) we present the same quantity rescaled by the factor v/Re. We
observe that all the curves converge to the same one, particularly at short
times. This result validates the assumption of our theory that the length
scale involved at the jet basis is selected by the viscous length [,.

There is little quantitative experimental data to compare our theory with.
The scaling of the experimental law (12) is recovered with the critical num-
ber K. estimated to be 225 in our numerics. Experimentally, K. has been

10
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found to vary between few tens and few hundreds, decreasing with the sur-
face roughness. In our numerics, the surface has no roughness so that the
observed K, is consistent with experiments. Besides the Sommerfeld law
there are few other experimental results with the exception of the recent
work of Thoroddsen [1]. As in our theory, experiments show that the time at
which the jet forms grows linearly with viscosity (equation 11). In addition
the scaling law v; ~ v/ ReU (eq. 8) corresponds exactly to the measured
dependance of the initial sheet velocity with viscosity reported in [1].

5 Conclusion

Our theory, supported by numerical simulations, predicts the scaling of the
transition between splashing and deposition. It is in agreement with current
experimental observations and in particular recovers the splashing-deposition
criterion (12). Agreement is found with recent experimental observations
such as the initial sheet velocity[1]. To summarize our theory, it constructs a
potential flow everywhere except in a small neck region. Viscosity is shown to
play a major role that region, selecting the width of the jet that develops into
the crown. Surface tension then comes in to allow or prevent the formation
of the jet.

Several points remain to be investigated in future experiments and simu-
lations. A numerical investigation of the time of jet formation has not been
possible, because the jet and the neck region that scales with it become too
thin as the formation time recedes to zero.

However, one should remark a contradiction with results from calculations
done with BIM methods [15]. There, a well-defined jet width is selected,
while the asymptotic limit of our self-similar theory would suggest that a
jet should be present at arbitrarily small times, with a vanishing thickness.
It is possible that the BIM numerical method produces a short length scale
cutoff there which limits the minimum size of the jet. This returns to the
formation of a jet in a potential flow as pointed to above. A numerical
confirmation of this hypothesis would clearly be interesting. In any case a
physical cut-off of microscopic size will always be present in a real system.
In our investigations the highest Reynolds number was actually restricted by
the numerical cut-off of the finest jet width that could be resolved (here the
thinest jet is 2 micrometers width). Further numerical developpements such
as adaptive meshed refinement for instance would greatly improve this issue.

Another point of interest would be to investigate the shape of the emerg-
ing jet as it evolves into the corolla. This shape can be found by integration of
the equations for a thin sheet with surface tension. Without surface tension

11
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the problem is even simpler, as each sheet particle follows a ballistic path.
The shapes depend on the angle of ejection of the jet (which our theory does
not give). Moreover the location of the tip of the jet and the width of the
associated rim depend on the time of appearance of the jet. Knowing the
shape of the jet and the location of the end rim would allow to compute
its stability with respect to perturbations, thus addressing the long-standing
problem of crown formation. These unresolved issues regarding the shape of
the interface and the angle of the jet could probably be resolved through a
detailed analysis of potential flow in the neck region, which is the focus of
ongoing investigations.
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Figure 1: Representation of the simulation setup for the impact of a drop on a

liquid layer.

18



FIGURES PF#2444

region la

region Il h region b

Figure 2: Geometry at early times. The unperturbed droplet and the unper-
turbed surface of the liquid layer intersect at distance r; from the origin. The
asymptotic analysis is performed by assuming the flow perturbed in region
IT only.
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Figure 3: Two types of solution, without jet (a) and with jet (b). If mass
does not flow in from, or oout to, infinity the areas marked + and — must
be equal
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Figure 4: Density fields at ¢t = 0.01 0.05 0.1 0.2 0.7 and 1.5 unit time for We =
8000 and Re = 1000.
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Figure 5: Density fields at ¢t = 0.01 0.05 0.1 0.2 0.7 and 1.5 unit time for We =
8000 and Re = 100
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Figure 6: Density fields at t = 0.5 and ¢t = 1.5 unit time for We = 8000 and
Re =40
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Figure 7: a) Interface shapes near the neck of the impact, for We = 8000 and
Re = 1000 (same case as figure (4)). The four profiles correspond to the times
t/T = 0.07, 0.11, 0.15 and 0.19. We observe the formation of a jet coming out of
the neck. The last profile shows the breakup of the jet. Numerically, it happens
when the structure size is of the order of the grid size. b) The evolution of the
jet width is contained by two straight dashed lines as the splash developps. The
extremity of the jet is also followed by the straight solid line(courtesy of Denis
Gueyffier [22]
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Figure 8: Log-log plot of the spread factor r/D as a function of Ut/D for the
same Weber number (8000) and different Reynolds numbers (Re = 100, 200, 400
and 1000). The straight line corresponds precisely to the power law r; = v DU?.
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Figure 9: Pressure field near the neck of the impact for ¢/7 = 0.1, We = 8000,
and a) Re = 100 and b) Re = 1000. The color scale is the same for each figure,
the higher the pressure the darker the color.
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Figure 10: Log-log plot of the pressure peak Py.,; as a function of ¢/7 for the
same Weber number (8000) and different Reynolds numbers (Re = 20, 100, 200,
400 and 1000). The pressure scale pU? (t/ T)l/ 2 is represented by the straight line
above the curves.
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Figure 11: Pressure profiles from the neck center for ¢/7 = 0.01 (circles) t/7 = 0.05
(squares) and t/7 = 0.09 (diamonds) for the less viscous case considered Re = 1000
and We = 8000. The pressure has been normalized by the pressure peak. The
profiles are taken along the vertical direction from the neck and are shown as a
function of A the relative distance to the pressure peak.
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a)

Figure 12: Vorticity field near the neck of the impact for ¢/7 = 0.1, We = 8000,
and a) Re = 100 and b) Re = 1000. The color scale shows high vorticity region in
dark. color

b)

29



FIGURES PF#2444

4000

le+05

80000 * 4 1 3000 ¢
.
‘. te
60000 |- & > K
o z
£ . S 2000 %
B - S
S .

40000 | v ‘ep

. 1000 |-
20000 (=

a) time unit b) time unit

Figure 13: a)Intensity of the vortex rings as a function of the time t/7 for We =
8000 and Re = 100, 200, 400 and 1000 (curves from bottom to top); b) same
curves but where the vorticity is rescaled by v/Re so that the curves are now on
the same scale.
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