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We investigate long time numerical simulations of the inviscid Rayleigh-Taylor instability at At-
wood number one using a boundary integral method. We are able to attain the asymptotic behavior
for the spikes predicted by Clavin & Williams[15] for which we give a simplified demonstration. In
particular we observe that the spike’s curvature evolves like t3 while the overshoot in acceleration
shows a good agreement with the suggested 1/t5 law. Moreover, we obtain consistent results for the
prefactor coefficients of the asymptotic laws. Eventually we exhibit the self-similar behavior of the
interface profile near the spike.

INTRODUCTION

The Rayleigh-Taylor (RT) instability appears when,
under gravity, an heavy liquid is placed over a lighter
one[1]. This instability is crucial for our understanding
of different phenomena in fluid mechanics: mixing, ther-
mal convection ([2] and cited ref. herein) and also finger
number selection in splashes[3]. It is also important in
inertial confinment fusion (ICF) where the mass ablation
provides a stabilizing effect to the interface instability[4].
Without ablation, after the exponential growth of the
perturbations due to the linear RT instability, nonlin-
ear profiles develop through the formation of bubbles
of lighter fluid rising into the heavier one and falling
spikes of the heavier liquid penetrating the lighter one.
In the general situations of viscous fluids which are im-
miscible and/or have Atwood number not equal to unity
(AT = (ρh − ρl)/(ρh + ρl) with ρh and ρl being the den-
sity of the heavier and lighter fluids respectively), famous
mushrooms-like structures grow for larger times[2, 5, 6].
The limit of an inviscid fluid above a vacuum (AT = 1)
without surface tension plays a specific role since no sta-
bilizing effects are present in the linear dynamics. It is
important to understand ICF in the limit of high density
ratio and also the most challenging case for the numer-
ics. Most theoretical and numerical work have focused
on this idealized limit in order to track insights into the
instability itself[7–12]. It has been shown using a con-
formal mapping that a finite time singularity might ap-
pear in the conformal plane[13] and it is also suspected
that for some sufficiently irregular initial conditions finite
time singularities should also be observed in the physical
plane. However, starting with sufficiently smooth initial
conditions, the asymptotic dynamics[8, 11, 12] presents
a constant velocity rising bubble separated by free falling
tiny spikes as displayed on figure 1. Although the rising
bubble motion has been described using local properties
of the flow[14], the asymptotic dynamics of the spikes
is far from being well understood. The single mode ap-
proach gives a fair description of the constant velocity of

the rising bubble (vb =
√

g/(3k) where g is the acceler-
ation of the gravity and k the wavenumber of the per-
turbation) but gives only partial results for the spike[8].
The fluid there obeys free fall dynamics to a good ap-
proximation and the pressure field of the flow leads to an
overshoot in the acceleration. The accelerated motion of
the liquid stretches the spike geometry and one expects
self-similar behaviour of the tip of the spikes. Recently,
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FIG. 1: Snapshots of the interface subject to the Rayleigh-
Taylor instability for time ranging from t = 0 to 10, start-
ing with a small amplitude sine mode (left). On the right is
shown the velocity of several points along the interface, non-
dimensionalized with the stationnary bubble rising velocity
√

g/3k, as a function of time.

an asymptotic theory using a parallel flow description of
the velocity field near the spikes has been constructed
[15]. The interface dynamics is nonlinear for large time
and can be described using the theory of characteristics
which gives rise to finite time singularity solutions. In
the case of regular dynamics a self-similar description of
the peak is obtained for large time: the maximal curva-
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ture of the interface at the peak tip is found to behave
like the cubic power of time t3. Moreover, the spike posi-
tion, following the free fall 1

2gt
2 at leading order, is shown

to converge to the constant acceleration g with an over-
shoot in acceleration decreasing like t−5. In this letter,
we present a numerical study of the Rayleigh-Taylor in-
stability which focuses on the large time dynamics of the
spikes in order to investigate the self similar dynamics
predicted in [15], where no numerical studies were per-
formed. We consider the dynamics for an inviscid liquid
(heavy) with an exterior fluid of zero density (At = 1)
and no surface tension. The numerics use a boundary in-
tegral method (BIM later on). Due to strong numerical
instabilities, a careful treatment of the interface using
conformal mapping is needed as explained below. The
results are then shown and compared with the theory.

ASYMPTOTIC ANALYSIS AND NUMERICAL

METHOD

We consider the two-dimensional motion of an inviscid
fluid above a vacuum, subject to a negative acceleration
−g. A periodic sine perturbation of the interface of wave
number k is implemented as initial conditions. Neglect-
ing surface tension, the equations of motion have no con-
trol parameter after rescaling the time, the position and
the velocity potential ϕ by factors

√
gk, k and

√

k3/g
respectively. The interface is described by y = α(x, t),
where y is the direction along the gravity and x orthog-
onal to it (see figure 2). The velocity field U = (u, v)
satisfies the dimensionless Euler equation

dU

dt
= −∇P + ey

where P (x, y, t) is the pressure, ey the non-dimensional
acceleration due to gravity and the fluid density ρ = 1.
The kinetic equation for the interface reads :

∂α(x, t)

∂t
+ u

∂α(x, t)

∂x
= v

with the velocity field (u, v) evaluated at the interface
(x, α(x, t)). Starting at time t = 0 with a small sine am-
plitude interface, we observe for large time that the fluid
particles located in the vicinity of the tiny spikes come
from an almost free fall from the initial interface region.
Therefore, following [15], we assume quasi-parallel steady
flow for the velocity field which gives then in the tip re-
gion |u| ≪ |v| and v ∼ √

2y with y ∼ 1
2 t

2 for large
time. Writing a perturbation expansion of the veloc-
ity field in the tip region |x| ≪ y, we in fact consider:
v =

√

2(y + f(x, y, t)) with f(x, y, t) ≪ y. Taking a
Taylor expansion in x of the perturbation f , we obtain

by symmetry: v =
√

2y + f0(y,t)√
2y

+ x2

2
f2(y,t)√

2y
+ O(x4).

We limit our expansion to the second order in x for
the velocity field later on. Incompressibility gives :

u = −
(√

1
2y + ∂(f0(y,t)/

√
2y)

∂y

)

x + O(x3). At the leading

order (where we neglect even the perturbation f(x, y, t))
we obtain the following expression for the interface loca-
tion:

∂α(x, t)

∂t
− x

√

2α(x, t)

∂α(x, t)

∂x
=

√

2α(x, t)

which can be solved using the methods of charasteristics
(see [15]). Writing α(x, t) = t( t

2 − γ(x, t)) and noting
that γ(x, t) ≪ t/2 in the spike region, we obtain, after
linearisation :

∂γ(x, t)

∂t
− x

t

∂γ(x, t)

∂x
= 0

which has self-similar solution of the form γ(x, t) = θ(xt).
A first conclusion can be drawn about the curvature of
the interface at the tip, κ = −∂2α/∂x2|x=0, which is thus
found to increase as the cubic power of time[? ] :

κ = t3θ′′(0) (1)

The next order terms of the expansion allow the de-
termination of the function f0(y, t) near the tip. Using
the constant value of the pressure at the interface we use
the projection of the Euler equation at the interface on

its local tangent : du
dt + ∂α(x,t)

∂x
dv
dt = ∂α(x,t)

∂x . Since on
the interface dP (x, α(x, t), t)/dx = 0. We develop this
equation at first non-zero order (which will end up to be
the first order in x) with the expansion θ(xt) = θ(0) +
x2t2θ′′(0)/2+O(x4). Remembering that |f | ≪ y, we can
neglect also the larsge scale terms ∂2(f0(y, t)/

√
2y)/∂t∂y

and
√

2y∂2(f0(y, t)/
√

2y)/∂y2 with respect to the oth-
ers. We obtain finally for the tip position y = ys :
∂f0(ys,t)

∂t +
√

2ys
∂f0(ys,t)

∂y = df0(ys,t)
dt =

√

2
ys

1
κ

Recalling that: dys

dt =
√

2ys + f0(ys,t)√
2ys

we obtain for the

tip acceleration at leading order:

d2ys

dt2
= 1 +

1√
2ys

df0(ys, t)

dt
= 1 +

2

t5θ′′(0)
(2)

which corresponds to an overshoot in the spike accelera-
tion decreasing as the fifth power of time. An overshoot
in the acceleration was observed in numerical simulation
already in [16], but with no explicite scaling laws.

The numerical method is elaborated using the incom-
pressible and potential properties of the flow. The ve-
locity field can thus be evaluated everywhere when the
velocity potential is known on the interface thanks to
Cauchy’s theorem, in the spirit of pionnering works[16–
19]. The non-dimensional Bernoulli equation on the free
surface reads :

∂ϕ

∂t
= −1

2
(∇ϕ)2 + y, (3)

where the velocity potential ϕ is a harmonic function in
the fluid domain Ω :

∆ϕ = 0 (4)
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The kinematic condition on the free surface expresses
the fact that fluid particles move with the same normal
velocity than the free surface itself :

dx

dt
· n = ∇ϕ · n (5)

Knowing ϕ on the free surface at a given time-step, we
search for the solution of equation (4) that satisfies this
boundary condition (5). We use the complex potential
β(z) = ϕ + iψ and the conformal map f(z) = exp(−iz)
(Cf. Figure 2), where z = x + iy and ψ is the stream
function. The conformal map transforms the periodic
domain Ω into the closed domain M . Since ψ is harmonic
inside Ω, β(z) is analytic inside Ω and therefore γ(ζ) =
β(f(z)) is analytic inside M . Using Cauchy’s theorem,
we obtain a Fredholm equation of the second kind for the
stream function ψ which is solved using discretization of
the free surface (∂Ω and thus ∂M). This linear system
of equations is solved using a LU decomposition. Once
we know ψ on each point on ∂M , the complex velocity
of each marker in the physical plane is given by :

dβ

dz
= u− i v (6)

where u and v are the horizontal and vertical velocities
respectively. This complex velocity is computed with a
finite difference scheme using the values of the complex
potential on the collocation points on ∂Ω. The posi-

Ω

ζ = f(z)

y

x

f(z) = e−iz

M

FIG. 2: Conformal map used to transform the physical peri-
odic plane Ω into a closed domain M .

tion of the surface markers (kinematic condition) and the
value of the velocity potential on each of these markers
(Bernoulli equation) are then updated in time using a
fourth order Runge-Kutta method. Finally, an adaptive
mesh refinement techniques is used in order to concen-
trate markers on the spike.

RESULTS AND DISCUSSIONS

We have performed numerical simulations of the
Rayleigh-Taylor instability using the numerical method
described above. We start with a sine-mode deformation
of the interface of ampliture a≪ 1. The unavoidable nu-
merical noise cannot be damped by the numerics and the

calculations always end up subject to numerical insta-
bilities. Nevertheless, we emphasize that the numerical
scheme used here is remarkably robust and can be accu-
rately evolved to reach the large time where the scalings
predicted by the theory [15] are valid. Comparing our
simulations with recent numerical works[5, 6, 9], we have
been able to run the dynamics at least twice as far which
corresponds roughly to an increase of a factor of 8 in the
tip’s curvature.

The position of the spike is shown on figure 3 as
function of time. We observe that the asymptotics
dynamics are very well approximated by the relation
ys = 1

2g(t− t0)
2 as shown in the inset to the figure with

t0 = 3.74 for the amplitude of the initial perturbation
a = 0.01. This remarkable behavior, in good agreement
with the free fall hypothesis, suggests that t0 is the time
delay accounting for the initial exponential development
of the instability. Indeed, the linear growth rate of the
perturbation is precisely one and, varying a, we observe
that the time delay correspond to aet0 = 0.42 which cor-
responds in the numerical simulation to a constant ampli-
tude of the spike of 0.22 to be compared to 0.21 obtained
with the linear instability only. These time and ampli-
tude correspond thus roughly to the transition between
the linear and the nonlinear regime. We will therefore
present further data on the curvature dependance and
the acceleration of the tip as functions of this delayed
time t − t0 instead of t. The curvature κs at the tip
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FIG. 3: Position of the spike ys(t) as a function of time. The
inset shows in a log-log plot of the spike position (black curve)
as function of time t− t0 with t0 = 3.74 obtained by a second
order polynomial fit of ys. the dashed line shows the expected
behavior 1

2
t2.

is then shown on figure 4. The large time asymptotic
behavior is similarly found to follow the cubic law (see
equation 1) with θ′′(0) = 1.5. We have not been able
to deduce analytically this value of the self-similar cur-
vature θ′′(0) = 1.5 using the characteristics dynamics
which is valid for large times only. In addition, the accel-
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FIG. 4: Spike curvature κs calculated at the tip y = ys as
function of the delayed time t − t0 in a log-log plot. The
dashed line displays the cubic law (1) with θ′′(0) = 1.5.

eration of the tip is computed by finite differences on the
tip velocity and the overshoot in the acceleration is pre-
sented on figure 5. We observe that the results look nois-
ier than the two previous ones. Two factors can explain
such noise: firstly, we are looking to a finite difference
which decreases to zero so that the numerical errors are
relatively more important. However, we note that the
overshoot in acceleration shows a good agreement with
the 1/t5 law, noting that no adjustable parameter is used
in this comparison. Moreover, the self similar structure
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FIG. 5: Overshoot in acceleration, defined as the difference
between the tip acceleration and the gravity. The plot is in
log-log scale and with the delayed time t−t0. The dashed line
shows the theoretical prediction (2) using the value of θ′′(0)
obtained from figure 4

of the interface near the tip has been exhibited on figure
6. We observe after the proper rescaling on the left part
of the figure that the interface profiles collapse onto a
single curve near the spike.

We have thus exhibited large times numerical simu-
lations of the Rayleigh-Taylor instability which present

FIG. 6: Self-similar structure of the tip: the interface profile
around the spike have been superimposed on the right side
of the figure for different time t ranging from 4 to 12. The
left side of the figure shows the same curves rescaled by factor
1/(t− t0) and (t− t0) for the x and y coordinates respectively,
following the scaling behavior predicted by the theory.

asymptotic scaling behavior in agreement with theoret-
ical predictions using Taylor expansions of the free fall
velocity field at the spike[15]. Although our numerics
always stops due to numerical instability, we have been
able to reach large time enough to exhibit the cubic power
in time dependance for the spike curvature and the in-
verse of the quintinc power of time decreasing of the over-
shoot in acceleration. Moreover, the numerical methods
used here and the analytical description of the flow in
the vicinity of the spike offer a powerful tool to inves-
tigate Rayleigh-Taylor and Richtmyer-Meshkov instabil-
ities for any density ratio. It is our pleasure to thank
J. Ashmore for useful comments. We acknowledge also
the support of CEA through the contract CEA/DIF N
4600051147/P6H29.
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