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When a drop of clean water impacts a superhydrophobic surface, the liquid is forced
to spread out due to inertia. Once a maximum radius is attained, the liquid retracts
and finally bounces back off the surface. Some of the kinetic energy is stored as surface
energy and generates capillary waves which travel from the bottom of the impacted drop
towards the top. This results in the evolution of the drop to a pyramid. These features
have recently been experimentally recorded by Richard (2000). In the experiments, the
maximal spreading of the drop did not entirely balance the loss of kinetic energy. Thus,
the question arose: what accounts for this remaining kinetic energy?

In this paper, numerical simulations are performed with an axisymmetric volume-
of-fluid method treating the coupled two-fluid water/air system in full, and secondly
with an axisymmetric front-tracking algorithm treating the water/air system as a free
surface problem. It is found that the two methods retrieve qualitatively similar results.
Computations of the kinetic energy, velocity field, pressure field, and interface evolution
are presented. It is shown that when the kinetic energy is at the first minimum value,
the drop has spread to its maximal radius. However, there is stored kinetic energy in the
form of a vortical swirling motion which persists in the toroidal drop. The center almost
dries, and thereafter, the drop begins its bounce upwards. The velocity field is primarily
upwards at this stage, as the central region rises, followed by the surrounding toroidal
region. The drop then leaves the ground and rises, achieving a top-heavy champignon
shape. In these final stages, the kinetic energy is a small fraction of its initial value.

1. Introduction

There are a number of super-hydrophobic surfaces which occur naturally (cf. extensive
discussion in Richard (2000); Richard & Quéré (2000); Quéré et al. (2000)). An example
is the gingko biloba tree, which is used in urban areas for its capacity to resist pollution.
The microscopic structure of the leaf is fibrous and aerated. The fibres are coated with a
naturally hydrophobic wax. When a water drop impacts it, there is air under the entire



2 Y. Renardy et. al

drop between the points of solid-liquid contact. Synthetic surfaces with these properties
have also been manufactured. The impact of a drop of clean water against a super-
hydrophobic surface results in a pyramid structure, which has been documented in the
thesis of Richard (2000). We reproduce the sequence of photographs in figure 1 and quote
the description. The timings are 2.7 ms (between photo 1 & 2), 1.8 (between 2 & 3, and
so on), 0.4, 1.0, 0.2, 0.2, 0.4, 0.4, and 0.9.

The drop is generated by dripping, and as it falls, it oscillates: the initial shape may
be ellipsoidal or an oscillation of mode 2 (Popinet (2000)) in this particular experiment.
However, when the experiment was repeated, the initial shape was not always the same.
The impact against the solid surface creates waves at the surface of the drop which travel
up to the summit. The analogy is that of a pebble thrown into a round pond: the emitted
concentric waves go away and meet at a diametrically opposite point, which in this case
is the top of the drop. The wavelength which is amplified the most is that with a phase
speed equal to the impact speed. It is observed experimentally that the layers have nearly
the same height. The wavelength corresponding to the speed V is (cf. Equation (V.16)
of Richard (2000))

Y

= v (1.1)
where v is surface tension and p is density of the viscous drop. For the parameters in
figure 1, V = 40 cm.s™!, v = 72.8 dyn.cm™! at 20 deg.C, p = 1 g.cm™3, and thus,
A = 0.5 mm, which is roughly the height of the layers in the figure. The layers collapse,
one into the other, and eventually eject a secondary jet. The jet is not always present;
when it occurs, it is due to the breaking of capillary waves when they reach the top
of the pyramid. The nipple at the top inertially turns over, which generates a small
cavity of air at the center of the drop of the size of the nipple. Thereafter, this cavity
collapses, emitting the jet. This is reminiscent of simulations of a gas bubble bursting at
a free surface (Boulton-Stone & Blake (1993); Popinet & Zaleski (2001); Duchemin et al.
(2001); Oguz (1998)).

In the sequence of photographs, the center of the drop does not dry out. However,
drying out has been observed in instances, when the impact speed is higher.

There is a threshhold for the phenomenon to occur. The excited wavelength must be
much smaller than the radius R of the drop, which means that V' should be sufficiently
large. This condition, that A < R, yields the condition on the Weber number:

2
We>1, We = ﬂ (1.2)
Y
In the case of figure 1, We = 4. The limiting case of We = 1 gives the velocity to
be V = 20 cm.s~!, and the number of layers is comparable to the value of the Weber
number. The capillary waves must reach the top of the drop. These, however, decay
over a distance much shorter than the wavelength. The distance £ of decay of a wave of
wavelength A propagating at speed V is given by
2
(=AY (1.3)
n
where 7) is the viscosity. In order to observe the pyramid structure, this length £ must be
much larger than the radius of the drop: £ > R. Substituting A from equation (1.2) into
equation (1.3),

pRnV?3
72

=We.Ca< 1. (1.4)



Impact of a viscous drop 3

For a drop of radius R = 0.175 mm, we have We.Ca ~ 2 x 1072 and criterion (1.4) is
verified. Since this criterion, as well as We > 1 must both be satisfied,the window of
velocities in which we can observe the liquid pyramid is

Y N\1/2 7’ 1/3
(pR) <V< (an) . (1.5)
For a drop of water of R ~ 1 mm, this gives speeds between 26 and 170 cm.s~!. There
exists, in particular, a radius R at which this window reduces to one value, but this is of
the order of R = 10~® c¢m, which is much smaller than drops in their experiments. The
aim of this paper is the numerical simulation of the formation of the pyramid.

In Section 2, we summarize the two numerical algorithms which we use and the problem
formulation. The first, in Section 2.1, is a volume-of-fluid method. This is a two-fluid
formulation, in which a volume fraction function is used to reconstruct the interface
shape. When the viscosities are small, this formulation suffers from spurious wiggles on
the interface, and therefore, the viscosities and densities of the liquids are upscaled in
order to perform the simulations. Here, We and We.Ca values from the experiments are
used. We show the numerical results in Section 4. The evolution of the kinetic energy is
shown and discussed with respective stages in the drop shape.

Secondly, a front-tracking algorithm for a free-surface code is given in Section 2.2.
Numerical results are presented in Section 4.

2. Numerical algorithms
2.1. Volume-of-fluid method: SURFER++
2.1.1. Governing equations

The momentum equations are the axisymmetric Navier-Stokes equations :

ou ou Ou,  OP 10(rSy;) 0Szr Sog

o 55 = o T e Ty T 21)
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where Sy, = 2u(0u/or), Sps = 2u(u/r), Szgz = 2u(0v/0z), Spy = p(Ov/0r + Ou/dx),
Szr = Srz = p(0v/0r 4+ Ou/0x), The radial and axial components of velocity are denoted
u = (u,v), and the pressure by P. The body force F = (F,., F;;) includes the interfacial
tension in the volume-of-fluid formulation. Incompressibility yields:

10(ru Ov
= - ( )+—=0 (2.3)
r Oor ox
The two fluids are immiscible. Density and viscosity are constant in each phase but may
be discontinuous at the interface. We use the VOF scheme. A volume fraction field C is
used to represent and track the interface, which is transported by the velocity field u :
oC
—+u-VC =0 2.4
T (24)
This equation is used to calculate the density and viscosity. For cells overlying the inter-
face, the average values of density and viscosity are interpolated by the following formulas

V-u

p=Cpi+(1—-Clp2, p=Cum+(1-C)p2 (2.5)
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F1GURE 1. Figure V.15 of Richard (2000). Structures formed during the impact of a drop of
radius R = 1.75 mm at velocity V = 41 cm.s™'. The timings between the frames are 2.7 ms
(between photo 1 & 2), 1.8 (between 2 & 3, and so on), 0.4, 1.0, 0.2, 0.2, 0.4, 0.4, and 0.9.

2.1.2. Discretization

Our code SURFER++ is composed of three parts: a second order VOF method to
track the interface, a projection method to solve the Navier-Stokes equations on the
MAC grid, and finally, a continuum method for modeling the interfacial tension. We
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FIGURE 2. (a) Two dimensional Cartesian mesh with variable cell sizes. (b) Location of
variables in a MAC mesh cell.

summarize these components below. The axisymmetric code has already successfully
simulated fully nonlinear bamboo waves for core-annular flow with high viscosity ratios
in Li et al. (1998); Renardy & Li (2001). Details of the algorithm are given in Lafaurie
et al. (1994); Zaleski et al. (1995); Gueyflier et al. (1999); Li & Renardy (2000). We solve
the momentum equations by a projection method. We calculate first an approximate
velocity u* without the pressure gradient Vp from the momentum equations, assuming
that u™ is known:

p— un

At

In general, the resulting flow field u* does not satisfy the continuity equation. However,
we require that V - u™! = 0 and

1
=—-u" -Vu" + ;(V - (uS) + F + pg)". (2.6)

n+1l _ 4%
u™ —uwt __Vp @2.7)
At p
The discretization of of the incompressibility condition (2.3) at cell (i) is :
LTapyiny ~Timj%iog | Viga1/2 “Vig-1/2 23)

Ti A’I"i AZI?]'

where r;_1 denotes the left face coordinate of cell (ij), r; +1 the right face coordinate
and r; = %(rz-_% + r;41). Taking the divergence of Eq. (2.7), we obtain a Poisson-like
equation
Vp V-u*
(22 = — 2.9
V-2 =T (29)

which is used to find the pressure field. Next, u* is corrected by this pressure field and
the updated solution u™*! is found from Eq. (2.7).

We use a fixed Cartesian mesh of rectangular cells having sizes Ar for the radial di-
rection, Az for the vertical direction, as illustrated in figure 2. The spatial discretization
of the variables u, v and p is based on the MAC method. The pressure and viscous terms
in the momentum equations are calculated using second order central finite differences.
In a MAC mesh, the variables are not defined on the same location, and the advantage
is that in the solution of the resulting discretized Poisson equation, there is no checker-
board oscillation. The boundary condition for the pressure at the walls is the Neumann
condition, corresponding to non-penetration, or zero normal velocity.

As pointed out in Li et al. (1998), the solution of the discrete counterpart of Poisson’s
equation (2.9) is the most time-consuming part of our Navier-Stokes solver and, conse-
quently, an efficient solution is crucial for the performance of the whole method. The
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multigrid method is used. The timings for each component of the code are detailed in
Renardy & Li (2000).

Finally, the CsF technique (Brackbill et al. (1992)) for the treatment of interfacial
tension is used. This component is described in detail in Renardy et al. (2000); Gueyffier
(2000).

The no slip boundary condition for the velocities is imposed at the walls. The boundary
condition for the color function is that it is zero outside of the physical domain. This is
equivalent to making the wall non-wetting, and the contact angle is 0 or 180 deg. Initial
condition is that we have a spherical drop suspended at a distance above the ground. We
impose an initial velocity in the downward direction on the viscous drop.

2.2. The Marker Code: A Front-Tracking Algorithm

The marker method of Duchemin et al. (2001); Popinet (2000); Popinet & Zaleski (1999,
2001) for free surface flows is used; the reader is referred to these references for details.
In summary, the momentum equations are solved on a Cartesian fixed grid. For cells
which are not cut by the free surface, a classical finite volume scheme is applied and the
Poisson equation is solved using a multi-grid algorithm. For the cells at the free surface,
velocities are extrapolated in order to enable the computation of finite differences. The
surface tension term is computed using cubic spline curves. The markers are advected by
the interpolated velocity field calculated on the fixed grid.

The front-tracking component is summarized as follows. The interface is represented
using an ordered list of marker particles (z;,y;), 1 < i < N. A list of connected poly-
nomials (pf(s),pY(s)) is constructed using the marker particles and gives a parametric
representation of the interface, with s an approximation of the arc-length. Both lists are
ordered and thus identify the topology of the interface.

2.2.1. Advecting the points

The first step in the algorithm is the advection of the marker particles. A bilinear inter-
polation of the velocity field is used. The marker particles are advected in a Lagrangian
manner with a first-order explicit scheme. Once the points have been advected, we need
to reconstruct the parametric representation of the interface.

2.2.2. Constructing the polynomials

Cubic splines are used; these are connected cubic polynomials with continuous first
and second derivatives. The connection conditions for the interpolating polynomials lead
to two pseudo tridiagonal systems Ba = ¢, one for each coordinate of the parametric
curve, where B is a N2 matrix. The solution is reduced to the solution of two tridiagonal
systems which are easily solved. Thus, the construction of the interpolating prametric
spline curve from the set of points (x;) requires the solution of four tridiagonal systems
of size N2. This can be done in O(NN) operations. All the other operations of the marker
algorithm deal with local computations along the interface. They are thus also of order
N. The ratio of time spent in the marker algorithm and in the computations done on
the bulk of the fluid is of order 1/N.

2.2.3. Redistribution

As the interface evolves, the markers drift along the interface following tangential
velocities and we may need more markers if the interface is stretched by the flow. We
then need to redistribute the markers in order to ensure a homogeneous distribution of
points along the interface. This is done at each time step. This is similar to the approach
of boundary integral codes that also use arclength parameterization, cubic splines and
redistribution of nodes
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FIGURE 3. In the “method of tensions”, the contribution of the surface tension to the momentum
equation is obtained as the sum of two vectors tangent to the interface. First the direction of
the vectors is determined from a spline representation of the interface, then the sum of the two
tangent vectors times o is added to the momentum balance of the cell.

2.2.4. Surface tension contribution to the momentum equation

The surface tension force is implemented as a traction in the direction tangential to
the interface curve on the boundary of each control volume:

B B
af knds = 074 dt =o(tg —Ta), (2.10)
A A

where t is the oriented unit tangent to the curve. The control volume is shown in figure
3.

2.2.5. Pressure gradient correction

The method of Popinet & Zaleski (1999); Popinet (2000) takes account of the knowl-
edge of the interface position and the fact that the pressure has a jump across the interface
in order to adjust the finite difference expressions for pressure gradients at the interface.

3. Numerical results with the VOF method: SURFER++

Figure 4 is a schematic of the problem. We define a capillary number and Reynolds
number

Ca = ﬂ, Re = @, (3.1)
0 n
so that
We = Ca.Re, Oh= (@)1/2. (3.2)

Re
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no slip & non-wetting on walls
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0 Lr

FIGURE 4. Schematic of computational domain [0, Lr] X [0, Lz]. The axisymmetric box is bounded
by a wall which is non-wetting (C' = 0 outside the physical domain), and on which there is no
slip (v = 0,v =0).

We choose the fluid parameters in our simulation so that the dimensionless parameters
remain similar to those of figure 1. A limitation of SURFER++ is that the Ohnesorge
number should not be smaller than 0.01. This limit gives Ca/Re = 10~*. For We = 4,
this yields Re = 200,Ca = 0.02. Thus, We.Ca = 0.08, which satisfies criterion (1.4).
There is a trade-off in the simulations, that when the Ohnesorge number is larger with
We fixed, Ca becomes larger, which increases We.Ca. We choose piq = 1, pgas = 0.012,
R =0.175, v = 72.8, V = 40.8, miiqg = 0.0357, ngqs = 0.000642, using cgs units, so that
the ratios of densities and viscosities are piiq/pgas = 83.3, Miig/Mgas = 55.6. Initially, the
spherical drop is centered at height 0.25 cm. Timesteps in the explicit time integration
scheme are At = 5 x 10~7. The computational domain is [0, 0.45] x [0, 0.45] and the
mesh is 192 x 192.

Figure 5 shows the evolution for ¢t = 0 to 0.01025s in steps of 0.00025s. Velocity vector
plots are shown for t = 0.005,0.006,0.007s, in figure 7. A vortical motion is present at
the step of the pyramid, both inside and outside the drop. The vortex outside the drop
sits on the step. These features are coupled with the capillary waves.

The doughnut part of the drop has a toroidal vortex all around in the drop liquid. The
impact velocity, when sufficiently high, pushes the center of the drop down, drying it out
and leading to a singularity there. The evolution of kinetic energy is shown in figure 6.
When the drop impacts the ground, the energy is dissipated through viscous effects, as
well as through surface energy in the form of capillary waves. The capillary waves travel
up the drop, forming the pyramid. They meet at the top of the pyramid, forming a nob.
Thereafter, the center of the drop continues its descent downward. The simulation loses
accuracy when the center of the drop dries and is stopped. At this point, the kinetic
energy is at its minimum, and there is still some residual amount left, which is most
apparent as the swirling motion in the bulk of the toroidal ring.

In figures 8-9, the simulation is started with the spherical drop touching the ground.
This is because in the experiments, the superhydrophobic surface is highly corrugated,



Impact of a viscous drop 9

05 0.5 05 05 0.5 0.5

O
e
O
e
O
O

0 0
-02 002 -02002 -02002 -020 02 -0 .
05 0.5 0.5 0.5 05 05

o
N
o
o
o
1
o
N
o
o
N

O
D
5
D
D
B

|
o
N
o
o
N
1
o
N
o
o
N
1
o
N
o
o
N
|
o
N
o
o
N
|
o
N
o
o
N
|
o
N
o
o
N

D
D
D
D
D
D

|
o
N
o
o
N
|
o
N
o
o
N
|
o
N
o
o
N
|
o
N
o
o
N
|
o
N
o
o
N
|
o
N
o
o
N

05 05 0.5 05 05 05

|
o
N
o
o
N

|
o
N
o
o
N

|
o
N
o
o
N

D
D
D
i
E
)

0 0
. . . . -02 0 02 -02 0 02 -02 0 02
05 0.5 0.5 05 0.5 0.5

[
[
>
}
i
}

0 0 0
-02 002 02002 02002 -02002 -02002 -020 02
05 0.5 0.5 05 0.5 0.5

[
[
}
|
[
|

0 0 0
-02 0 02 -02 002 -02002 -02002 -02002 -020 02

05 0.5 0.5 0.5 05 05

-02 0 02 -02 002 -02002 -02002 -02002 -02002

:
:

FIGURE 5. Impact of a drop of radius R = 1.75 mm at initial velocity V = 40.8 cm.s™! starting
at height 0.25 cm. The evolution across each row is from t=0 to 0.01025s in steps of 0.00025s.
Mesh 192x192. Computational domain 0.45x0.45. Compare with figure 1.

and the air that is trapped due to the lubrication effect under the center of the drop as
it descends to the ground can escape through the corrugation. However, in the numerical
simulations, the lubrication layer persists so that the sides of the drop touch the ground
first and the center of the drop elevates (Renardy et al. (2001)). The initialization of
the drop to begin touching the ground at the center of the drop is therefore a closer
approximation of what is happening in the experiments. Here, the impact velocity is
slightly less than in the previous simulation and the drop does not dry out at the center.
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FIGURE 6. Impact of a drop of radius R = 1.75 mm at initial velocity V = 40.8 cm.s™" starting
at height 0.25 cm. Kinetic energy evolution for figure 5.

Instead, it almost dries out, at the first minimum of the kinetic energy, also plotted in the
figure. The drop then begins to rise at the center as the kinetic energy increases again.
The kinetic energy then decreases as the amount of contact of the drop with the ground
decreases and the drop eventually lifts up. This simulation is presented up to 0.0165s.
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3.1. Ellipsoidal initial shape

Upon a re-examination of figure 1, it is evident that the initial shape of the drop just
before impact with the ground is not spherical. It is ellipsoidal. This shape may be
induced by vibrations upon drop production. The radii which model the experimental
photographs are Rhorizontal = 0.15 and R, = 0.24cm. The viscosities are scaled up by
factor 3 to 0.000642 and 0.0357, keeping the true viscosity ratio between water and
air. The densities are 0.012 and 1.0. The drop is initially touching the ground. The
computational box is [0,0.45]cm x [0,0.675]cm.

3.1.1. Impact velocity V = 40.8cm.s*

The initial velocity is V' = 40.8 cm.s~!. This computation is performed on a mesh of
256x384. Figure 10 shows the evolution of the interface shape until the center of the drop
dries out. In comparison with the simulation for a spherical drop, the ellipsoidal drop
develops more of the pyramid shape, together with the nob at the center which rises up
as in the experiments. Figure 11 shows velocity vector plots for situations which mirror
the experimental photographs of figure 1.

A convergence test for spatial refinement is shown in figure 12 for the evolution of
kinetic energy, for meshes 256x512, 384x576, and 512x768. We see that the 256x512
case gives a qualitatively good estimate of the more refined cases. A comparison of
interfacial shapes was conducted; the main improvement in mesh refinement occurred in
the resolution of the nob at the top of the pyramid, but the refinement did not show new
essential features. The CPU time required for the 512x768 case on the Origin 2200 is
roughly 4 hours per 50 timesteps, with At = 0.5 x 10~%s. The CPU time for the 384x576
case is roughly 1 hour 15 minutes for the 50 timesteps at the same At. The kinetic energy
reaches its minimum when the center of the drop dries out. The velocity field in figure 11
shows that there is a small amount of kinetic energy stored in the drop as motion inside
the toroidal region.
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FIGURE 10. Impact of an ellipsoidal drop of radius Rhoriz = 1.5, Rz = 2.4 mm at initial velocity
V = 40.8 cm.s™ ! started touching the ground. Progression across each row at every 0.00025s up
to 0.00875s. 384x576 mesh.
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FiGURE 12. Impact of an ellipsoidal drop of radii Rhoriz = 0.15, R, = 0.24cm at initial ve-
locity V' = 40.8 cm.s™' started touching the ground. Kinetic energy vs time, computed in
[0,0.45] x [0, 0.675] with different meshes: Ar = Az = 0.45/512 (-), 0.45/384 (-.-), 0.45/256 (..).
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3.1.2. Initial velocity V = 38cm.s~!

The next simulation is conducted at a slightly lower impact speed, 38 cm.s~!. Figure
13 shows velocity vector plots for situations which are close to the stages photographed
in figure 1. The kinetic energy evolution is shown in figure 14, and the last plot of figure
13 is close to the first minimum of the kinetic energy. Here, the center of the drop is thin.
The situation at the minimum is shown in figure 15, where velocity vector plots for the
drop as the kinetic energy evolves further are shown.

At this impact speed, the center of the drop does not dry out, and the drop partially
rebounds, as shown in figures 15 and 16. When the center of the drop begins its rise
from its minimum height, the kinetic energy increases to its local maximum. This stage
is shown in figure 15(c). Thereafter, as the drop begins to lift off the ground, as in figure
15(d), the kinetic energy decreases again.

At the stage of evolution shown in figure 16, the velocities are small relative to the
initial stages, and we choose to display just the interface shapes. After the drop lifts off
the ground, the drop evolves to a top-heavy champignon-like shape, and then to a flatter
shape with a dimple at the bottom. The drop hovers in response to the lubrication layer
created at the top wall. It approaches the top wall closer to the rim rather than the
center. This is typical of a drop approaching a solid; see for instance the two-dimensional
simulations of a drop falling to the ground in Renardy et al. (2001).
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FiGURE 14. Impact of an ellipsoidal drop of radii Rhoriz = 0.15, R, = 0.24cm at initial ve-
locity V = 38 cm.s™' started touching the ground. Kinetic energy vs time, computed in
[0,0.45] x [0,0.675] with mesh Ar = Az = 0.45/256.
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FIGURE 15. Impact of an ellipsoidal drop of radii Rporiz = 0.15, R,

38 cm.s™! started touching the ground. t
0.012, (c) 0.0137 (local maximum kinetic energy 9.4), (d) 0.0175s.
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FIGURE 17. Universal curve delineating conditions for dryout. Initial drop is spherical.

4. Numerical simulations with the Marker Method

The simulations are conducted in a computational box 14/3 mm square with a 256x256
grid. A spatial refinement study was conducted with 512x512 to check for convergence.
The density of the liquid is 1 gm.cm—2, and the viscosity is 1 c¢P. The surface tension is
72.8 dyn.cm~'. The drop is initially centered at 2.193 mm above the ground.

4.1. Universal curve for dryout

Figure 17 describes the critical values of Weber and Reynolds for which the drop becomes
a torus after impact. The initial drop is spherical. The intersection of the bottom wall
with the axis of symmetry is “Wet” for a spherical topology and “Dry” for a toroidal
one. The formula shown in the figure for the curve is an empirical fit.

At high Reynolds numbers, viscous effects are small and the topology is determined
by a competition between inertia and surface tension alone. Thus, the Weber number
becomes the only dimensionless parameter and the graph asymptotes to We =constant,
independent of the Reynolds number. On the other hand, at low Reynolds numbers,
viscous effects are important and, therefore, a combination of both We and Re determines
the critical curve.

Given an experimental set-up, figure 17 guides the selection of the drop velocity to
achieve the desired condition. For example, in the development of technology for liquid-
metal microdroplet deposition (Fukai et al. (1995)), the “wet” condition is desired.
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4.2. Initially oscillating drop

We begin by showing in figure 18 the corresponding simulation for the experimental
results of figure 1 displayed in Section 1: 2.7 ms (between photo 1 & 2), 1.8 (between 2
& 3, and so on), 0.4, 1.0, 0.2, 0.2, 0.4, 0.4, and 0.9. The initial drop is well-approximated
by a mode of oscillation of a drop released from a nozzle, namely mode 2; the distance
from the center of the drop to the free surface is:

r(6) = Ro(1.0 + €Y>(6)) (4.1)
where Y5(6) is a spherical harmonic of order 2 (Lamb (1932); Plesset & Prosperetti
(1977)). These are linear modes of oscillation so that the application of this for € =
0.29 deviation is an estimate of the initial shape, in the same spirit as the ellipsoidal
initial drop. Although we acknowledge that the initial shape of the drop may be due to
the mode 2 oscillation, we do not attempt to include the velocity of the oscillations in
our computations, because we do not know at what phase of the oscillation the drop
is at impact. If the drop is at maximum distortion, the velocity is zero in the linear
approximation. We can estimate the order of magnitude of the velocity of the oscillations.
According to Lamb (1932), the frequency for a water drop is

w =24.3a7%/2 (4.2)

where a is the radius of the drop (all numbers are in CGS units). For a maximum radial
distortion of ea, we therefore find a maximum speed of

Uy = 24.3ea /2. (4.3)

With € = 0.29 and a = 0.175, this yields u,, = 16.85. This speed, however, would be
attained at the time when the distortion is zero and the drop is spherical. We believe
that the drop at impact is actually close to maximum distortion and, therefore, the speed
due to the oscillation at the time of impact is small relative to the impact speed. The
period of the oscillation is

T = 27 /w = 0.019 seconds, (4.4)

which is much longer than the duration of the impact.

Our numerical results, shown in virtual reality in figure 18, succeeds in capturing the
gross features of figure 1. We have conducted a spatial convergence test for these results
and show in figure 19 the interface positions through a cross-section for the 256x256
case and the refined 512x512 case. These show that the 256x256 result captures the
qualitative features, while the 512x512 case accentuates the small capillary wave at the
top. In summary, the results of the free-surface marker code compare well with those of
the two-fluid volume-of-fluid code, and with the experiments of Richard (2000).

Figure 20 shows the contours for the pressure field corresponding to four of the stages
presented in figure 18. These show contour lines given at regular spacings of the pressure
values. Clearly, the maximum values evolve toward the top of the pyramid.

5. Conclusions

When a drop of liquid impacts a hydrophobic surface, it evolves to a pyramid structure
when the impact speed is sufficiently high and capillary waves persist over the surface
of the impacting drop. In terms of dimensionless parameters, this criterion requires the
Weber number We > 1 and the product of the Weber and capillary numbers We.Ca < 1.

Numerical simulations are conducted for a drop of clean water, with two different
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algorithms. One is the two-fluid volume-of-fluid method, in which the true viscosity ratio
of air to water has been used, while upscaling the values of each viscosity by factor 3, and
the gas density has been upscaled by factor 10. The second method is the free-surface
front-tracking algorithm. Both methods show qualitatively similar results for the drop
evolution, and a satisfactory comparison with the experimental photographs is achieved.

We resolve the open question which was presented in Richard (2000), namely the
maximal radius was estimated by balancing with the initial kinetic energy, and the ex-
perimental data showed it to be less than the predicted value. In this paper, the kinetic
energy evolution is tracked numerically, together with the velocity and pressure fields,
and interface position. We find that at the first minimum value of kinetic energy, the
drop achieves its maximal spreading radius and is toroidal, storing the remaining kinetic
energy in a swirling motion in the drop. This is followed by a rebound of the drop when
the impact speed is sufficiently high, but the kinetic energy on the rebound is a fraction
of the original value. The energy is also diverted to deform the surface through capillary
waves, and there is also viscous dissipation.

We have also determined the universal curve in the Reynolds number vs Weber number
space for the conditions under which the center of the drop dries out. In a given exper-
iment where the impact speed can be varied, this study shows that there is a critical
impact speed beyond which the center dries out.

We comment that the fine structure of the capillary waves may well be affected by
small changes in the initial condition. It is likely that not only the drop ellipticity, but
the velocity field inside would play a role. For instance, when one does a study of a plane
capillary wave oscillation or an instability, it is very important to initiate not only the
interface deformation but also the velocity field. In addition to the velocity field coming
from the possible oscillations of the drop upon its creation, there may be a contribution
from air friction during the fall. Furthermore, the droplet is in a state of superposition
between various modes of oscillation, as not only mode 2 is excited. While a numerical
study of these issues is worthwhile, it is premature before extensive experimental data
concerning the drop before impact is available. One aim of this paper is to promote such
a call for experiments.
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FIGURE 18. Simulations with the Marker Code. Initial drop is mode 2, with Ry = 1.75mm and
€ = 0.29 in Equation (4.1). Timings between frames are the same as those of the experiment in
figure 1.
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FIGURE 19. Initial drop is mode 2, with Ro = 1.75mm and € = 0.29 in Equation (4.1). Timings

between frames are the same as those of the experiment in figure 1. Spatial convergence test for
(a) 256x256 and (b) 512x512 cases.
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FIGURE 20. Simulations with the Marker Code. Initial drop is mode 2, with Ry = 1.75mm and
€ = 0.29 in Equation (4.1). Pressure fields are shown corresponding to the drop evolution of
figure 18.
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