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Cavitation induced by explosion in an ideal fluid model

Christophe Josserand*
The James Franck Institute, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

~Received 7 December 1998!

We discuss the problem of an explosion in the cubic-quintic superfluid model, in relation to some experi-
mental observations. We show numerically that an explosion in such a model might induce a cavitation bubble
for large enough energy. This gives a consistent view for rebound bubbles in superfluid and we indentify the
loss of energy between the successive rebounds as radiated waves. We compute self-similar solution of the
explosion for the early stage, when no bubbles have been nucleated. The solution also gives the wave number
of the excitations emitted through the shock wave.@S1063-651X~99!11905-6#

PACS number~s!: 47.55.Bx, 67.55.Fa, 64.70.Fx
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I. INTRODUCTION

Cavitation is a physical process involving such aspects
erosion, bubble formation, sonoluminescence@1#, and first
order phase transitions. The motivation for this work com
from experiments on superfluid helium@2,3# and we will
generally speak in this context, although the model might
applied to others fluids, and to nonlinear optics@4#. The ex-
periments of Refs.@2,3# study the cavitation process in su
perfluid helium (4He). There, a semispherical converge
sound wave is produced in the liquid. At the center of t
set-up, the superfluid alternates between being compre
and being under tension~i.e., at negative pressure!. During
the tensile strength period, a bubble can be nucleated
thermal activation. This bubble acquires a kinetic ene
through the negative pressure region so that it grows in
the liquid bulk until it reaches a maximal radius~a few hun-
dred mm can be obtained! determined by its kinetic energ
and the mean liquid pressure. Then, the bubble collap
under this positive pressure. After its collapse, a second
bubble, called the rebound bubble is observed. The colla
of bubbles is a catastrophic process that has been wi
studied, particularly because of its ramification in industri
application~for a review, see Ref.@5#!. Sonoluminescence
arises also during the collapse of the bubble@6#. The collapse
is generally followed by a shock wave that is often a cause
important damage. The goal of this paper is to show tha
the particular case of superfluid, the rebound bubble can
tually be nucleated by this shock wave. It has been noti
already that detonations in water can nucleate a cavita
bubble through the tension shock wave that follow an exp
sion ~see Ref.@7#!.

We will first introduce a model recently used for pha
transition in systems such as superfluids@9,10#. Then we will
numerically study the problem of explosion in this model
the collapse of the bubble might indeed be interpreted a
explosion. The bubble that will form beside the shock wa
might be understood as the rebound bubble found in
experiments. We show also that the explosion process ex
its two distinct regimes: for small time, it follows a pur
explosion behavior whereas an interaction between so
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wave propagation and interface dynamics dictates the la
times. We finally examine the large energy limit, where w
can expand the explosion in terms of a self-similar solut
for small time.

II. THE GROSS-PITAEVSKI � EQUATION

The Gross-Pitaevski� ~GP! equation has been often use
as a model of superfluid@8#. It describes the time evolution
of a complex functionc(x;t), called the condensate wav
function; it reads

ı\] tc~r ,t !52
\2

2m
c~r ,t !1guc~r ,t !u2c~r ,t !, ~1!

where\ is the Planck constant,m the mass of the particle
~for superfluid, this ism4He) and g is the strength of the
potential. One can write

c5Areif

and in analogy with quantum mechanics terminology, o
can identifyr as the particle’s density and (\/m)f as the
velocity potential

v~r ,t !5
\

m
“f~r ,t !.

It follows that the equation is conservative: the total numb
of particlesN is conserved by the dynamics:

N5E dr ucu2.

The dynamics is also Hamiltonian which means that o
can define an energyH such that

i\] tc5
dH

dc*
,

wherec* is the complex conjugate ofc and with

H5E dr S \2

2m
u¹cu21

g

2
ucu4D .
482 ©1999 The American Physical Society
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It implies that the dynamics is reversible.
A set of equations of hydrodynamic form~for r and f)

can be deduced from the GP equation

] tr1“~rv!502] tS \f

m D
52

\2

2m2

DAr

Ar
1

1

2
v21

g

m
r.

The first equation is the mass conservation and the sec
one can be viewed as an equivalent to the Bernoulli equa
for fluids. Indeed the pressure is divided into two terms:
first one gives a static pressureP5(g/2m)r2 whereas
DAr/Ar is called the quantum pressure term, because it v
ishes when\→0. This term is a reminder that the dynam
is deduced from a Schro¨dinger equation. Without this term
the equation would read exactly as the Euler equation
perfect fluid with a given state equation forP(r). In fact, the
quantum pressure changes this Euler dynamics~while con-
serving the total energy!, whereas for real fluid, it is the
viscosity that stabilizes the flow, with a dissipative dyna
ics.

Actually, no damping terms~such as the viscous term! are
present in this dynamics; this is necessary for a consis
model of superfluid; also, this equation admits only liqu
like solutions (c5Ar0e2 i (gr0 /\)t, where r0 is the liquid
density, constant!; the perturbations around such solution

c5~Ar01dcei (vt2p•r )/\!e2 i
gr0

\ t

respects the dispersion equation

v25
gr0

m
p21

p4

4m2
,

v being the energy of the so-called quasiparticles andp their
momentum (p5\k, k wave number!. For low wave num-
bers, the quasiparticles are phonons, i.e., sound waves
sound velocitycs5Agr0 /m. The phonon spectrum for lowp
has been pointed out to be a crucial property needed
modeling superfluids, according to Landau theory@11#. For
large wave numbers, the spectrum corresponds to the on
free particles~the kinetic term is dominant!. Then, unfortu-
nately the model does not describe the roton part of the
perfluid spectrum, although a nonlocal potential in Eq.~1!
would allow for such a spectrum@12#. The crossover be
tween the two regimes occurs for a typical length, called
coherence lengthj0:

j05
\

Amgr0

.

Finally, such a system contains by construction anot
important feature of superfluidity, the so-called quantum v
tices. They are in fact topological defects associated to
complex order parameterc and reflect that its phase migh
be multivalued~modulo 2p). As the phase ofc is related to
the velocity potential, the circulation of the vortices is a m
tiple of h/m, as predicted by Onsager for superfluid@13#.
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Briefly, all these properties have made the Gro
Pitaevski� equation a reasonable model for a superfluid aT
50 K, and it is often used due to its balance between s
plicity and sufficient physical ingredients. Therefore it h
been particularly used for numerical studies. This equat
might also be simply considered as a fluid dynamics mod
satisfying a Euler equation but with an additional term ar
ing from the quantum pressure. This term becomes relev
for dynamics on length scales smaller than the cohere
lengthj0, and in particular it stabilizes the vortex core. Su
a fluid model presents an alternative view of fluid dynami
in that divergences~shocks, . . . ) areeliminated by disper-
sion rather than by dissipation~as the viscosity does for rea
fluids!. Aside from this theoretical point of view, such ap
proach might give interesting prospects for real fluids.

In the context of this paper, it is relevant to introduce
dimensionless form of Eq.~1!. It is the so-called nonlinea
Schrödinger equation~NLS!, obtained by trivial rescaling of
the space, the time and the mass; it reads

ı] tc52
1

2
Dc1ucu2c. ~2!

Therefore, ifr0 is the mean density of particles, the sou
velocity is worthAr0, the coherence lengthj051/Ar0, the
typical time scale being 1.

III. THE MODEL

The equation above describes, in fact, the dynamics o
monophase fluid: specifically, the model allows only o
thermodynamically stable phase, called the liquid pha
Therefore the model is not relevant for any problems invo
ing liquid-gas transition or any first order phase transitio
Particularly, all the interaction that can occur in high spe
flow between vorticity and cavitation are lost in such
approach. It has been shown that a small change in the N
equation can give a consistent first order liquid-gas transi
without changing the other properties of the NLS equation
has then been used for studying standard problems suc
flow around an obstacle in two space dimensions and co
ening processes@9,10#. This subcritical nonlinear Schro¨-
dinger ~SNLS! equation reads in a dimensionless form

ı] tc52
1

2
Dc1~2rc2r0!r0c22rcucu2c1ucu4c,

~3!

whererc andr0 are, respectively, the critical and the me
densities as will be explained below. The equivalent set
equations for Eq.~3! reads

] tr52“~rv!,

] tf5
1

2r1/2
D~r1/2!, ~4!

2
1

2
~“f!22r212rcr2r0~2rc2r0!. ~5!
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FIG. 1. Respectively, the pressure as function of the density and the sound velocity as function of the pressure for the model SN
graphs show a consistent liquid-gas transition, where the spinodal decomposition point is located atr5rc .
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They have the same structure as the one deduced for
Gross-Pitaevski� equation.

The Bernoulli equation allows us to define the static pr
sure P ~forgetting the quantum pressure contribution! and
therefore a sound velocitycs might also be derived:

P5
2

3
r32rcr

2, c252r~r2rc! .

They are shown on Fig. 1. It appears clearly thatrc corre-
sponds to the spinodal decomposition density, where
sounds velocity vanishes. As no temperature exists in
model, the pressure dependence inr plays the role of a state
equation for the fluid. Particularly, withr0 being the liquid
density, one can investigate the pressure difference betw
the liquid phase and the gas phase~which is at zero pres-
sure!. Forr0, 3

2 rc the liquid pressure is smaller than the g
pressure, which means that the liquid phase is metast
relative to the gas one; we have the opposite situation
r0, 3

2 rc . r5 3
2 rc is the density for which the liquid and th

gas pressures are equal. Therefore, the density of the li
when gas and liquid coexist has to ber5 3

2 rc .
In one dimension, exact solutions of Eq.~3! are known for

a given number of particles~see Ref.@10#!. Consequently,
the gas-liquid interface can be exactly computed. It conne
a region of zero density to a region of3

2 rc density. The
energy of such a solution gives the surface tensiona ~i.e.,
the energy of the liquid/gas interface! of Eq. ~3!

a5
9rc

2

16A6
.

We have available now a mean field model of a first or
transition. The fluid obeys an Euler-like equation of moti
via a complex order parameterc. Even though the model is
not entirely physically realistic, it has been used for quant
flows, and we believe that it has some important qualitat
features. Particularly, as a mean field model, the liquid-
interface is automatically solved by Eq.~3! without using
special treatment.
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IV. THE EXPLOSION

Using the model introduced above, we will now focus
the particular problem of a strong explosion. Such questi
have been investigated long ago for gases@14# and interest-
ing self-similar dynamics have been pointed out. As p
posed in the introduction, we will consider that the collap
of the initial bubble in the experiment leads to the formati
of an explosion in the bulk. In SNLS, such an explosi
corresponds to a peak of energy~or equivalently of density!
centered at the origin of the collapse. Numerically, the init
conditions for the explosion with a peak of density cente
in r 50 will be taken as

c~r ,t50!5Ar01
d

cosh~r /s!
.

Here,r0 is the liquid density, which is chosen such th
the liquid is the stable equilibrium phase~the gas being the
metastable one!. From now on we will haver051 andrc
50.6 ~therefore all the physical quantities are of order on!.
d is the amplitude of the excess pressure due to the explo
ands is its width. For a strong explosion, whered2@1, the
energyE0 of the explosion is given by

E054pE
0

`F S d

s D 2 sinh2~r /s!

cosh4~r /s!
1

1

3

d6

cosh6~r /s!
G r 2dr

5
2

3
~d2s!1

16

15
~d2s!3.

Physically,s has to be on the order of few coherence leng
~we will show mainly results withs51 although we did try
a large range of values!. Also it appears that the process w
will describe below is robust and does not depend stron
on the specific initial conditions.

The numerical simulations have been performed with
finite difference Crank-Nicholson scheme@15#, that pre-
serves the number of particles exactly at the first order
time. The code has been employed for 1, 2, and 3 sp
dimensions with cylindrical and spherical symmetry for
and 3 dimensions, respectively. We did in fact neglect
Rayleigh-Taylor~RT! instability during the simulations. The
RT instability appears generally only during the collapse a
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FIG. 2. Density profile ford53 ands51 at various time~a! for small timet50.02, t50.06, andt50.12 unit time; the explosion gives
rise to a shock wave.~b! For t50.18 andt50.6; a bubble appears beside the tensile part of the shock wave and oscillating perturbati
emitted by the shock wave.~c! For t52.9, t57.9, and 13.4; the bubble grows until a maximal radius and begins to retract att513.4 and the
shock wave has changed in a spherical sound wave and is no longer moving with the bubble interface.~d! t518.4, t523.4, andt524.4 the
bubble collapses, giving rise to a secondary explosion. A large part of the energy has been radiated through the spherical wave
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is enhanced by the proximity of a boundary~see Ref.@5#!.
However, whether the collapse is symmetric or not, it w
still give rise to an explosion~perhaps weaker in the asym
metric case!.

One of the main numerical limitations comes from t
fact that the sound velocity is proportional to the local de
sity for large densitiesr@r0; therefore, for investigating
strong explosions, one needs to deal with large sound ve
ity in the initial density peak. Figure 2 shows the evoluti
of the density profile in spherical geometry ford53 ands
51. As expected, a gas bubble is nucleated backwards
shock. Also, a train of spherical waves is emitted during
process. The bubble grows until a maximal radius is reac
and then collapse occurs. In Fig. 2~d!, the bubble has jus
collapsed, giving rise to a secondary explosion, mu
smaller than the initial one, because part of the energy
been transformed into excitation waves. This latest st
gives a convincing proof that the collapse of a bubble in s
a model might be investigated as an explosion. The big
-
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h
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the initial explosion is, the bigger the maximal radius and
secondary explosion are. Also, if the initial energy is lo
ered, no bubbles are nucleated below a certain critical
ergy. Formally, the secondary explosion can nucleate a
bubble and so on as long as it has enough energy, altho
we did not investigate large enough initial explosions to s
at least a secondary bubble.

Whether or not a bubble is nucleated, the explosion
SNLS exhibits a general picture: the explosion expands u
a maximum radius and then collapses in a secondary ex
sion, which expands again until its maximum radius~smaller
than the former one! and so on. It describes therefore a
oscillating process where the energy of the explosion
creases each cycle, due to the emission of waves during
explosion.

These numerical simulations have been also compute
bidimensional geometry~cylindrical explosion! and in a one-
dimensional system~planar explosion!. It appears that the
cavitation process occurs for cylindrical waves but not
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486 PRE 60CHRISTOPHE JOSSERAND
planar explosion. An explanation from classical results
irrotational flows can be advanced@16#: in cylindrical and
spherical geometries, sound waves always contain bo
compressive and a tensile phase, whereas a planar com
sion wave might occur without being accompanied by t
sion. Then, the explosion in two and three spatial dimensi
gives rise to a negative pressure region where the cavita
can take place if the tension is big enough; nothing com
rable happens in one dimension.

V. DECOMPOSITION OF THE PROCESS

The features of the explosion can be captured by the e
lution of the point where the density reaches its grea
value. The densityrp and the positionRp of this point
~called P! will be, in particular, investigated. We will indee
focus on large initial density peak~i.e., d2@1); it corre-
sponds typically to an initial pressure peak of more than
hundred bars in superfluid helium. In the experiment
scribed above, such pressure cannot be obtained by con
gent sound waves but only when the primitive bubble c
lapses@17#.

Figures 3 and 4 show, respectively, the position and
excess densityrp2r0 of the point~P! as a function of time
for the explosion listed above (d53 ands51). Both graphs
exhibit, after a small transient, two dynamical regimes. F
small time ~such that the densityrp@1), the behavior is
consistent with the following scaling lawsRp}At and rp
2r0}t21/2 ~we definen and m such thatRp}tn and rp
2r0;t2m). For different values ofd and s, n varies be-
tween 0.46 and 0.51, whereasm varies roughly between 0.5
and 0.6. At large time~in the figures, fort.1), we obtain
Rp}cst and rp2r0;1/t (n5m51), cs being the local
sound velocity. In this case, asd ands change, these value
do not vary significantly~typically between 0.96 and 1!.

The small time regime can be viewed as an explosive
regime: the shock wave is supersonic whereas its densi

FIG. 3. Position, as a function of time, of the maximum of t
density. It exhibits two typical behavior, one for small time, wh
the wave is supersonic, the other one later, where the shock w
has transformed in a sound wave~the position evolves then linearl
in time!. For the small time, the position of the shock wave
consistent with a lawRp}t1/2.
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large (rp@1). For the long time, the system is subject to tw
effects: one for the bubble dynamics, and one for the sh
wave that is now transformed in a spherical divergent so
wave ~as n5m51, rp2r0}1/Rp in fact, as for spherical
sound wave!. The crossover between these two regimes
curs when the shock wave loses its supersonic speed~in the
simulation shown here, it happens fort;1 unit time!. Usu-
ally, if a bubble is nucleated, it occurs also around the cro
over time.

In fact, this scenario is always valid, whether a bubble
nucleated backward or not. For long time, the shock wav
always behaving as a sound wave (m51), although them
51/2 property for short time is observed only for big enou
explosion~see Fig. 5 ford58); on the other hand, for sma
initial energy,m is diverging strongly from 1/2. It actually
goes continuously fromm51/2 for large energies tom51
for small ones~where the shock wave is a sound wave for t
initial times already!.

ve

FIG. 4. The deviation from average density as function of tim
After a short transient, this quantity evolves as a power law in ti
(rp21}t2m). The two lines above the graphs correspond tom
50.5 for small time andm51 later.

FIG. 5. The over-density as function of time for a huge exp
sion d58 ands51. The line indicates the slopet21/2. The small
time behavior coincides with am51/2 regime.
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PRE 60 487CAVITATION INDUCED BY EXPLOSION IN AN IDEAL . . .
As the bubble is nucleated beside the tensile wave, it
its own dynamics. One can see clearly on Figs. 2~b! and 2~c!
that the bubble interface moves more slowly than the wa
The wave goes away form the center, whereas the bu
grows to its maximal radius through a Rayleigh-Plesset-
dynamics~see Ref.@5#! and then collapses under the acti
of the ambient pressure@Fig. 2~d!#. We have defined in fac
the radius of the gas bubbleRb as the point where the densit
reaches a typical low value

r~Rb!5ar0 .

We tooka50.2 below, although we did check that changi
the value ofa does not alter the results.

Figure 6 shows the radius of the bubble as function
time ~for d52 ands51) and illustrates the following.

~i! The bubble is nucleated at timet* .
~ii ! The growth and the collapse of the bubble are

symmetric. The collapse stage is slightly longer than tha
the growth. We definetc as the time when the collapse o
curs (Rb50).

~iii ! The evolution of the radius for short time satisfies f
the growth the relation

Rb~ t !}~ t2t* !2/5

as well as for the collapseRb(t)}(tc2t)2/5.
Last, we computed the ratio between the energy of

secondary peak versus the energy of the initial one.
found, depending strongly on the initial shape of the exp
sion and also on the initial energyE0, that this ratio varies
between 0.1 to 0.25. Therefore, a large part of the energy
actually been emitted by the explosion and only a small p
transforms into the bubble. In addition, these ratios h
been found to be in reasonable agreement with the ra
obtained between the rebound bubble and the initial on
the experiments@17#.

FIG. 6. Radius of the bubble induced by an explosion as fu
tion of time (d52 ands51). The growth and the collapse are n
symmetric. Both the growth and the collapse obey the Sedov-Ta
law for the radius as function of time.
as

e.
le
e

f

t
f

e
e
-

as
rt
e
os
in

VI. ANALYSIS OF THE EXPONENTS

We will in this section follow the general theory of ex
plosions@14#. The exponent 2/5 found for the bubble radi
is famous for explosions and comes naturally from a dim
sional analysis. Actually, the bubble dynamics involves o
a small set of variables: the radiusr, the timet, the energyEb
of the bubble, and the densityrc . This is an important point:
the shape of the bubble interface is only determined byrc as
it is the spherical solution of SNLS equation which separa
the gas (r50) and the liquid (r5 3

2 rc) phases. Therefore
only one dimensionless variable can be obtained from
set,

Et2

rcr
5

.

Consequently we have obtained the well-known depende
of the radius of the bubble with time

Rb~ t !5bS Et2

rc
D 1/5

,

whereb is a constant~determined in fact by the shape of th
interface!.

A contrario, before the bubble is nucleated, the sho
wave obeys different scaling and such a dimensionless v
able is not unique. Indeed, the density of the shock wave
varies now. But, as Fig. 8 shows, for huge explosion~here
d58), a self-similar shape in the density profiles can
observed. We will therefore limit our investigation to b
explosions (d@1) and to times such thatr@1 everywhere
inside the shock region; in addition, the following remar
are needed.

~i! First of all, a self-similar solution cannot conserve bo
energy and mass~this follows from the fact that mass is a
integral of ucu2, whereas energy is an integral ofucu6).

~ii ! Consequently, the limit of infinitely thin explosion i
either finite energy with zero mass or finite mass and infin
energy.

~iii ! Due to the condition at infinity, (r5r0), a flux of
mass is continuously entering the self-similar region as ti
goes on, whereas such mass density has zero energy de

Balancing terms in Bernoulli Eq.~5! motivated us to look
at solutions such that~the cubic term is neglected versus th
quintic one in the SNLS equation!

r~r ,t !5
1

At
h2~j! f~r ,t !5g~j! with j5

r

At
. ~6!

In this approach,j is the self similar variable. It has th
same structure as the one elaborated for the heat equatio
both cases, it comes from the balance between the time
rivative and the Laplacian term. Therefore, the position
the peak of density is defined byj5a, wherea is determined
by the initial condition and is time independent. Equation~6!
is valid everywhere except that because of the assump
(r@1), it is relevant and consistent only near the sho
wave region. Also, in our regime of interest, we havea@1.

It follows from this analysis that

-

or
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FIG. 7. ~a! phasef as a function ofj the self-similar variable, for different time~from t50.01 to t50.2; d58). Except the two first
curves, which correspond to the lowest time, where the dynamics is still in the transient, the different curves almost coincide forj;0 and
have a parabolic shape, as predicted by the simple self-similar approach.~b! For differentd, f/d2 as function ofj/d; according to the
self-similar analysis, these curves should coincide.
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Rp~ t !5aAt and rp2r05
h2~a!

At
,

which are in good agreement with the numerics. Notice t
if the quintic term were negligible versus the cubic one
SNLS, the scaling for the densityrp2r0 would have been in
1/t. It explains why when the energy of the explosion
lowered, the value ofn goes continuously from 1/2 to 1.

Finally, with these scaling laws, the mass inside the sh
sphere evolves linearly in time, whereas the available flow
particles goes as the square root of time. Then with respe
mass conservation, these scaling laws cannot apply as
goes to zero, when the entering flow of particles cannot b
ance the growth of mass of the solution. This gives a criti
time under which the self-similar solution is not valid. N
merically, it is difficult to see if the transient that we obser
initially is due to this constraint or to numerical ones.

The radial velocityv is obtained through

v~r ,t !5
j

r
g8~j!

and the Bernoulli equation~5! reads

j

2
g8~j!52

1

2h~j! S h9~j!12
h8~j!

j D1
1

2
„g8~j!…21h4~j!.

~7!

Another equation is needed for describing the dynam
the natural one would be the mass conservation. In fact,
integral equation for the conservation of energy in a sph
of constant radius in the self similar variable (j5const) is
more useful

vS ~¹Ar!21
1

2
rv22

1

2
ArDAr1r3D1

1

2
Ar¹~Ar!Df

5
j

a
R8~ t !e~r,v !, ~8!
t

k
f
to
e

l-
l

s;
e

re

e being the density of energy

e~r,v !5
1

2
rv21

1

2
~¹Ar!21

r3

3
.

Equation~8! reflects the fact that the increase of energy
side the sphere of radiusj is balanced by the enthalpy flux

An exact solution of the system can be found by negle
ing the quantum pressure:

v5
j

4At
and r5A3

2

j

4At

corresponding to

g~j!5
~j22a2!

8
and h2~j!5A3

2

j

4
. ~9!

These solutions also satisfy exactly the continuity eq
tion ~4!. Identifying the energy of such a solution with th
initial energyE0 gives

E05
16

15
d6s35

1

64
A3

2
a6

and therefore

a}Asd.

Figure 7~a! shows the phase as a function ofj at different
times ford58 ands51; it offers a good agreement with th
parabolic analytical solution of Eq.~9!. Particularly, the
minimum of the curve~at j50) does not change its value a
time goes on, as predicted by the self-similar solution.
addition, Fig. 7~b! shows for different d ~with s51),
f(j/a)/a2; the solution~9! suggests that these curves shou
coincide. The numerical results are less accurate than the
for a givend, although they are still reasonable.
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On the other hand, the density profile provided by t
solution~9! does not agree well with the numerics~see Fig. 8
for d58): although the linear behavior forr is acceptable in
an intermediate range (1!j!a), there are strong differ-
ences forj;0 and j;a. For j,1, the quantum pressur
becomes dominant in the self similar set of equations~7! and
~8!. For j;a the solution is in fact maximal and also has
match with the condition at infinity.

As the numerical simulations show a good agreem
with the self similar solution for the phase, we will assum
the solution~9! to be exact forf and therefore we will try to
find a more accurate solution forr, particularly in restoring
the quantum pressure. After rescalingh and j for conve-
nience@h(j)5(31/8/81/4) f (31/4j/2)#, the problem reads

f 9~u!12
f 8~u!

u
5 f 5~u!2u2f ~u!. ~10!

The boundary of the self-similar region being then defin
by u5a8531/4a/2. Even if the equation is relevant only fo
u,a8, it is interesting to study it for all values ofu. Using
MATHEMATICA @18#, it is straightforward to analyze the clas
of numerical solutions of Eq.~10! with the physical initial
conditions f (0)5A and f 8(0)50. Depending on the value
of A compared to a critical valueAc50.98473•••, we obtain
the following behaviors: forA,Ac the solution oscillates
and goes to zero at infinity and forA.Ac the solution in-
cludes a singularity in the real plane.

Figure 9 shows the solutionf (u)2 as a function ofu for
two values ofA: one slightly smaller thanAc , the other

FIG. 8. Density profile of the solution of SNLS ford58 and
s51 for different time smaller than 0.05 unit time. One can o
serve a self-similar shape in the shock wave as time goes on. E
if the density obeys a linear profile for intermediate values ofr, it is
not valid anymore forr→0.
e

t

d

slightly larger.Ac has been evaluated through the shoot
method. The solution forA5Ac will behave linearly inu as
u→`, in agreement with the solution~9!.

The solutions forA,Ac appear to be in good agreeme
with the numerical solution of SNLS~see again Fig. 8!, and
we will therefore assume that it describes the self-sim
solution. The exact value ofA will be a function ofa and
consequently ofE0. In addition, the matching between th
solution aroundu;a8 with the sound wave solution o
SNLS ~at densityr0) informs us about the wave number o
the oscillations emitted by the solution. The oscillating so
tion at largeu for A,Ac can be obtained easily by neglec
ing f 5 whenu→`; then the equation

f 9~u!12
f 8~u!

u
1u2f ~u!50

has an exact solution in terms of the Bessel functions of
first kind Jn(•). It reads

f ~u!5
C1J21/4~u2/2!1C2J1/4~u2/2!

Au
,

C1 andC2 being two constants.
For largex, the behavior ofJ61/4(x) is simple:

J61/4~x!;
cos~x1w!

Ax
,

where w is a constant. Therefore we obtain the followin
behavior forf (u) for largeu ~more precisely foru@1):

f ~u!}
cos@~u2/2!1w#

u3/2
,

so that, in the neighborhoodu;a8, we have

f ~a81dx!}
cos~a8dx1w8!

~a8!3/2
.

-
en

FIG. 9. Numerical solution of Eq.~10! using the shooting
method, wheref 8(0)50 and f (0)5A. For the lower curveA
50.98473178,Ac and the upper one is forA50.98473178435
.Ac .
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This corresponds to oscillation for the densityr, aroundr
5aAt, with wave numberk(t):

k~ t !5
A3a

At
.

This simple matching between the self-similar solution a
the density at infinity through excitation waves gives in fa
the wave number of these radiations as function of time.

VII. RENORMALIZATION GROUP CALCULATIONS

Through renormalization group~RG! calculations@19#,
one can describe precisely the behavior off (u) at both edges
of the shock waveu50 andu5a8.

For j→0. Introducing an arbitrary small parametere,
throughh5u/e, the following equation form(h)5 f (u) is
obtained:

m9~h!12
m8~h!

h
5e2m5~h!2e4h2m~h!. ~11!

Thenm(h) is expanded as a series ine2:

m~h!5m0~h!1e2m1~h!1e4m2~h!1••• .

The system of equation form0 andm1 reads

m0912
m08

h
50,

m1912
m18

h
5m0

5 .

The boundary conditions form come from the constrain
m8(0)50 ~no flux ath50) and from the asymptotic behav
ior at largeh, which will act as a matching condition for th
remaining constant of integration.

Using m8(0)50, one obtains

m~h!5A~0!1
e2h2

6
A~0!5

A(0) being the constant of integration att50. @Formally, the
other solution of this second order differential equationm
5B/h should be kept for the formal solution of the proble
because the boundary conditionm8(0)50 has to be imposed
only for the final results; however, as we checked that t
term has zero contribution at the order of the analysis, it
been forgotten for convenience.#

This formula loses its validity foreh.1 because the per
turbative expansion ofm is meaningless. (e2m1 is no longer
a small correction tom0 in this regime.!

The renormalization group method consists in consider
the integration constant as being slightly dependent onh
through the change
d
t

is
s

g

A~0!5Z~0,m!A~m! with Z~0,m!511( an~m!e2n.

Z is called the multiplicative renormalization constant andan
is chosen such that the solutionm(h) has the same structur
for all m:

m~h!5A~m!1
e2~h22m2!

6
A5~m!.

This implies that

a152
m2A4~m!

6
.

Obviously m(h) should not depend onm. Then, the so-
called RG equation]mm(h)50 gives

dA

dm
5

1

3
e2mA5

whose solutions read

A~m!5S 6

x0
22e2m2D 1/4

.

SubstitutingA(m) into the expression form(h) and putting
m5h gives the following formula for the initial functionf:

f ~u!5S 6

x0
22u2D 1/4

.

x0 is a constant of integration to be determined. Notably,
have obtained the kind of divergence that occurs forA
.Ac .

For j→a. The same treatment works in the limita8→`
by writing

f ~u!5Aa81
m@a8~u2a8!#

~a8!2
.

@1/a8 has the same feature thate had formerly and the
1/(a8)2 factor has been introduced in order to neglect
nonlinear terms for the first order correction.#

Eventually, it gives the following behavior (A0 being a
constant!:

f ~u!5Aa82
A0

~a8!2
e9(u2a8)/8a8

3coshS a8~u2a8!2
~u2a8!2

4 D .

A0 andx0 are yet to be determined. This is usually acco
plished through a matching condition written in an interm
diate region between these two regimes. In our special p
lem, an easy way to perform this would be to match bo
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solution in the region 1!u!a8 where we know that the
solution readsf (u);Au. In fact, the first order RG calcula
tions is not accurate enough to realize such a matching;
the goal of these calculations was actually to have a rea
able idea of the shape of the solution near both edges.
whole matching process would need a more complete an
sis of the RG theory.

VIII. CONCLUSION

I have presented in this paper a model of superfluid wh
the liquid-gas transition was allowed. Then, by analogy w
an explosion, I explained the rebound bubble found in
periment as a consequence of the collapse of the prev
bubble. Also, the self-similar dynamic of the explosion
early time is pointed out. A renormalization group approa
gave corrections to the profile. Eventually, this shows h
explosions in certain types of fluid might give rise to cavi
tion. Also, as the shock emits waves, the energy of the s
ut
n-
he
ly-

re

-
us
t
h

-
lf-

similar solution cannot be constant in time. Also, the cu
term has been neglected for finding the above self-sim
solutions. This should really be incorporated into a pertu
tive analysis by consideringa ~or equivalentlyE0) as being
slowly dependent on the time. Then, through a solubi
equation, an evolution equation should be found fora @20#.
This detailed analysis, which would provide for example t
amplitude of the emitted waves, will be the subject of
further work.

ACKNOWLEDGMENTS

It is a pleasure for me to thank Yves Pomeau, L
Kadanoff, Shankar Venkataramani, and Alberto Verga
helpful discussions and for their interest on this paper. T
work has been supported in by ONR Grant No. N00014-
1-0127 and the MRSEC with the National Science Foun
tion DMR under Grant No. 9400379.
ce
r

he
f

C.

a-
@1# S. Hilgenfeldt, D. Lohse, and M. P. Brenner, Phys. Fluids8,
2808 ~1996!.

@2# M. S. Pettersen, S. Balibar, and H. J. Maris, Phys. Rev. B49,
12 062~1994!.

@3# S. Balibar, C. Guthmann, H. Lambare´, P. Roche, E. Rolley,
and H. J. Maris, J. Low Temp. Phys.101, 271 ~1995!.

@4# A. C. Newell and J. V. Moloney,Nonlinear Optics~Addison-
Wesley, Reading, MA, 1992!.

@5# C. E. Brennen,Cavitation and Bubble Dynamics, Vol. 44 of
Oxford Engineering Science Series 44~Oxford University
Press, Oxford, 1995!.

@6# C. D. Ohl, O. Lindau, and W. Lauterborn, Phys. Rev. Lett.80,
393 ~1998!.

@7# R. A. Wentzell and G. J. Lastman, inCavitation and Inhomo-
geneities, Vol. 4 of Springer Series in Electrophysics, edited
by W. Lauterborn~Springer, Berlin, 1980!, p. 72.

@8# V. L. Ginzburg and L. P. Pitaevskiiˇ, Sov. Phys. JETP7, 858
~1958!; L. P. Pitaevskiiˇ, ibid. 13, 451 ~1961!; E. P. Gross, J.
Math. Phys.4, 195 ~1963!.

@9# C. Josserand, Y. Pomeau, and S. Rica, Phys. Rev. Lett.75,
3150 ~1995!.

@10# C. Josserand and S. Rica, Phys. Rev. Lett.78, 1215~1997!.
@11# L. D. Landau, J. Phys.~Moscow! 5, 71 ~1941!; ibid. 11, 91
~1947!.

@12# Y. Pomeau and S. Rica, Phys. Rev. Lett.71, 247 ~1993!.
@13# L. Onsager, Nuovo Cimento Suppl.6, 249 ~1949!.
@14# L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon,

Oxford, 1987!, Chap. 106.
@15# We used a Gauss-Seidel Crank-Nicholson finite differen

method to integrate Eq.~3!. We present results obtained fo
r051, rc50.6 ands51 for various values ofd. The number
of points of the 1D mesh did vary from 512 to 2000 and t
finite space stepdx varied from 0.01 to 0.05. The number o
particles is conserved with a relative accuracy of 1024.

@16# L. D. Landau and E. M. Lifshitz,Fluid Mechanics~Pergamon,
Oxford, 1987!, Chaps. 70, 71.

@17# H. Lambare´, P. Roche, S. Balibar, H. Maris, O. Andreeva,
Guthmannm, K. Keshishev, and E. Rolley, Eur. Phys. J. B2,
381 ~1998!.

@18# S. Wolfram,MATHEMATICA .
@19# L.-Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. E54, 376

~1996!.
@20# S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Z

kharov, Physica D57, 96 ~1992!.


