PHYSICAL REVIEW E VOLUME 60, NUMBER 1 JULY 1999

Cavitation induced by explosion in an ideal fluid model
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We discuss the problem of an explosion in the cubic-quintic superfluid model, in relation to some experi-
mental observations. We show numerically that an explosion in such a model might induce a cavitation bubble
for large enough energy. This gives a consistent view for rebound bubbles in superfluid and we indentify the
loss of energy between the successive rebounds as radiated waves. We compute self-similar solution of the
explosion for the early stage, when no bubbles have been nucleated. The solution also gives the wave number
of the excitations emitted through the shock wa\#&1063-651X99)11905-6

PACS numbegs): 47.55.Bx, 67.55.Fa, 64.70.Fx

I. INTRODUCTION wave propagation and interface dynamics dictates the larger
times. We finally examine the large energy limit, where we
Cavitation is a physical process involving such aspects agan expand the explosion in terms of a self-similar solution
erosion, bubble formation, sonoluminescettg and first ~ for small time.
order phase transitions. The motivation for this work comes

from experiments on superfluid heliuf2,3] and we will Il. THE GROSS-PITAEVSKI i EQUATION
generally speak in this context, although the model might be . , i
applied to others fluids, and to nonlinear optid$ The ex- The Gross-PitaevskiGP) equation has been often used

periments of Refs[2,3] study the cavitation process in su- @ @ model of superfluitB]. It describes the time evolution

perfluid helium (¢He). There, a semispherical convergent©f @ complex functiony(x;t), called the condensate wave

sound wave is produced in the liquid. At the center of thefunction; it reads

set-up, the superfluid alternates between being compressed 52

and being under tensiofi.e., at negative pressyreDuring - + 2

the tensile strength period, a bubble can be nucleated by YD = =g ulrOFelvr o, (1)
thermal activation. This bubble acquires a kinetic energy . .
through the negative pressure region so that it grows insidhere? is the Planck constanin the mass of the particles
the liquid bulk until it reaches a maximal radi(es few hun-  (for superfluid, this isma,e) and g is the strength of the
dred um can be obtaineddetermined by its kinetic energy Potential. One can write

and the mean liquid pressure. Then, the bubble collapses _ [peit

under this positive pressure. After its collapse, a secondary ¥=\pe

bubble, called the rebound bubble is observed. The collaps . . . :

of bubbles is a catastrophic process that has been wide ggg ilg eﬁgfé;loggsv\;gz g:?t?(;[ll:an; ?eencggn:r?d;%qn;g\o;gg% eone
studied, particularly because of its ramification in industrialsvelocity poté)ntial
application(for a review, see Refl5]). Sonoluminescence

arises also during the collapse of the buldléle The collapse %

is generally followed by a shock wave that is often a cause of v(r,t)= =V ¢(r,t).
important damage. The goal of this paper is to show that in m

the particular case of superfluid, the rebound bubble can ag

tally be nucleated by this shock wave. It has been noticeqt follows that the equation is conservative: the total number

already that detonations in water can nucleate a cavitatio(r)1f particlesN is conserved by the dynamics:

bubble through the tension shock wave that follow an explo-
sion (see Ref[7]). N=J' dr 2.

We will first introduce a model recently used for phase
gﬁ;ﬂ?@;:?/ gusé?/nt]r?esgf:b?esnflf)[?eer::;?g:gﬁ thhr;swrigggl as The dynamics is also Hamiltonian which means that one
the collapse of the bubble might indeed be interpreted as a%an define an energh such that
explosion. The bubble that will form beside the shock wave SH
might be understood as the rebound bubble found in the ifdyp= ,
experiments. We show also that the explosion process exhib- Suy*
its two distinct regimes: for small time, it follows a pure
explosion behavior whereas an interaction between soun@herey* is the complex conjugate af and with

= [ ar| 2wz e
*Electronic address: josseran@bernoulli.uchicago.edu 2m 2 '
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It implies that the dynamics is reversible. Briefly, all these properties have made the Gross-
A set of equations of hydrodynamic forffor p and ¢) Pitaevski equation a reasonable model for a superfluid at
can be deduced from the GP equation =0 K, and it is often used due to its balance between sim-

plicity and sufficient physical ingredients. Therefore it has

ﬁ_d’ been particularly used for numerical studies. This equation
m might also be simply considered as a fluid dynamics model,
satisfying a Euler equation but with an additional term aris-

h? A\fp 1, 9 ing from the quantum pressure. This term becomes relevant
- RTP“L Pk + mP: for dynamics on length scales smaller than the coherence

length &, and in particular it stabilizes the vortex core. Such
The first equation is the mass conservation and the secorifluid model presents an alternative view of fluid dynamics,
one can be viewed as an equivalent to the Bernoulli equatiof that divergencegshocks, . . .) areeliminated by disper-
for fluids. Indeed the pressure is divided into two terms: theSion rather than by dissipatidas the viscosity does for real
first one gives a static pressuf@=(g/2m)p? whereas fluids). Aside from this theoretical point of view, such ap-
A\pl\Jp is called the quantum pressure term, because it varfoach might give interesting prospects for real fluids.
ishes wheni—0. This term is a reminder that the dynamic _ In the context of this paper, it is relevant to introduce a
is deduced from a Schdinger equation. Without this term, d|mein§|onless form of Eql). It is the so—_cglled nonillnear
the equation would read exactly as the Euler equation foPchralinger equatioiNLS), obtained by trivial rescaling of
perfect fluid with a given state equation B(p). In fact, the  the space, the time and the mass; it reads
guantum pressure changes this Euler dynartwdsle con-
serving the total energy whereas for real fluid, it is the
viscosity that stabilizes the flow, with a dissipative dynam-
ics.

Actually, no damping termésuch as the viscous tejrare  Therefore, ifp, is the mean density of particles, the sound
present in this dynamics; this is necessary for a consisteRfe|ocity is worth \/p,, the coherence lengtk,=1//p,, the
model of superfluid; also, this equation admits only liquid- typical time scale being 1.
like solutions = /pee '(90/Mt where p, is the liquid
density, constant the perturbations around such solution

07tP+V(PV):0_3t(

1 2
b= = S Apt |2y, @

ll. THE MODEL
=(Jpo+ 51/,ei(wtfp~r)/h)efigg—°t The equation above describes, in fact, the dynamics of a
monophase fluid: specifically, the model allows only one
respects the dispersion equation thermodynamically stable phase, called the liquid phase.
Therefore the model is not relevant for any problems involv-
, 9po p* ing liquid-gas transition or any first order phase transition.
o =" P + m Particularly, all the interaction that can occur in high speed

flow between vorticity and cavitation are lost in such an
approach. It has been shown that a small change in the NLS

momentum p=7k, k wave number For low wave num- equation can give a consistent first order liquid-gas transition

bers, the quasiparticles are phonons, i.e., sound waves Wiwlthout changing the other properties of the NLS equation; it

L as then been used for studying standard problems such as
sound velocitycs= ygpo/m. The phonon spectrum for lop flow around an obstacle in two space dimensions and coars-

has been pointed out to be a crucial property needed for . . " . .
modeling superfluids, according to Landau theftg]. For eir;]lngr (psrﬁiesisee%;gh ;reh;jssil;b;rg:?na;ng%:::gggrm?ﬁ]hm
large wave numbers, the spectrum corresponds to the one fgr 9 q

free particles(the kinetic term is dominant Then, unfortu- 1

nately the model does not describe the roton part of the su- 10yh=— = A+ (2pe— po) potb— 2pc| w2+ | |4,
perfluid spectrum, although a nonlocal potential in ED. 2

w being the energy of the so-called quasiparticles @titkir

would allow for such a spectrufil2]. The crossover be- (©)
tween the two regimes occurs for a typical length, called the
coherence lengthy: wherep. and pq are, respectively, the critical and the mean
densities as will be explained below. The equivalent set of
3 equations for Eq(3) reads
SO: \/m—
o ap=—V(pv),
Finally, such a system contains by construction another
important feature of superfluidity, the so-called quantum vor- 1 1o
tices. They are in fact topological defects associated to the hp= 2p1/2A(p ), (4)

complex order parametef and reflect that its phase might
be multivaluedmodulo 27). As the phase of is related to 1
the velocity potential, the circulation of the vortices is a mul- T 2_ 2. _ _

tiple of h/m, as predicted by Onsager for superfl{iic]. 2 (V)" p"+2pcp = po(2pe po)- ®
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FIG. 1. Respectively, the pressure as function of the density and the sound velocity as function of the pressure for the model SNLS. These
graphs show a consistent liquid-gas transition, where the spinodal decomposition point is logatasl at

They have the same structure as the one deduced for the IV. THE EXPLOSION
Gross-Pitaevskiequation.

The Bernoulli equation allows us to define the static pres—theUS;?Scmzrm?g;le'mrgfd:Cs?;joﬁbogf'Iévsﬁovr\]””snuogg folf:sstiggs
sure P (forgetting the quantum pressure contribujicand P P 9 exp j d

therefore a sound velocity; might also be derived: _have bee.” |pvest|gateq long ago for ga,_EB' § and interest-
ing self-similar dynamics have been pointed out. As pro-

posed in the introduction, we will consider that the collapse

2 of the initial bubble in the experiment leads to the formation

P= §p3—pcp2, c?=2p(p—pe) - of an explosion in the bulk. In SNLS, such an explosion
corresponds to a peak of ener@y equivalently of density

centered at the origin of the collapse. Numerically, the initial

conditions for the explosion with a peak of density centered

They are shown on Fig. 1. It appears clearly thatcorre- ;
Y 9 bp Y tha in r=0 will be taken as

sponds to the spinodal decomposition density, where th
sounds velocity vanishes. As no temperature exists in the

. S
mode!, the pressure depen_dencep |p|§ys the.role of a stfate Y(r,t=0)= /p0+ e
equation for the fluid. Particularly, withy being the liquid costir/o)
density, one can investigate the pressure difference between . o _ o
the liquid phase and the gas pha®ehich is at zero pres- Here, p, is the liquid density, which is chosen such that

sure. For py< 2p. the liquid pressure is smaller than the gasthe liquid is the stable equilibrium phasthe gas being the
pressure, which means that the liquid phase is metastabi@etastable one From now on we will havep,=1 andp,
relative to the gas one; we have the opposite situation for= 0.6 (therefore all the physical quantities are of order)one
po<3ipe. p=3p. is the density for which the liquid and the ¢ is the amplitude of the excess pressure due to the explosion

gas pressures are equal. Therefore, the density of the liquRnda is its width. For a strong explosion, whe#és1, the

when gas and liquid coexist has to pe 3p; . energyE, of the explosion is given by
In one dimension, exact solutions of E§) are known for
a given number of particleésee Ref[10]). Consequently, fw ( 5)2 sint?(r/ o) N 1 5° 2
_liguid i =47 — = r
the gas-liquid interface can be exactly computed. It connects =o o|\o) cos(rio) 3 cosf(r/c)

a region of zero density to a region . density. The

energy of such a solution gives the surface tensiofi.e., 2 o 16 , .
the energy of the liquid/gas interfacef Eq. (3) =3(80)+ g(6°0)%
2 Physically,o has to be on the order of few coherence lengths
_ 9pc (we will show mainly results witto=1 although we did try

“ 16\/6 ' a large range of valugsAlso it appears that the process we
will describe below is robust and does not depend strongly
on the specific initial conditions.

We have available now a mean field model of a first order The numerical simulations have been performed with a
transition. The fluid obeys an Euler-like equation of motionfinite difference Crank-Nicholson schenjé&5], that pre-

via a complex order parametér. Even though the model is serves the number of particles exactly at the first order in

not entirely physically realistic, it has been used for quantuntime. The code has been employed for 1, 2, and 3 space

flows, and we believe that it has some important qualitativedimensions with cylindrical and spherical symmetry for 2

features. Particularly, as a mean field model, the liquid-gasand 3 dimensions, respectively. We did in fact neglect the

interface is automatically solved by E) without using Rayleigh-Taylor(RT) instability during the simulations. The
special treatment. RT instability appears generally only during the collapse and
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FIG. 2. Density profile fors=3 ando=1 at various timega) for small timet=0.02,t=0.06, and=0.12 unit time; the explosion gives
rise to a shock waveb) Fort=0.18 andt=0.6; a bubble appears beside the tensile part of the shock wave and oscillating perturbations are
emitted by the shock wavéc) Fort=2.9,t=7.9, and 13.4; the bubble grows until a maximal radius and begins to retitacfldt4 and the
shock wave has changed in a spherical sound wave and is no longer moving with the bubble irftbracg8.4,t=23.4, and =24.4 the
bubble collapses, giving rise to a secondary explosion. A large part of the energy has been radiated through the spherical waves.

is enhanced by the proximity of a boundaisee Ref[5]).  the initial explosion is, the bigger the maximal radius and the
However, whether the collapse is symmetric or not, it will secondary explosion are. Also, if the initial energy is low-
still give rise to an explosiofiperhaps weaker in the asym- ered, no bubbles are nucleated below a certain critical en-
metric casg ergy. Formally, the secondary explosion can nucleate a new
One of the main numerical limitations comes from thebubble and so on as long as it has enough energy, although
fact that the sound velocity is proportional to the local den-we did not investigate large enough initial explosions to see
sity for large densitiep> p,; therefore, for investigating at least a secondary bubble.
strong explosions, one needs to deal with large sound veloc- Whether or not a bubble is nucleated, the explosion in
ity in the initial density peak. Figure 2 shows the evolution SNLS exhibits a general picture: the explosion expands until
of the density profile in spherical geometry f6=3 andec  a maximum radius and then collapses in a secondary explo-
=1. As expected, a gas bubble is nucleated backwards ttagon, which expands again until its maximum radissaller
shock. Also, a train of spherical waves is emitted during thethan the former oneand so on. It describes therefore an
process. The bubble grows until a maximal radius is reachedscillating process where the energy of the explosion de-
and then collapse occurs. In Fig(d®, the bubble has just creases each cycle, due to the emission of waves during the
collapsed, giving rise to a secondary explosion, muchexplosion.
smaller than the initial one, because part of the energy has These numerical simulations have been also computed in
been transformed into excitation waves. This latest stagbidimensional geometricylindrical explosiof and in a one-
gives a convincing proof that the collapse of a bubble in sucllimensional systentplanar explosioh It appears that the
a model might be investigated as an explosion. The biggetavitation process occurs for cylindrical waves but not for
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FIG. 3. Position, as a function of time, of the maximum of the FIG. 4. The deviation from average density as function of time.
density. It exhibits two typical behavior, one for small time, when After a short transient, this quantity evolves as a power law in time
the wave is supersonic, the other one later, where the shock wa@p— 1>t ). The two lines above the graphs corresponduto
has transformed in a sound waftbe position evolves then linearly = 0-5 for small time andx=1 later.

in time). For the small time, the position of the shock wave is . . .
consistent with a lawR,=t12 large (p,>1). For the long time, the system is subject to two

effects: one for the bubble dynamics, and one for the shock

planar explosion. An explanation from classical results onfv@ve thatis now transformed in a spherical divergent sound
irrotational flows can be advancdd6]: in cylindrical and Wave (@s v=u=1, p,—po*1/R in fact, as for spherical
spherical geometries, sound waves always contain both $uUnd wave The crossover between these two regimes oc-
compressive and a tensile phase, whereas a planar compré&s's when the shock wave loses its supersonic sfieettie
sion wave might occur without being accompanied by tenSimulation shown here, it happens fior 1 unit time). Usu-
sion. Then, the explosion in two and three spatial dimensiond!ly: |f_a bubble is nucleated, it occurs also around the cross-
gives rise to a negative pressure region where the cavitatiopver time. o . _
can take place if the tension is big enough; nothing compa- n fact, this scenario is always valid, whether a bubble is

rable happens in one dimension. nucleated backward or not. For long time, the shock wave is
always behaving as a sound wave=1), although theu
V. DECOMPOSITION OF THE PROCESS =1/2 property for short time is observed only for big enough

explosion(see Fig. 5 for6=8); on the other hand, for small

The features of the explosion can be captured by the evdnitial energy, u is diverging strongly from 1/2. It actually
lution of the point where the density reaches its greatesgoes continuously fromw=1/2 for large energies ta=1
value. The densityp, and the positionR, of this point  for small onegwhere the shock wave is a sound wave for the
(called B will be, in particular, investigated. We will indeed initial times already.
focus on large initial density peak.e., §°>1); it corre-
sponds typically to an initial pressure peak of more than one 100 '
hundred bars in superfluid helium. In the experiment de-
scribed above, such pressure cannot be obtained by conver
gent sound waves but only when the primitive bubble col-
lapseq 17].

Figures 3 and 4 show, respectively, the position and the
excess density,— p, of the point(P) as a function of time
for the explosion listed aboveS& 3 ando=1). Both graphs
exhibit, after a small transient, two dynamical regimes. For
small time (such that the densitp,>1), the behavior is
consistent with the following scaling Iavapoc\/f and p,,
—poxt Y2 (we definev and p such thatR,=t” and p,,
—po~t™#). For different values off and o, v varies be-
tween 0.46 and 0.51, wherepasvaries roughly between 0.5
and 0.6. At large timdin the figures, fot>1), we obtain 1
Rpccst and p,—po~1tt (v=w=1), cs being the local 10
sound velocity. In this case, aand o change, these values
do not vary significantlytypically between 0.96 and)1 FIG. 5. The over-density as function of time for a huge explo-

The small time regime can be viewed as an explosivelikaion 5=8 ande=1. The line indicates the sloge 2 The small
regime: the shock wave is supersonic whereas its density i#me behavior coincides with a=1/2 regime.

=8

10} 1
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7 0

107 10
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' ' ' ' ' VI. ANALYSIS OF THE EXPONENTS

We will in this section follow the general theory of ex-

i plosions[14]. The exponent 2/5 found for the bubble radius
is famous for explosions and comes naturally from a dimen-
sional analysis. Actually, the bubble dynamics involves only
a small set of variables: the radiughe timet, the energyg,

of the bubble, and the densipy . This is an important point:
the shape of the bubble interface is only determineg bsgs

it is the spherical solution of SNLS equation which separates
the gas p=0) and the liquid p=3p.) phases. Therefore,
only one dimensionless variable can be obtained from this
set,

radius Rp

Et?

0 1 1 1 n 5°
0 2 4 6 8 10 12 pcf

time t

_ _ _ Consequently we have obtained the well-known dependence
FIG. 6. Radius of the bubble induced by an explosion as funcyf the radius of the bubble with time

tion of time (6=2 ando=1). The growth and the collapse are not

symmetric. Both the growth and the collapse obey the Sedov-Taylor 2\ 1/5

law for the radius as function of time. Rb(t):B(_> ,
Pc

As the bubble is nucleated beside the tensile wave, it has

its own dynamics. One can see clearly on Figs) and 2c) whereg is a constantdetermined in fact by the shape of the

that the bubble interface moves more slowly than the wav ipterface). . .
y A contrario, before the bubble is nucleated, the shock

The wave goes away form the center, whereas the bubble b diff ¢ i d had ionl .
grows to its maximal radius through a Rayleigh-PIesset—Iikewave. ObEYS ditierent scaling and such a dimensioniess vari-
dynamics(see Ref[5]) and then collapses under the action able is not unique. Indeed, the density of the shock wave also
of the ambient pressuféig. 2(d)]. We have defined in fact varies now. But, as Fig. 8 shows, for huge explosibare

: : + 0=8), a self-similar shape in the density profiles can be
trgiéﬁg;uzgg?fa?%swbsggg’ as the point where the density observed. We will therefore limit our investigation to big

explosions ¢>1) and to times such that>1 everywhere
inside the shock region; in addition, the following remarks
p(Rp)=apo. are needed.
(i) First of all, a self-similar solution cannot conserve both
We tooka=0.2 below, although we did check that changingenergy and masghis follows from the fact that mass is an

the value ofa does not alter the results. integral of| |2, whereas energy is an integral af|®).
Figure 6 shows the radius of the bubble as function of (ii) Consequently, the limit of infinitely thin explosion is
time (for §=2 ando=1) and illustrates the following. either finite energy with zero mass or finite mass and infinite
(i) The bubble is nucleated at tint&. energy.

(i) The growth and the collapse of the bubble are not (iii) Due to the condition at infinity, = po), a flux of
symmetric. The collapse stage is slightly longer than that ofnass is continuously entering the self-similar region as time
the growth. We defing, as the time when the collapse oc- goes on, whereas such mass density has zero energy density.

curs (R,=0). Balancing terms in Bernoulli E45) motivated us to look
(iii ) The evolution of the radius for short time satisfies for at solutions such thdthe cubic term is neglected versus the
the growth the relation quintic one in the SNLS equatipn

Ry(t)o(t—t*)%® r
i
as well as for the collapsg,(t)(t,—t)?°.

Last, we computed the ratio between the energy of the In this approach¢ is the self similar variable. It has the
secondary peak versus the energy of the initial one. Weame structure as the one elaborated for the heat equation. In
found, depending strongly on the initial shape of the exploboth cases, it comes from the balance between the time de-
sion and also on the initial enerdyy, that this ratio varies rivative and the Laplacian term. Therefore, the position of
between 0.1 to 0.25. Therefore, a large part of the energy hdbke peak of density is defined iy a, wherea is determined
actually been emitted by the explosion and only a small parby the initial condition and is time independent. Equati6n
transforms into the bubble. In addition, these ratios havés valid everywhere except that because of the assumption
been found to be in reasonable agreement with the ratiogp>1), it is relevant and consistent only near the shock
obtained between the rebound bubble and the initial one imave region. Also, in our regime of interest, we haze 1.
the experiment$17]. It follows from this analysis that

1
p(f,t)=$h2(§) ¢(r,t)=g(§) with &= (6)
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FIG. 7. (a) phase¢ as a function of¢ the self-similar variable, for different timgrom t=0.01 tot=0.2; §=8). Except the two first
curves, which correspond to the lowest time, where the dynamics is still in the transient, the different curves almost coiéciOGediod
have a parabolic shape, as predicted by the simple self-similar appradfor differents, ¢/ as function ofé/ 8; according to the
self-similar analysis, these curves should coincide.

h%(a) € being the density of energy
Ry(t)=ayt and pp—Po=T,
which are in good agreement with the numerics. Notice that
if the quintic term were negligible versus the cubic one in . . .
SNLS, the scaling for the density,— p, would have been in E_quatlon(8) reflects thg fgct that the increase of energy in-
14. It explains why when the energy of the explosion ig Side the sphere qf radiusis balanced by the enthalpy flux.
lowered, the value of goes continuously from 1/2 to 1. _ An exact solution of the system can be found by neglect-
Finally, with these scaling laws, the mass inside the shock'9 the quantum pressure:
sphere evolves linearly in time, whereas the available flow of
particles goes as the square root of time. Then with respect to v=—— and p= \E i
mass conservation, these scaling laws cannot apply as time a4\t 244\t
goes to zero, when the entering flow of particles cannot bal-
ance the growth of mass of the solution. This gives a criticatorresponding to
time under which the self-similar solution is not valid. Nu-
merically, it is difficult to see if the transient that we observe (£2—a?) ) 3¢
initially is due to this constraint or to numerical ones. 9(§)=—5— and h*()=\/5 ;- ©)
The radial velocityv is obtained through

1 1 pe
e(pv)=5pv°+ 5 (Vp)*+3.

These solutions also satisfy exactly the continuity equa-
v(rt)= §g’(§) tion (4). Identifying the energy of such a solution with the
o initial energyE, gives

and the Bernoulli equatiofb) reads 16 1 [3

¢ 1 h(g| 1 . Bo= 1527 5 Vo
59'(8)=— 5| h"(+2——|+5(0'(£)+h*(§).
2 2h(¢) 3 2
@) and therefore
Another equation is needed for describing the dynamics; ax\od.

the natural one would be the mass conservation. In fact, the
integral equation for the conservation of energy in a sphere Figure {a) shows the phase as a functionéoft different
of constant radius in the self similar variablé=const) is times for6=8 ando =1, it offers a good agreement with the

more useful parabolic analytical solution of Eq9). Particularly, the
minimum of the curvdat ¢£&=0) does not change its value as
1 1 1 time goes on, as predicted by the self-similar solution. In
2, 2_— 3 _ '
o| (Vp)2+ 5 02— 5\pAVp+p° | +5VpV (Vo)A addition, Fig. Tb) shows for differents (with o=1),

¢(¢&la)/a?; the solution(9) suggests that these curves should
_ ER’(t)e( v) ) coincide. The numerical results are less accurate than the one
a p:07s for a given§, although they are still reasonable.
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FIG. 9. Numerical solution of Eq(10) using the shooting
method, wheref’(0)=0 and f(0)=A. For the lower curveA
=0.98473178 A, and the upper one is foA=0.98473178435
>A;.

slightly larger.A. has been evaluated through the shooting
method. The solution foA=A; will behave linearly inu as
u—co, in agreement with the solutiof®).
0 2 4 The solutions forA<A. appear to be in good agreement
radius £ with the numerical solution of SNL&ee again Fig.)8 and
FIG. 8. Density profile of the solution of SNLS fat=8 and  we will therefore assume that it describes the self-similar
o=1 for different time smaller than 0.05 unit time. One can ob- solution. The exact value ok will be a function ofa and
serve a self-similar shape in the shock wave as time goes on. Evegzonsequently oE,. In addition, the matching between this
if the density obeys a linear profile for intermediate values, dfis solution aroundu~a’ with the sound wave solution of
not valid anymore for —0. SNLS (at densityp,) informs us about the wave number of
the oscillations emitted by the solution. The oscillating solu-
On the other hand, the density profile provided by thetion at largeu for A<A. can be obtained easily by neglect-
solution(9) does not agree well with the numerigee Fig. 8 ing f> whenu—o; then the equation
for §=8): although the linear behavior feris acceptable in
an intermediate range é<a), there are strong differ-
ences foré~0 and é~a. For é<1, the quantum pressure
becomes dominant in the self similar set of equatiaghsand
(8). For {~a the solution is in fact maximal and also has to has an exact solution in terms of the Bessel functions of the

!

f”(u)+2f(Tu)+u2f(u)=0

match with the condition at infinity. first kind J,(+). It reads
As the numerical simulations show a good agreement
with the self similar solution for the phase, we will assume C1J_ 14(U212) + Cydy(U?12)
the solution(9) to be exact forp and therefore we will try to f(uy= ,
find a more accurate solution fer, particularly in restoring Ju
the quantum pressure. After rescalingand ¢ for conve- .
nience[h(f)=(31’8/81’4)f(31’4§/2)], the problem reads C,; and C, belng two Cor]stants. o
For largex, the behavior ofl . 1,4(x) is simple:
f'(u)
f”(u)+2T=f5(u)—u2f(u). (10) cogx+ @)

Joa(X)~ T

The boundary of the self-similar region being then defined
by u=a’=3Y3/2. Even if the equation is relevant only for where ¢ is a constant. Therefore we obtain the following
u<a’, it is interesting to study it for all values af. Using  behavior forf(u) for largeu (more precisely fou>1):
MATHEMATICA [18], it is straightforward to analyze the class
of numerical solutions of Eq10) with the physical initial cog (u?/2)+ ¢]
conditionsf(0)=A and f’(0)=0. Depending on the value f(u)“T'
of A compared to a critical valud.=0.98473 - -, we obtain
the following behaviors: forA<A. the solution oscillates
and goes to zero at infinity and féx> A the solution in-
cludes a singularity in the real plane. , ,
Figure 9 shows the solutiof(u)? as a function ol for f(a'+ ox)x M
two values ofA: one slightly smaller tharA., the other (a')%?

so that, in the neighborhoad~a’, we have
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This corresponds to oscillation for the densijty aroundr ) )
=ayft, with wave numbek(t): A(0)=Z(0u)A(p) With Z(0u)=1+2) an(p)e™

J3a Zis called the multiplicative renormalization constant and
k(t)=— i is chosen such that the solution( ) has the same structure
t for all w:

This simple matching between the self-similar solution and 2 2
the density at infinity through excitation waves gives in fact =Alw)+ (" —n )AS

i ; . m(7)=A(u) (p).
the wave number of these radiations as function of time. 6

This implies that
VIl. RENORMALIZATION GROUP CALCULATIONS

Through renormalization groupRG) calculations[19], w2 ()
one can describe precisely the behaviof @f) at both edges S
of the shock wavei=0 andu=a’.
For £é—0. Introducing an arbitrary small parametey  Obviously m(#%) should not depend om. Then, the so-
through »=u/¢, the following equation fom(#z)=f(u) is  called RG equatio@, m(#»)=0 gives
obtained:

— =_¢ MAS
! d 3
7 md(n)—etytmin). (1D #

m
m’(n)+2
whose solutions read

Thenm(7) is expanded as a series én:

6 1/4
5 . A=\ ———]| -
m(7)=mo(7)+ e my(7n)+emy(n)+--- Xo— €1
The system of equation fan, andm, reads SubstitutingA(u) into the expression fom(») and putting
u= 7 gives the following formula for the initial functiofi
mg 1/4
mp+2— =0, 6
) f(u)= ( ) :
Xo—u?
m; . Xo is a constant of integration to be determined. Notably, we
m’1’+27:m0. have obtained the kind of divergence that occurs Aor
>A.
The boundary conditions fom come from the constraint b I\:/\?rztign_)a. The same treatment works in the finait— oo
m’(0)=0 (no flux at=0) and from the asymptotic behav- y 9
ior at large», which will act as a matching condition for the
remaining constant of integration. m[a’(u—a’)]
Usingm’(0)=0, one obtains f(u)=va’'+ (a')?
72 [1/a’ has the same feature that had formerly and the
m(n)=A(0)+ —A(O)5 1/(a’)? factor has been introduced in order to neglect the

nonlinear terms for the first order correctipn.
Eventually, it gives the following behaviorA; being a

A(0) being the constant of integrationtat 0. [Formally, the constank

other solution of this second order differential equation
=B/ 5 should be kept for the formal solution of the problem
because the boundary conditiori(0)=0 has to be imposed

- X ] f(u \/__ 9(u a’)/sa’
only for the final results; however, as we checked that this ,)2
term has zero contribution at the order of the analysis, it has
been forgotten for convenienge. ) (u—a’)?
This formula loses its validity foe>1 because the per- xcosha'(u-a’)— T4
turbative expansion af is meaningless.«#m; is no longer
a small correction tan, in this regime) Ao and x, are yet to be determined. This is usually accom-

The renormalization group method consists in consideringlished through a matching condition written in an interme-
the integration constant as being slightly dependentzon diate region between these two regimes. In our special prob-
through the change lem, an easy way to perform this would be to match both
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solution in the region ¥u<a’' where we know that the similar solution cannot be constant in time. Also, the cubic
solution reads (u)~ u. In fact, the first order RG calcula- term has been neglected for finding the above self-similar
tions is not accurate enough to realize such a matching; bgolutions. This should really be incorporated into a pertuba-
the goal of these calculations was actually to have a reasotive analysis by considering (or equivalentlyE,) as being
able idea of the shape of the solution near both edges. Theowly dependent on the time. Then, through a solubility
whole matching process would need a more complete analygquation, an evolution equation should be found&dg0].

sis of the RG theory. This detailed analysis, which would provide for example the
amplitude of the emitted waves, will be the subject of a
VIIl. CONCLUSION further work.

| have presented in this paper a model of superfluid where
the liquid-gas transition was allowed. Then, by analogy with
an explosion, | explained the rebound bubble found in ex-
periment as a consequence of the collapse of the previous It is a pleasure for me to thank Yves Pomeau, Leo
bubble. Also, the self-similar dynamic of the explosion atKadanoff, Shankar Venkataramani, and Alberto Verga for
early time is pointed out. A renormalization group approachhelpful discussions and for their interest on this paper. This
gave corrections to the profile. Eventually, this shows howwork has been supported in by ONR Grant No. NO0014-96-
explosions in certain types of fluid might give rise to cavita-1-0127 and the MRSEC with the National Science Founda-
tion. Also, as the shock emits waves, the energy of the selftion DMR under Grant No. 9400379.

ACKNOWLEDGMENTS

[1] S. Hilgenfeldt, D. Lohse, and M. P. Brenner, Phys. Flugls [11] L. D. Landau, J. Phys(Moscow) 5, 71 (1941); ibid. 11, 91

2808(1996. (1947.
[2] M. S. Pettersen, S. Balibar, and H. J. Maris, Phys. Red9B [12] Y. Pomeau and S. Rica, Phys. Rev. L&tt, 247 (1993.
12 062(1994. [13] L. Onsager, Nuovo Cimento Supjfl, 249 (1949.
[3] S. Balibar, C. Guthmann, H. LambarB. Roche, E. Rolley, [14] L. D. Landau and E. M. LifshitzEluid MechanicsPergamon,
and H. J. Maris, J. Low Temp. Phy$01, 271 (1995. Oxford, 1987, Chap. 106.
[4] A. C. Newell and J. V. MoloneyNonlinear Optics(Addison-  [15] We used a Gauss-Seidel Crank-Nicholson finite difference
Wesley, Reading, MA, 1992 method to integrate Eq.3). We present results obtained for
[5] C. E. BrennenCavitation and Bubble Dynamic¥/ol. 44 of po=1, p.=0.6 ando=1 for various values 06. The number
Oxford Engineering Science Series 4@xford University of points of the 1D mesh did vary from 512 to 2000 and the
Press, Oxford, 1995 finite space steplx varied from 0.01 to 0.05. The number of
[6] C. D. Ohl, O. Lindau, and W. Lauterborn, Phys. Rev. L&@. particles is conserved with a relative accuracy of 10
393(1998. [16] L. D. Landau and E. M. LifshitzFluid MechanicgPergamon,
[7] R. A. Wentzell and G. J. Lastman, {Bavitation and Inhomo- Oxford, 1987, Chaps. 70, 71.
geneities Vol. 4 of Springer Series in Electrophysijcedited  [17] H. Lambare P. Roche, S. Balibar, H. Maris, O. Andreeva, C.
by W. Lauterborn(Springer, Berlin, 1980 p. 72. Guthmannm, K. Keshishev, and E. Rolley, Eur. Phys. 2, B
[8] V. L. Ginzburg and L. P. PitaevskiSov. Phys. JETH, 858 381(1998.
(1958; L. P. Pitaevskii ibid. 13, 451 (1961); E. P. Gross, J. [18] S. Wolfram,MATHEMATICA .
Math. Phys4, 195(1963. [19] L.-Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Re\64& 376
[9] C. Josserand, Y. Pomeau, and S. Rica, Phys. Rev. I8&tt. (1996.
3150(1995. [20] S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Za-

[10] C. Josserand and S. Rica, Phys. Rev. L&8.1215(1997). kharov, Physica b7, 96 (1992.



