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A 2D asymmetric exclusion model for granular flows
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PACS. 45.70Mg — Granular flow; mixing, segregation and stratification.
PACS. 05.10Gg — Stochastic analysis methods (Fokker-Planck, Langevin, etc.).
PACS. 64.60Cn — Order-disorder transformations; statistical mechanics of model systems.

Abstract. — A 2D version of the asymmetric exclusion model for granular sheared flows is
presented. The velocity profile exhibits two qualitatively different behaviors, dependent on
control parameters. For low friction, the velocity profile follows an exponential decay while for
large friction the profile is more accurately represented by a Gaussian law. The phase transition
occurring between these two behaviors is identified by the appearance of correlations in the
cluster size distribution. Finally, a mean-field theory gives qualitative and quantitative good
agreement with the numerical results.

Introduction. — Among the numerous problems dealing with granular materials, one of
the most challenging is granular sheared flow [1-3]. Thus, although granular materials might
exhibit solid, liquid or gas-like properties [1], the granular flows cannot be described simply.
Granular sheared flow arises in many different contexts such as pipe flow, pyroclastic flows [4],
or even traffic jams [5]. Experiments performed in 2D and 3D geometries show surprising
velocity profiles. First, the flow occurs only in a sheared region whose width is typically
on the order of ten particle sizes (the shear zone). Also, velocity profiles appear to behave
differently in 2 and 3 spatial dimensions. The velocity decreases exponentially with the distance
to the wall in 2D with a small Gaussian correction [6], while in 3D the profile may appear
almost purely Gaussian [7]. The goal of this paper is to present a two-dimensional “toy
model” where the velocity profile evolves correspondingly from an exponential-like form to an
almost Gaussian form. The model consists of vertically coupled layers. Each layer follows the
well-known asymmetric exclusion (ASEP) model. In one dimension, the ASEP model has been
widely studied and, under certain conditions, exact solutions have been found using the infinite
dimension matrix method [8]. However, to our knowledge, very little is known concerning 2D
ASEP model. The numerical simulations will in fact show a cross-over between an exponential
velocity profile and a Gaussian velocity profile when the control parameter crosses the value
1/2. This could be interpreted as a phase transition in infinite-size systems, as the study of
the clusters size distribution will indicate. Finally a mean-field approach will be developed for
the low values of the control parameter.
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Fig. 1. — 2D lattice with sites (circles) at time ¢,: the white circles represent the empty sites or holes,
while the black circles represent particles. The motion of the particle located at the position (i, k) is
determined as indicated by the motion of its four closest neighbors on rows Lyy; and Lg_;.

The model. — The 1D ASEP model with periodic boundary conditions describes a one-
dimensional lattice of N sites, where each site i (1 < i < N) is either occupied by a particle
or empty. During the time interval dt, each particle has a probability d¢ of jumping to the
adjacent site to its right if that site is empty. Our 2D model has a simplified dynamics since
the time is now discretized (¢, = n). Each layer is a one-dimensional lattice of N sites, with
periodic boundary conditions. The layers are labeled Ly (k > 0). Each site is either occupied
or empty and the density along each layer is set to be constant (= p). A shift of one half of
the grid spacing is applied between consecutive layers, so that for £ even i is an integer and
for k odd, i is a half-integer (see fig. 1). The 2 D lattice is composed of an infinite number of
layers occupying the half-space y > 0. At time t,, each particle has a probability P, (¢,) of
hopping to the right. The quantity P; () is determined by the dynamics of the four nearest
neighbors of the site (i, k): two in the row Li_; at time ¢, and two in the row Ljy; at time
tn—1. Pk (tn) is simply proportional to the number of these neighbors that are moving with a
proportionality coefficient «v. This linear law accounts for the additionability of the constraints
for low stresses. In addition, the exclusion principle imposes that the particle cannot jump
to an occupied site. However, if the particle on site (¢ + 1, k) is jumping to its right at time
tn, then the particle on site (i, %) is allowed to move. If Q; x(t) is the characteristic function
of the motion for the site (i,k) at time ¢ (Q;x(t) = 1, if there is a particle at time ¢ that is
jumping from site (4, k), and is zero otherwise) the equation for P; j(t,) reads

P; i (tn) = a(Qi—1/2,5—1(tn) + Qit1/2,k—1(tn) + Qi—1/2, k41 (tn-1) + Qix1/2,k41(tn-1)). (1)

For consistency, if the right-hand side of the formula (1) is bigger than 1, then we define
P; () = 1. Such a rule defines an abrupt cut-off and smoother behaviors might be considered
for large a. Eventually, our boundary condition will represent a moving wall situated at
k = —1: all the sites of L_; are filled and are moving at each time step. No boundary
condition is required for ¥ = oo. The velocity Vj(t,) is defined as the probability that a
particle located on row Ly moves at time ¢,. Then, the mean value of the velocity on row Ly
is denoted V' (k) and defines the velocity profile.

The only control parameter of the dynamics is a. Experimental observations suggest that
p should be taken close to 1. It appears from the simulations that the dependence on p is
trivial, and we consider results for p = 0.9. On the other hand, a reveals how much a moving
particle pushes on its neighbors. Therefore, it has to be a (non-trivial a priori) function of the
material properties such as friction, shape of the grains, their roughness, etc.... Notice that
large a represents strong interaction between the layers.
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Fig. 2. — Velocity profile for the density p = 0.9 for different values of the control parameter a.
a increases from 0.2 to 0.65 in increments of 0.05 as the curves are plotted from the left to the right.
For o smaller than one half the profile is almost exponential and it is far from exponential for o > 0.5.
The insert shows the velocity profile for @ = 0.65 as a function of k%. It shows that the profile is
better approximated by a Gaussian law, particularly for the low values of k. The number of sites per
row is 20000 and the average is computed over 4000 time iterations for 5 different initial conditions
for each a.

The model does not allow exchange of particles from one row to another (along the y-
direction). This strong constraint is in opposition with the experimental observations, where
the density profile seems to reach a steady state where the exchanges between rows just balance.
We assume in fact in this model that this interchange of particles is not relevant compared
to the friction effects. We also checked that by imposing a reasonable density profile from
the moving boundary to the bulk, the qualitative results of the model are not affected. The
model exhibits also asymmetric rules since the actions of the upper layer (at time ¢,,) and the
lower layer (at time ¢,_1) are not simultaneous. In this model, the motion is propagated from
the wall to the layers (at time t,), while the effect of the layer k + 1 on the layer k consists
in facilitating the motion of the beads, if the particles of the layer k£ + 1 were moving (at
time ¢,—1). In addition, such rules are easier to implement numerically than the simultaneous
processes. Moreover, we have performed a few numerical tests to check how this asymmetry
affects the results: the rapid decrease of the velocity makes, in fact, the action of the lower
level almost negligible and the simulations had the same qualitative features.

Numerical results. — Figure 2 shows different velocity profiles for p = 0.9 and « increasing
from 0.2 to 0.65. For @ > 1/2, an abrupt change in the velocity profile is observed. In fact,
we can expand the logarithm of the velocity in a Taylor series:

In(V(k) =a+b-k+c-k*+d-k... (2)

We remark that the three first terms on the right-hand side of (2) give a qualitatively good
approximation of the velocity profiles. It corresponds to a Gaussian fit of the profile. However,
the ratio b/c indicates the typical width for which the quadratic term becomes of the same
order as the linear one. For a < 0.5 this ratio is of order of hundreds, i.e. much larger than
the shear width and the dynamics can be considered almost purely exponential. On the other
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Fig. 3. — The probability distribution function of the cluster size for different values of o and k, and
for p = 0.9. The straight line corresponds to Py(n) and is P(n) for @« = 0.45 and k = 1. The other
two PDF shown are for values of « larger than a.. The one that is maximum for n = 0 is for « = 0.5
and k = 1, while the next highest is for @« = 0.6 and k£ = 4. Notice that they show Poisson-like tails
at large n, with different slopes. Insert: for a = 0.49 and k = 1, the PDF differs from Py(n) only at
n=0.

hand, the ratio b/c becomes of the order of 1 when « crosses the critical value a, = 0.5, so
that one can approximate the velocity profiles for a > a, with a Gaussian centered near the
row k = 0. Such property appears clearly in the insert of fig. 2, where the velocity profile for
a = 0.65 as a function of k? is shown. Notice that for small k (k? < 500), the logarithm of the
velocity is almost linear in k2, so that one can consider that the velocity profile is Gaussian at
least near the wall.

The instantaneous velocity Vj () shows also different behaviors whether « is larger or smaller
than a¢. Thus, for @ > 0.5, transitory dynamics occur for small time (¢, < 100) until the
velocity reaches a stationary behavior. Such transitory states cannot be seen for a smaller
than 0.5.

In order to investigate more carefully the transition occurring at @ = a., as well as the
velocity profiles, a simplified version of the model is introduced. It exhibits the same properties
as the model explained above, and can be more easily studied analytically. It consists of
neglecting the effect of the row Lyy; on the dynamics in row L. The model breaks again
(and more strongly) the symmetry along the y-direction. However, experimentally, the sheared
flows exhibit a spontaneous symmetry breaking as well. A transition from exponential to
Gaussian velocity profile occurs in the same way for this simplified model at @ = a.. Notice
that a. corresponds to the value of o at which the probability to move becomes 1 if the two
neighbors above are moving (the exclusion condition still holds).

We define P(n) as the probability that, given a hole, the next hole on its right is located
after n filled sites. P(n) gives the probability distribution function (PDF) for the size of the
clusters (if two consecutive sites are empty, it is considered as a cluster of size 0). A priori,
the function P(n) depends on p, a and the row number k. However, if we consider that
the particles are placed randomly on the sites with a density p (as do the initial conditions),
one obtains the Poisson distribution Py(n) = (1 — p)p™. As shown in fig. 3, for a < a,
P(n) corresponds almost exactly to Py(n) for any k and «. Therefore, at each time step, the
particles are distributed on the sites as if they were randomly placed with density p. On the
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Fig. 4. — The density of holes a as a function of o near the phase transition (o« = a. = 0.5). a is
approximately constant for a > o and exhibits a critical exponent of 2/3 for a < ac.

Fig. 5. — log(r(p,a)) obtained by numerical simulation (circles) for p = 0.9 compared to the mean-field
approximation log(V(1)/V(0)) (line). log(r) is computed by a Gaussian fit of the numerical results.
The error bars have been evaluated by comparing it with an exponential fit.

other hand, for a > a, the function P(n) differs from Py(n) in that the small size clusters
are more frequent, while large clusters follow a Poisson-like law. In this case, P(n) does not
vary as « increases for a given row, but changes as the row number increases: the bigger k,
the closer P(n) approaches Py(n).

When « approaches a, the PDF differs slightly from Py (n); for instance, for £ = 1, we can
expand P(n) in the form (see insert of fig. 3)

P(n) = adno + (1 —a)pgg(1 = pes),

with pegr = p/(1 — a(1 — p)) (the mean density has to be p). Figure 4 shows the evolution of
a as a function of a for p = 0.9. For a > a., a is a constant since a = a. = 0.25 £ 0.01 which
corresponds to peg ~ 0.92. However, for a < a. we observe that for a ~ a,

ac —a x (ae —a)”

and we found v ~ 2/3. Therefore, we identify the behavior of the system when « reaches a
as a phase transition. Notice that when « increases above a., the PDF shows a more complex
behavior since not only the value of P(0) is disturbed, but also a larger range of clusters size
(see fig. 3).

Mean-field theory. — As the correlations can be neglected for a < a., a mean-field approach
is appliable. Defining P(*)(n) as the probability that n successive particles are moving on the
row Ly (knowing that an empty site is before such a cluster), P{®)(n) can be computed exactly:

PO (n) = (2ap)™(1 — 2ap) and by noticing that V(0) = @ S nP© (n), we obtain

v =20

It is remarkable that the numerical simulations and this mean-field solution agree within an
error of less than one percent. Also, one can write the constitutive relation between P(®) and
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P,
P (n) = i Wl — n)PO(), (3)

l=n—-1

where W(l — n) is the probability that if a cluster of size [ at row k¥ = 0 is moving, then a
cluster of size n at row k = 1 is moving. It follows that

W(l-n)=010-p)2ap)" (Il —n+1)—(1—-n)2ap), for I>n,

W(n —n) = (1-plap2ap)" 12 —ap); W(n—-1=n)=(1-p)(ap)*(2ap)" 2,

and we obtain for V(1)

_l=p3 oy 20%p(1 = p)* (2 + ap(l — 2ap)?)

S e R

Again, this mean-field solution is in good agreement with the numerical results, although
not as accurate as for V' (0). Unfortunately, the next-order steps, for obtaining the analytical
solutions of P(1) and then V'(2) are much more complicate. However, one can consider that
for the exponential behavior, the knowledge of V(0) and V(1) is sufficient. Then, we can
compare the numerical exponential profile with the exponential law predicted by the mean
field. We define r(«, p) such that for a < a¢, the velocity profile obtained numerically is fit
by V(k) = V(0)(r(a, p))*.

Figure 5 shows log(r) as a function of a for p = 0.9, compared with the mean-field rm¢
solution taken as

o2 V() _ap(l = p)(2+ ap(l - 2ap)*)
mf = V() 1— (2ap)? ’

Thus, the mean-field approximation, deducing the exponential law from the ratio between
the first two velocities, gives a quantitative good approximation of the exponential decay for
a < ac. But, for a > ag, the mean-field approach fails and we are not able to show analytical
results. Although we were able to quantify clusters size correlations for a ~ ., numerical
simulations show correlations along the y-direction as well.

Conclusion. — Tt can be argued that most of the features of the phase transition comes
from the abrupt cut-off made on eq. (1) when the probability P; is greater than one. There
is no doubt indeed that the transition is due to the possibility of having a probability one to
move if all neighbours are already moving. Then, the exclusion property is dominating the
dynamics above the transition. But, the features of the phase transition (dynamical exponent,
correlations...) do not depend on the details of the regularization chosen for P; ; > 1. On the
other hand, one has to ask whether it is physically relevant to have situations where P;; can
reach one. Thus, it is not clear that granular flows can be accounted by the model for a > a.
However, we believe that the phase transition exhibited by the model might have interesting
features for granular flows. Also, all the interesting behaviors of the dynamics are precisely
seen below the transition; for example, the evolution from exponential toward a Gaussian
velocity profile appears near but below the transition. For larger o we only observe a wider
profile. In this note, we show in fact that the strength of the interaction between the layers
can simply explain different velocity profiles. Moreover, according to the model, we would
encourage experiments where the friction coefficient of the granular materials would change.
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Furthermore, we would like to investigate other applications of this model to various problems
such as non-Newtonian flows or molecular frictions.

Finally, notice that the model is based mainly on probabilistic properties of granular flows.
Other stochastic approaches have already been proposed in this context [9,10], although in
granular materials there is no justification such as thermal fluctuations for stochastic processes.
However, the shape of the grains, and therefore the contact network in granular materials can
be considered as random variables (this has been argued for the chain forces in static bead
pile [11]). Additionally, the motion of the particles in shear flows changes the configuration of
the contact network of the system. These different properties might give robust confidence for
such a probabilistic approach.
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