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Coalescence and Droplets in the Subcritical Nonlinear Schrédinger Equation
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We describe here the coalescence and formation of droplets, in a Hamiltonian kinetics of a first
order phase transition. In the process of coalescence, the typical linear size of single phase domains
grows as a power of time. The density correlation function follows the usual self-similar dynamic
scaling. For different initial conditions, we observe the nucleation and dynamics of stable pulses. The
stability of such pulses in one dimension is also computed. Both results may be relevant to superfluid
He, cavitation or for filamentation in nonlinear optics and for the recent evidence of Bose-Einstein
condensation in i [S0031-9007(97)02409-5]
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The well known process of the formation of singular- by subcritical nonvariational instabilities were discovered
ities at finite time in nonlinear wave phenomena (for in-some time ago by Thual and Fauve [5] and studied in
stance optics) is generically described by the (focusingjletail later [6]. In this case, the nonvariational effects

nonlinear Schrodinger equation [1] stabilize the solitons.
. v ) 1 In this Letter we show that stable solitary waves arise
0, =V + |yl*y. (1) 1D, 2D, and 3D whenever we add a fifth power term

Here ¢ is a complex quantity representing the amplitudeto Eq. (1). We show also a mechanism of coalescence
of the wave, i.e., the electric field in optics. The nonlinearbetween the liquid droplets or gaseous bubbles, leading
term represents the action of a refraction index dependinfinally to two stable domains in a finite volume. This
on the field intensity. For spatial dimensions equal angrocess follows a self-similar dynamical scaling. Finally,
higher than two and for a large set of initial conditions thewe argue that the pulses or droplets are stable because
electric field diverges at a finite time. of the mechanism of coalescence which transfer (irre-
Experimentally we observe in optics only a kind of versibly) the matter of small droplets (perturbations) to
filamentation, i.e., two dimensional pulses of very highthe main drop, in a kind of condensation.
but finite intensity (see, for instance, [2]). We may Our starting point is a subcritical nonlinear Schrodinger
imagine that physically the appearance of singularitie$SNLS) equation (we use the same notations as in [7] and
at finite time and collapsing waves are, in some sensen general we shall speak in the context of Bose superfluid
“fictions,” since for very large electric fields we must at7 = 0 K, that is, a liquid, instead of nonlinear optics)
include higher orders in the expansion of the nonlinear
refraction inde_x. As a consequence, the divergence is i% - —%szp — 2pcl0 Py + W)ty )
stopped, creating stable and intense light pulses. In He at
superfluidity, those pulses must be regarded as superflujg. is a constant. In general the inversemf represents
droplets. the small expansion parameter of the nonlinear terms:
We study the formation of these localized structuresFor |/|> < p. the cubic term [Eq. (1)] is sufficient to
when higher order terms are added to Eq. (1). Waelescribe the phenomena; however, whgi¥ =~ p., one
describe a Hamiltonian system where the energy has twmust add the quintic term. Physically, for superfluid He
local stable minima. In some sense, by analogy withl, p. is related to the critical density for cavitation; that
the bifurcation theory, this can be called a “subcritical” is, when the sound speed vanishes (see later), experimen-
conservative dynamic. The physics observed in theally this happens for densities of the order(of g/cnm’
numerics is very analogous to the formation of droplets if3]. In optics, the expansion parameter represents an elec-
a “dynamical” first order phase transition. By dynamicaltric field intensity being a characteristic of the material.
we mean that all the physical processes take place odtypically p. = 10?> V2/m? (the characteristic intensity
of equilibrium; moreover, there is no explicit relaxation in atomic scales).
process: The dynamics are completely reversible (and In a similar way, Eq. (2) could be a good model to
Hamiltonian). study the dynamics of the many body system of attractive
A purely variational (and nonconservative in the sense@wo particles interaction which is the case of, [4]. If
of matter) dynamics does not lead to stable droplet®ne neglects the three body interactions, this ultracold gas
because of the minimization of the free energy of thels unstable as in the case of nonlinear optics; however,
system, which finally is completely filled by the most it was suggested (see Ref. [13] of [4]) that the external
stable phase. However, stable solitary waves inducethagnetic forces, used to trap the atoms, could stop the
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collapse, in an unclear way because the magnetic fieldtable densities, and leading to a splitting of space into
varies so slowly in the small region of the collapse. Thewell defined domains with largé~p.) and small(~0)
three particle interaction has to be repulsive in order testable densities.
regularize singularities; thus our results could be relevant A second intermediary and short stage in the process
in the recent experiments of Bose-Einstein condensationccurs: The pressure difference between the low density
of Li-. (gas) and the large density (liquid) phases contract the
Equation (2) possesses the following invariances: (iliquid phase, until the liquid density reachésoc, the
translation, (ii) Galilean invariance, and (iii) global phasepoint where pressure equilibrium is established. Finally,
change. The total mass or number of particlds=  one can observe a third step, with slow spatiotemporal
[l¢1?dPx, is conserved, as well as the energy: dynamics, where the stable droplets and bubbles coalesce:
| 5 T The number of domains diminishes inversely proportional
H = j(lel/fl = pelyl” + 3191°)@°x . (3)  to the time. This process may be seen by the simple
The long wavelength behavior of the system is deXinetic proces$ + B — B. Letn(r) be the total number
scribed by a phase variable, the phase pivhich follows ~ Of bubblesB by volume unit; then, if we suppose the
a wave equation. The variations of the modulugjodre diffusion constant independent of the radius qf the bubble,
related to the phase fluctuations. It is useful to defindn€ number of bubbles follows the rate equation [8]

p = |¥|> which we shall call the local “density of the dn

liquid” (“light intensity” in nonlinear optics). The den- - —n?,
: i R . t

sity p satisfies a wave equatiod;;p = ¢“V*p, ¢ being

the sound velocity. For a densify the sound speed is i.e.,n ~ ¢! as we observe in the numerical simulations
c =+2p(p — p.); therefore, it vanishes fgs = p.. If  in two and three spatial dimensions (see Figs. 1 and 2);

the local density is less tharp., a long wavelength in- however, in 1D the number of domains decreases only as

stability develops because locally becomes negative. n ~ t~'/4, lacking a satisfactory explanation.

The linear density perturbatiop + & pge* ™+ with Indeed, we obsle/rzve that the typical size of structures

_ |2 _ 2 _ _ rows as{€(t) ~ ¢ in two spatial dimensions and

o = kok?/2 k4/4.and ko = 4plpc — p), are un- %(r) ~ 113 in three spatial dimenF;ionﬁ([t) ~ t1/4in 1D]

stable for all perturbations such that< +2ky. Starting ;¢ shown in Fig. 2(b); moreover, numerical simulations

with an initial uniform densityp, slightly less tharp., the o 0\v that the structure factai(k, 1) = (g ()2 [ ()

density variations grow exponentially in time, as one Caheing the Fourier transform @f(x, r) and(- - - the angular
see in Fig. 2(a), creating a cellular modulation with theaverage in Fourier space] evolves as

length scale of the fastest growing mode, i¥.kg; see
Fig. 1(a). This very short scale modulation expels matter Sk, 1) = £ SL()K),

from one domain to another, creating regions with more

whereS (-) is a universal function for largg[9]. Figure 2
plots the functionS(k,¢)/€¢(+)P as a function ofé(r)k

for different times in 2D. One can see the convergence
to the universal functionS for larget, as well as the
exponential growth of(k, r) at a defined scale for small

t. In addition, let us notice th& follows the Porod law,
i.e.,Su) ~ u"®P*D atleastin 2D, which means that we
are dealing with sharp domain walls [9].

This kind of physical process is not the only one
possible; it happens for an initial condition such that
the initial ratio py is close fromp., which is the case
of superfluid helium. However, in nonlinear optics the
electric field amplitude is usually much less than an
atomic one; thuspy < p.. This is also the case of
; - condensates of Lisince the total number of trapped
FIG. 1. A time sequence of the coalescence of gas bubble_étoms '_S _very_small. In both cases_, thg fifth P?W‘” term
The gray scale represents the vapor phase by a light grap negligible in (2) and the focusing instability tends
and the liquid by a dark gray. The images are taken (a) ahaturally towards singular points in a finite time, until
t =362, (b)t = 61.1, (c)r = 203.35 and (d) = 634.7 time  the amplitude of|¢|> becomes comparable with,., at

units. The number of bubbles decreases in time foIIowingwhiCh point the fifth power term “saturates” the focusing
the law n ~ t~!, as usual in coalescence phenomena. We

used a Gauss-Seidel Crank-Nicholson finite-difference methquStapiIity_and leads to the formation O,f stgble drqplet; as
in a (256 box with Neuman boundary conditiondy = 1.0,  S€en in Fig. 3 for a 2D simulation. This kind of situation

p. = 1.1, andp, = 1. seems to be the one observed in nonlinear optics.
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FIG. 2. (a) Log-log plot oft~1S(k,t) vs t'/2k at different

equal times intervals, in 2D. The curves at the bottom represent R2(x) =
the exponential growth in time of the focusing instability given
by the linear equation,S(k,t) = oS(k,t). The nonlinearities
saturate this exponential growth, and we can see that the
functions reach a universal function, which for langdollow
the Porod law in 2D,S(u) ~ u~®*Y, D being the space
dimension. (b) For large, the mean valugk), in 2D and
3D has been computed and one can note that the inverse
the characteristic length of our problem follows the scaling
law (k) ~ =1/, This means that the number or bubbles in
the system is inversely proportional to the time.
simulations have been done with = 1.1 andpy = 1.

FIG. 3. A temporal sequence of a state dominated by oscilla-
tory droplets as we see from (a) through (d).

frequency is given by the classical formula of Rayleigh
for capillary oscillations [10w? = 6a/prj, a being the
surface energy (per unit of mass) which we will discuss
later andry the radius of the droplet.

The first step to understand this two dimensional pulse
is through the one dimensional case. We seek a solution
of (2) of the formR(x)e’#!, with R(+x) — 0, for x —

~2 Ry — 2pR* + R3S + uR = 0.

We obtain the known soliton solution of [11]:

3p¢ 1 —a?

2 2acosB(\2ux) +1 —a’

(4)

herea = /1 — 4u/3pZ. The dimensionless parameter

a characterizes completely the solitons.

By imposing that the total number of particles is equal
toN = [~ dxR%(x), we getu = (3p2/4)tanh? \/2/3N;
BHlus,N is directly related ta by a = 1/cosh(y/2/3N).

In the thermodynamic limit(N — «) a goes to O,

All thesei.e., u — 3p2/4, and the soliton tends to a front from

p=0(tx — —»)top = %pc for a intermediate band
(arbitrary large depending linearly oN) near x = 0,

Because of the slow coalescence or condensation @nd then agaim = 0 for x — «. This valuep = 3 pe
the small droplets, the final state is a unique solitary$ such that the equilibrium pressure is established, i.e.,
droplet. The long term evolution, with Dirichlet boundary p(p = 0) = p(p = 3 > pe) = 0[7], as we have explained
conditions ony, makes the droplets disappear on thefor the coarsening process.
boundaries leading to a single droplet at the center of Let us come back to the surface energy between

the box, presumably the structure of the ground state dhe liquid and the vapor in 2D.

We can estimate

the system. The excess energy transforms into vibratiori§is when the number of particles is large, i.g,~
of the droplet and small scale oscillations.
that the central pulse has an internal excited mode gb(x = —x,y,z) =0 and p(x = 0,y,z) = 2,oc, thus,
oscillation (the second angular harmonic), which persistshe surface energy is given by integration alongf the
as far as we could follow in humerical simulations. Theenergy (3) (in fact at equilibrium we need the free energy

We note3pc/4 We consider a one dimensional pulse between
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H + uN)

0
a = ] dx(%Rf — peR* + %R6 + wR?)

0
f dxR? =

9p2

1636

The soliton solution (4) is stable towards fluctuationsfocusing instability:

against perturbations in the third dimension, as is usual in
the Rayleigh instability of a column of liquid in classical
fluid dynamics [10], leading to stable 3D droplets.

Finally, it may be suggested that droplets in two
dimensions are, furthermore, unstable against a small
perturbation far from the main pulse, because of the
The small perturbation tends to

in thex direction, as we shall now prove. We introduce aincrease since the fifth power term is negligible; thus, one

perturbation of the soliton solution (4y.(x,t) = [R(x) +
Si(x)e?]e’* into Eq. (2). For smallsy we get the
eigenvalue problem

51!’1) _( 0 L 51!’1)

0<5¢2 <—£2 0 )(51#2 ’ ©®)
with £, = —% dpe — 2pcR*(x) + R*(x) + © and
L= — 500 — 2pcR2(x) + R*x) + p — 4[pR2(x) —

R*(x)], two Hermitian operators.
As a consequence of the symmetries of the solutio

may imagine a final state made of many different droplets
with a principal one. However, because of the coarsening
process, these perturbations are evaporated, increasing
the amount of matter in the main one. Another—
more interesting—situation will be an array or crystal of
droplets, and this situation is unstable for the same reason.
The authors thank Yves Pomeau for discussing dif-
ferent problems dealing with this Letter. We are also
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(R Zeitak for numerous suggestions. The numerical sim-

(4) of Eq. (2) the null space has at least dimension fouplations have been done on the CMS5 of the CNCPST at
[the three mentioned above plus a continuous symmetr{'€ Institut de Physique du Globe de Paris.

of the solution (4) by the arbitrary choice of the initial

total number of particles, which lead to an extra Goldstone

mode].
The eigenvalues follow directly from the spectra of
i~L1L,. We compute numerically the spectra getting
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